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Max-linear Bayesian networks

Graphical models [Lauritzen (1996)]

- Represent multivariate distributions to facilitate statistical analysis.

- Describe high-dimensional distribution by a careful combination of
lower dimensional factors.

- Use graphs as natural data structure models for algorithmic treatment.

- Use graphical models for causal interpretation through a recursive
system on a directed acyclic graph (DAG) [Pearl (2009)].

- Conditional independence and Markov properties are essential
features.

We present conditional independence properties of max-linear Bayesian
networks, which emphasize the difference to Bayesian linear networks.
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Max-linear Bayesian networks

Max-linear Bayesian networks (MLBN) [Gissibl & K. (2018)]

Let D = (V ,E) be a DAG and each node i represent a r.v. Xi .
Define the MLBN over D by the recursive ML structural equation system
[Pearl (2009)]

Xi :=
∨

k∈pa(i)

ckiXk ∨ Zi i = 1, . . . , d

for independent innovations Z1, . . . ,Zd > 0 with continuous distributions,
coefficients cki > 0, and pa(i) (parents of i) denotes the set of nodes j with
a directed edge from j to i (j → i).
The system has solution

Xi =
∨

j∈an(i)∪{i}

c∗ij Zj i = 1, . . . , d.

where an(i) (ancestors of i) denotes the set of nodes j with a directed path
from j to i (j  i), and
c∗ij is a maximum taken over all the products of the coefficient along j  i.
Any such path that realizes this maximum is called max-weighted under C.
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Max-linear Bayesian networks

Path notation

Define C∗ = (c∗ij ) such that c∗ij is a maximum weight of all paths (weight
= product of the coefficients) along j  i. Hence, C∗ is a weighted
reachability matrix, i.e., supported by the reachability DAG D∗.

Example. D = (V ,E) = ({1, 2, 3}, {(1, 2), (2, 3)})

1 2 3D 1 2 3D∗

- A path in a DAG D is a sequence of nodes i0, i1, . . . , ik such that
i` → i`+1 or i`+1 → i` is an edge in D for each ` = 0, . . . , k .

- A directed path has edges i` → i`+1 for all `.

- A collider on a path is a node i` in a path such that i`−1 → i` ← i`+1.

1 2 3
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Max-linear Bayesian networks

Tropical linear algebra [e.g. Butkovic (2010)]

Linear Bayesian networks are based on classical linear algebra;
in contrast, max-linear Bayesian networks are based on tropical linear
algebra in the max-times semiring (R≥,�, ·), defined by

a � b = a ∨ b = max(a, b), a · b = ab for a, b ∈ R≥.

These operations extend to Rd
≥ coordinate-wise and to corresponding

matrix multiplication for R ∈ Rm×n
≥ and S ∈ Rn×p

≥ as

(R � S)ij =
n∨

k=1

rik skj .

For max-linear Bayesian networks, X is Markov with respect to its DAG.
However, the tropical linear algebra has various consequences concerning
conditional independence properties and statistical analysis of the model.
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Max-linear Bayesian networks

Conditional independence

Linear graphical models identify conditional independence relations
through separation criteria applied to a graph.
The standard separation criteria is given by the following definition.
Definition Two nodes i, j ∈ V are d-connected given a set K ∈ V \ {i, j}, if
there is a path π : j  i such that all colliders on π are in K ∪ an(K ) and no
non-collider on π is in K . For three disjoint subsets I, J,K of the node set
V , the node set K d-separates I and J, if no pair of nodes i ∈ I and j ∈ J is
d-connected relative to K .
Note:

Conditional independence properties for max-linear Bayesian
networks are very different from those in linear Bayesian networks.
In particular, they are often not faithful to their underlying DAG D.
Hence, the above d-separation criterion on the DAG typically will not
identify all valid conditional independence relations.
This is in contrast to the situation for most Bayesian networks based
on discrete random variables or linear structural equations.
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Three examples

Diamond DAG: max-weighted and other paths

1

2

c21

3

c31

4
c42 c43

1→ 2→ 4 is max-weighted⇔ c42c21 ≥ c43c31.
Then

X1 = Z1, X2 = c21X1 ∨ Z2,

X4 = c42X2 ∨ Z4 ∨ c43X3

= c42(Z2 ∨ c21Z1) ∨ Z4 ∨ c43(Z3 ∨ c31Z1)

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3 ∨ c43c31Z1

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3

= c42X2 ∨ Z4 ∨ c43Z3

⇒ X1 ⊥⊥ X4 |X2.

This does not follow from the d-separation criterion.
Here, the fact that 1→ 2→ 4 is max-weighted renders the path
1→ 3→ 4 unimportant for the conditional independence X1 ⊥⊥ X4 |X2,
even if 1→ 3→ 4 were also max-weighted (that is, if c42c21 = c43c31).

Claudia Klüppelberg (TUM) June 29, 2022 7 / 13



Three examples

Cassiopeia DAG: double colliders along a path

For the sake of the argument, I set all cij = c∗ij = 1.

1

4

2

5

3
X1 = Z1 X2 = Z2 X3 = Z3

X4 = Z1 ∨ Z2 ∨ Z4

X5 = Z2 ∨ Z3 ∨ Z5

Indeed: X1 ⊥⊥ X3 | {X4 = x4,X5 = x5} for all coefficient matrices C:

Let xK = (x4, x5) and recall that all Zi are a.s. different.
Then x4

x5

 =
Z1 ∨ Z2 ∨ Z4

Z2 ∨ Z3 ∨ Z5

 ≥ Z4

Z5

 and
x4

x5

 ≥ Z1 ∨ Z2

Z2 ∨ Z3


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Three examples

Cassiopeia continued

We have three situations for (x4, x5) corresponding to

x4 > x5, x4 < x5, x4 = x5x4

x5

 ≥  Z1

Z2 ∨ Z3

 , x4

x5

 ≥ Z1 ∨ Z2

Z3

 , x4

x5

 ≥ Z1

Z3

 and Z2 = x4 = x5.

Hence, all Zi are bounded in all three cases. Moreover, Z1 and Z3 never
occur together in any inequality, rendering X1 ⊥⊥ X3 |X{4,5}.
x4 > x5: then the causal source of 4 is 1, and of 5 they are 2,3
x4 < x5, then the situation is reversed
x4 = x5, then X2 = x4 = x5 is a fixed node

Note: Conditional independence does not follow from the d-separation
criterion, since the path from 1 to 3 is d-connecting relative to {4, 5}.
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Three examples

Tent DAG: context specific conditional independence

The source graph C(XK = xK ):

1 2

3 4 5

D

3

1 2

4 5

C(XK = xK )

Figure: Left: Tent DAG D. Right: For all coefficients equal to 1, the source graph
C(XK = xK ) with observed values x4 = x5 = 2 is obtained from D by removing the edges
1→ 3 and 2→ 3, which become redundant in the context {X4 = X5 = 2}.
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Three examples

Continuing the Tent DAG with {X4 = X5 = 2}

1 2

3 4 5 3

1 2

4 5

X1 = Z1, X2 = Z2, X3 = Z3 ∨ X1 ∨ X2

X4 = Z4 ∨ X1 ∨ X2 = 2, X5 = Z5 ∨ X1 ∨ X2 = 2.

Since Z1, . . . ,Z5 are a.s. different, it holds outside a null-set that X1 ∨ X2 = Z1 ∨ Z2 = 2.
This introduces bounds on the innovations; we must have Z1,Z2,Z4,Z5 ≤ 2 and it also
holds that X3 ≥ 2. Further, we then have

X1 = Z1, X2 = Z2, X1 ∨ X2 = 2, X3 = Z3 ∨ 2,

X4 = Z4 ∨ 2 = 2 X5 = Z5 ∨ 2 = 2,

Now, the dependence of X3 on X1,X2 has disappeared, hence X3 ⊥⊥ (X1,X2) |X4 = X5 = 2.

This independence statement is reflected in the lack of edges 1→ 3 and 2→ 3 in the

source DAG C(X4 = X5 = 2).
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Summary and conclusion

Summary and conclusion

MLBN models have very different conditional independence
properties than LBN models.
I have given 3 examples, where the classical d-separation criterion
fails.
For an observed set of nodes K , a representation of XK | XK = xk

guides us to find a reduced representation of XK taking deterministic
features of a MLBN into account.
Impact graphs describe how extreme events spread in the MLBN.
The union of all impact graphs compatible with {XK = xK } is the
starting point for tracking possible sources of {XK = xK }.
Cleaning up this union of graphs for fixed and redundant nodes and
redundant edges yields the source graph C(XK = xK ) giving a
compact representation of the condional distribution given XK = xK .
A new ∗-separation criterion is equivalent to CI statements in
context-free and context-dependent settings, which we formulate as
∗-separation in different derived DAGs.
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