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Max-linear Bayesian networks

Graphical models [Lauritzen (1996)]

- Represent multivariate distributions to facilitate statistical analysis.

- Describe high-dimensional distribution by a careful combination of
lower dimensional factors.

- Use graphs as natural data structure models for algorithmic treatment.

- Use graphical models for causal interpretation through a recursive
system on a directed acyclic graph (DAG) [Pearl (2009)].

- Conditional independence and Markov properties are essential
features.

We present conditional independence properties of max-linear Bayesian
networks, which emphasize the difference to Bayesian linear networks.
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Max-linear Bayesian networks

Max-linear Bayesian networks (MLBN) [Gissibl & K. (2018)]

Let D = (V, E) be a DAG and each node i represent a r.v. X;.
Define the MLBN over D by the recursive ML structural equation system
[Pearl (2009)]

Xi=\/ cXcvZ i=1,...d

kepa(i)

for independent innovations Zy, ..., Zg > 0 with continuous distributions,
coefficients ¢ > 0, and pa(i) (parents of i) denotes the set of nodes j with
a directed edge from jto i (j — ).
The system has solution

Xi=\/ ¢z i=1,....d
jean(i)u{i}
where an(i) (ancestors of i) denotes the set of nodes j with a directed path
from jtoi (j ~ i), and
c,.jf is a maximum taken over all the products of the coefficient along j ~ i.
Any such path that realizes this maximum is called max-weighted under C.
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Max-linear Bayesian networks

Path notation

@ Define C* = (c}) such that c;j‘. is a maximum weight of all paths (weight
= product of the coefficients) along j ~» i. Hence, C* is a weighted
reachability matrix, i.e., supported by the reachability DAG D*.

Example. D = (V,E) = ({1,2,3},{(1,2),(2,3)})

- A pathin a DAG D is a sequence of nodes i, i1, ..., ik such that
ip — ips1 OF gy — g is an edge in D foreach £ =0,..., k.

- A directed path has edges i; — ip.1 for all £.
- Acollider on a path is a node iy in a path such that ir—y — iy « ipy1.
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Max-linear Bayesian networks

Tropical linear algebra [e.g. Butkovic (2010)]

Linear Bayesian networks are based on classical linear algebra;
in contrast, max-linear Bayesian networks are based on tropical linear
algebra in the max-times semiring (R, ®, -), defined by

aoOb=avb=max(a,b), a-b=ab fora,beR,.

These operations extend to Rg coordinate-wise and to corresponding
matrix multiplication for R € R™" and S € R as

n
(RoS)j=\/ risy.
k=1

For max-linear Bayesian networks, X is Markov with respect to its DAG.
However, the tropical linear algebra has various consequences concerning
conditional independence properties and statistical analysis of the model.
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Max-linear Bayesian networks

Conditional independence

Linear graphical models identify conditional independence relations
through separation criteria applied to a graph.
The standard separation criteria is given by the following definition.
Definition Two nodes i,j € V are d-connected given a set K € V \ {i, j}, if
there is a path  : j ~» i such that all colliders on x are in K U an(K) and no
non-collider on z is in K. For three disjoint subsets /, J, K of the node set
V, the node set K d-separates I and J, if no pair of nodes i€ landje Jis
d-connected relative to K.
Note:
@ Conditional independence properties for max-linear Bayesian
networks are very different from those in linear Bayesian networks.
In particular, they are often not faithful to their underlying DAG D.
@ Hence, the above d-separation criterion on the DAG typically will not
identify all valid conditional independence relations.
@ This is in contrast to the situation for most Bayesian networks based

on discrete random variables or linear structural equations.
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Three examples

Diamond DAG: max-weighted and other paths

1 — 2 — 4 is max-weighted & C42C21 > C43C31.
Then

X1=241, Xo=021XqV Lo,
X4 = C40Xo V Z4 V C43X3
=Ca2(Zo V C21Z1) V Z4 V Ca3(Z3 V C31Z4)
= C4020 NV C42C21Z1 NV Z4 N Ca323 V C43C31Z4
= C4220 NV C42C21Z1 NV Z4 NV Ca323
= C42Xo V Z4 V C43Z3
= Xy A Xe | Xo.
This does not follow from the d-separation criterion.
Here, the fact that 1 — 2 — 4 is max-weighted renders the path

1 — 3 — 4 unimportant for the conditional independence X; 1L X4 | Xz,
evenif 1 - 3 — 4 were also max-weighted (that is, if c4oC21 = C43C31).
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Three examples

Cassiopeia DAG: double colliders along a path

For the sake of the argument, | set all ¢;; = c,.jf =1.

Xi=2Zy Xo=2 Xg=23
Xa=2Z4 V2oV 24
X5 = Zo N Z3 N Zs

Indeed: Xi 1L X3 | {Xs = x4, X5 = x5} for all coefficient matrices C:

Let xx = (x4, x5) and recall that all Z; are a.s. different.

Then
[X4} 21N 2o N Zy S I:ZA,] |
X5 25

Zo N Z3 N Zy

X4 S VARV
X5| 2LV Z3
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Three examples

Cassiopeia continued

We have three situations for (x4, x5) corresponding to

X4 > X5, X4 < Xs, X4 = X5

X4 Zi X4 21V 2 X4 Zi
> > = = .
[XJ = [Zg \Y 23] ’ [XJ - Z3 } Xs| |43 and Z; = X4 = X5

Hence, all Z; are bounded in all three cases. Moreover, Z; and Z3 never
occur together in any inequality, rendering Xy 1L X3 | X4.5).

X4 > Xs5: then the causal source of 4 is 1, and of 5 they are 2,3

X4 < Xs, then the situation is reversed

X4 = X5, then Xo = x4 = X5 is a fixed node

Note: Conditional independence does not follow from the d-separation
criterion, since the path from 1 to 3 is d-connecting relative to {4, 5}.
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Three examples

Tent DAG: context specific conditional independence

The source graph C(Xk = Xk):

as

©) @ &® @ @

X =
D C(Xk = xk)

Figure: Left: Tent DAG D. Right: For all coefficients equal to 1, the source graph
C(Xk = xk) with observed values x; = x5 = 2 is obtained from D by removing the edges
1 — 3 and 2 — 3, which become redundant in the context {X; = X5 = 2}.
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Three examples

Continuing the Tent DAG with {X; = X5 = 2}

ais
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Xi=2Zy, Xo=2p, Xz=Z3VvXiV Xy
Xa=2ZuVXiVXo=2, Xs=2Z5VXiVXo=2.
Since Zi, ..., Zs are a.s. different, it holds outside a null-setthat X; vV Xo = Z; vV 24 = 2.
This introduces bounds on the innovations; we must have Z;, Z,, Z4, Zs < 2 and it also
holds that X3 > 2. Further, we then have
Xi=2Z, Xo=2o, XiVXo=2, Xs=2Z3V2,
Xo=2Z4vV2=2 Xs=2Z5V2=2,

Now, the dependence of X; on Xi, X, has disappeared, hence X5 1L (X1, Xo) [ X4 = X5 = 2.
This independence statement is reflected in the lack of edges 1 — 3 and 2 — 3 in the
source DAG C(Xy = X5 = 2).
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Summary and conclusion

Summary and conclusion

@ MLBN models have very different conditional independence
properties than LBN models.

@ | have given 3 examples, where the classical d-separation criterion
fails.

@ For an observed set of nodes K, a representation of X | Xx = Xk

guides us to find a reduced representation of X taking deterministic

features of a MLBN into account.

Impact graphs describe how extreme events spread in the MLBN.

The union of all impact graphs compatible with {Xx = xx} is the

starting point for tracking possible sources of {Xx = xk}.

Cleaning up this union of graphs for fixed and redundant nodes and

redundant edges yields the source graph C(Xk = xk) giving a

compact representation of the condional distribution given Xi = xk.

@ A new =-separation criterion is equivalent to Cl statements in
context-free and context-dependent settings, which we formulate as

x-separation in different derived DAGs.
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