Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Extreme events and Climate Change: a statistical perspective

Aurélien Ribes

27 June 2022, Kelowna (and Toulouse)

Extreme events and Climate Change: a statistical perspective

Aurélien Ribes

Extreme events	Data 000	Questions 00000	Statistical challenges	Conclusion o
Motivation / This	talk			

- Most impacts of climate change are expected to occur through extreme events.
 e.g., sea level rise,
- How extreme events are / will be affected by climate change?
 What events to expect in the future?
- ◊ Statistics play a central role.

This talk:

- A review of recent research and statistical challenges in investigating extreme events and climate change.
- ◊ I assume the audience is familiar with stats (e.g., GEV), but not familiar with climate data.

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Extreme events and Climate Change: a statistical perspective

Aurélien Ribes

Extreme events	Data	Questions	Statistical challenges	Conclusion
•0	000	00000	0000	0

IPCC assessments on extremes (last 10-yr)

SREX, 2012

AR5, 2014

AR6, 2021

Extreme events	Data	Questions	Statistical challenges	Conclusion
0•	000	00000	0000	0

Which events and the current knowledge

- ♦ **Temperature** (easy): warm \nearrow , cold \searrow
- Droughts (quite difficult): depends on def, region, period, length, ...

Projected changes in extremes are larger in frequency and intensity with every additional increment of global warming

Extreme events and Climate Change: a statistical perspective

Which events and the current knowledge

- ♦ Temperature (easy): warm \nearrow , cold \searrow
- Droughts (quite difficult): depends on def, region, period, length, ...

Extreme events	Data	Questions	Statistical challenges	Conclusion
0•	000	00000	0000	0

Which events and the current knowledge

- ◊ Temperature (easy): warm ↗, cold ↘
- Droughts (quite difficult): depends on def, region, period, length, ...
- Floods
- Coastal floods / waves
- Storms: tropical cyclones, extratropical storms
- Convective storms: thunderstorms, convective gusts, lightning, hail, etc
- Compound events: hot and dry, frost on active vegetation

Projected changes in extremes are larger in frequency and intensity with every additional increment of global warming

Figure SPM.6, IPCC WGI AR6.

Extreme events and Climate Change: a statistical perspective

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Extreme events in climate

2 Data

Some statistical challenges and personal work

Extreme events and Climate Change: a statistical perspective

Extreme events	Data ●○○	Questions	Statistical challenges	Conclusion o
Data				

Observations

Big bunch of literature to describe observed changes in extreme events

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	•00	00000	0000	0

Data

Observations

Big bunch of literature to describe observed changes in extreme events

Models

Extreme events	Data ○●○	Questions 00000	Statistical challenges	Conclusion o
Climate models:	principle			

Source : IPSL

Models are based on:

- physical equations (Navier-Stokes, thermodynamics, radiation, etc).
- numerical resolution of PDEs.

Resolution:

- spatial (H) \sim 100 km,
- spatial (V) ~ 500 m,
- temporal \sim 15'.

Models simulate the climate system:

- atmosphere, ocean, land surfaces, biosphere, cryosphere, rivers, ...
- IV and forcings.

Extreme events	Data oo●	Questions	Statistical challenges	Conclusion o

Climate models: practical use

- Model development and use is a huge effort!!
- Numerical experiments: pi-control, historical, scenarios, theoretical experiments, ...
- Coordinated simulations: CMIP ensemble (~40 models in CMIP6).
- Several types of models/resolution: global (~100km), regional (~10km), km-scale (~1km), ...

Model spin-up, pre-industrial control (black), and historical (colors) simulations with the model CNRM-CM6. From Voldoire et al., 2019, JAMES.

Right: Warming response to $2 \times CO_2$ in CMIP5/6 models

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Extreme events in climate

Some statistical challenges and personal work

Extreme events and Climate Change: a statistical perspective

A D > A B > A B > A B >

Extreme events	Data 000	Questions •••••	Statistical challenges	Conclusion o
Questions				

How extreme events are / will be affected by climate change?

In IPCC AR6 WG1 Chapter 11:

- ◊ Mechanisms and Drivers
- Observed trends
- Model evaluation
- Detection and Attribution, Event attribution
- Projections

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	0000	0000	0
B 1 11				

Projections

Describe how extreme events respond in (model) projections.

Examples:

Temp: Wehner et al. (2020, WACE); Precip: Kharin et al. (2012, below); John et al. (2022).

Change in TNn 20-yr RV, at various Global Warming Levels (GWLs); from Wehner et al., 2020, WACE.

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Projections

Describe how extreme events respond in (model) projections.

Examples: Temp: Wehner et al. (2020, WACE); Precip: Kharin et al. (2012, below); John et al. (2022).

Daily precipitation 20-yr RV change per 1°C warming

Confidence interval on daily precip 20-yr RV change; from John et al. (2022).

Extreme events and Climate Change: a statistical perspective

Extreme events	Data 000	Questions	Statistical challenges	C
Detection / a	ttribution			

- Detection: are observations consistent with internal variability only?
- Attribution: assess the relative contribution of (various) external forcings.
 e.g., ANT / NAT, GHG / AER, etc.

Example: Min et al (2011), Zhang et al (2013) looked at annual max 1d rainfall (RX1D) worldwide and report a statistically discernible human influence.

LETTER

Human contribution to more-intense precipitation extremes

Seung-Ki Min¹, Xuebin Zhang¹, Francis W. Zwiers¹† & Gabriele C. Hegerl²

onclusion

doi:10.1038/nature0976

Data

Questions

Event attribution

- Concept: consider a specific event that did happened
- Investigate / Describe human contribution to that event Assess human influence on probability / intensity of the event? What to expect in the future?
- Historical example: European 2003 HeatWave Stott et al., 2004, Nature

Key indices:
$$PR = \frac{p_1}{p_0}$$
, $\Delta I = I_1 - I_0$, $FAR = \frac{p_1 - p_0}{p_1}$.
FAR: Fraction of Attributable Risk.

Human contribution to the European heatwave of 2003

Peter A. Stott¹, D. A. Stone^{2,3} & M. R. Allen²

¹Met Office, Hadley Centre for Climate Prediction and Research (Reading Unit), Metorology Building, University of Reading, Reading RG6 6BB, UK ²Department of Physics, University of Oxford, Oxford OX1 3PU, UK ³Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

The summer of 2003 was probably the hottest in Europe since at latest AD 1500¹⁻⁴, and unusually large numbers of heat-related deaths were reported in France, Germany and Italy³. It is an ill-posed question whether the 2003 heatwave was caused, in a simple

Data

Questions

Event attribution

- Concept: consider a specific event that did happened
- Investigate / Describe human contribution to that event Assess human influence on probability / intensity of the event? What to expect in the future?
- Historical example: European 2003 HeatWave Stott et al., 2004, Nature

- Now: rapid attribution (eg, WWA).
- Potential interest: awareness-raising, legal aspects.

Human contribution to the European heatwave of 2003

Peter A. Stott¹, D. A. Stone^{2,3} & M. R. Allen²

¹Met Office, Hadley Centre for Climate Prediction and Research (Reading Unit), Metorology Building, University of Reading, Reading RG6 6BB, UK ²Department of Physics, University of Oxford, Oxford OX1 3PU, UK ³Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

The summer of 2003 was probably the hottest in Europe since at latest AD 1500¹⁻⁴, and unusually large numbers of heat-related deaths were reported in France, Germany and Italy⁵. It is an ill-posed question whether the 2003 heatwave was caused, in a simple

Extreme events	Data 000	Questions 0000●	Statistical challenges	Conclusion o
Causality				

The 2010 Russian heatwave (R10) example:

Dole et al, 2011: R10 is "mainly natural in cause",

Rahmstorf and Coumou, 2010: R10 "would not have occurred" without climate change.

Reconciling (Otto et al, 2012): most of the heat anomaly is natural; CC increased the risk significantly.

Relationship between "(event) Attribution" and "Causal theory",

e.g., Hannart et al., 2016, BAMS; Hannart et al., 2018, JClim

 $PN = max(1 - fracp_0p_1, 0), \qquad PS = max(1 - \frac{1-p_1}{1-p_0}, 0), \qquad PNS = max(p_1 - p_0, 0).$

◊ Usually, "human influence" is a necessary, but not sufficient cause.

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Extreme events in climate

3 Questions to investigate

Some statistical challenges and personal work

Extreme events and Climate Change: a statistical perspective

Aurélien Ribes

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Related to the extremes events

Statistical model selection, e.g., non-stationary models

 $y_t \sim GEV(\mu_0 + \mu_1 x_t, \sigma_0 + \sigma_1 x_t, \xi).$

- \diamond Select appropriate covariate x_t ,
- Constant ξ ?
- GEV models may not fit annual max. Ben Alaya et al., 2020 (JClim), 2021 (WACE).
- Specific investigation of Low Likelihood High Impact scenarios / events, sse, e.g., Sutton, 2019, BAMS.
- If no data: statistical investigation of environmental conditions (incl. Al).
 e.g., Tropical cyclogenesis, Menkes et al., 2009, Clim Dyn; CAPE, Singh et al., 2017, PNAS.

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Related to the data

- ◊ Observations
 - ◊ measurement uncertainty,
 - ◊ homogeneity,
 - ◊ missing data,
 - ◊ (spatial) representativity,
 - ♦ short records,
 - ۰...

Extreme events	Data	Questions	Statistical challenges	Conclusion
00	000	00000	0000	0

Related to the data

- ◊ Observations
 - ◊ measurement uncertainty,
 - ◊ homogeneity,
 - missing data,
 - ◊ (spatial) representativity,
 - ◊ short records,

```
۰...
```

Models

- ◊ Systematic bias need for bias correction (= stats),
- ◊ Too coarse resolution statistical downscaling,
- Models do not necessarily agree,
- Combining models: model uncertainty, non-independence, poor design.

Knutti et al., 2010, Jclim; Knutti et al., 2013, GRL

イロト イポト イヨト イヨト

Extreme events	Data 000	Questions 00000	Statistical challenges	Conclusion o
Combining ob	servations	and models (1)		

- Obs. now provide indication about warming strength
- Combination of model and obs to assess past and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv; Liang et al., 2020, GRL; Ribes et al., 2021, Sci Adv.

Illustration from Ribes et al. (2021)

イロト イロト イヨト イヨト

Extreme events	Data 000	Questions 00000	Statistical challenges	Conc o
Combining ob	servations	and models (1))	

- Obs. now provide indication about warming strength
- Combination of model and obs to assess past and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv; Liang et al., 2020, GRL; Ribes et al., 2021, Sci Adv.

Illustration from Ribes et al. (2021)

usion

Extreme events	Data 000	Questions 00000	Statistical challenges	Conclusion o
Combining ob	servations	and models (1)		

- Obs. now provide indication about warming \diamond strength
- Combination of model and obs to assess past \diamond and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv: Liang et al., 2020, GRL: Ribes et al., 2021, Sci Adv.

Illustration from Ribes et al. (2021)

Extreme events	Data 000	Questions 00000	Statistical challenges	Conclusion o
Combining ob	servations			

- Obs. now provide indication about warming \diamond strength
- Combination of model and obs to assess past \diamond and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv: Liang et al., 2020, GRL: Ribes et al., 2021, Sci Adv.

Illustration from Ribes et al. (2021)

Combining observations and models (1)

- Obs. now provide indication about warming strength
- Combination of model and obs to assess past and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv; Liang et al., 2020, GRL; Ribes et al., 2021, Sci Adv.

Extreme events	Data 000	Questions 00000	Statistical challenges	Conclusion o
Combining obse	rvations and	models (1)		

- Obs. now provide indication about warming strength
- Combination of model and obs to assess past and future changes
- ◊ GSAT warming in IPCC AR6...

Tokarska et al., 2020, Sci Adv; Liang et al., 2020, GRL; Ribes et al., 2021, Sci Adv.

... now moving towards extremes.
 Thackeray et al., 2022, NCC

Ref: Robin & Ribes (2020), ASCMO

Aurélien Ribes

1900

2000

Year

Extreme events	Data ooo	Questions 00000	Statistical challenges	Conclusion •
Conclusion				

- A wide range of events some are very poorly known.
- One central question: evaluating / quantifying the future hazard.
- Causal theory involved in relating extreme events to the human influence on climate, with potential societal implications.
- A number of statistical challenges that need continued statistical research, e.g., smart blending of model + observation data.