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Canonical Approach in Statistics

Regression Modeling

Y = β0 + β1A + β2X + εY

When can we interpret the coefficient β1 as causal?

What do we mean by a causal effect?

What are the conditions for the two quantities to equal?

What can we do otherwise?
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Frameworks in Causal Inference
Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects
Causal Estimation Under No Unmeasured Confounding
Instrumental Variables
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Framework 1: Structural Equation Models
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Non-Parametric Structural Equation
Models with Independent Errors
(NPSEM-IE)

X = εX

A = fA(X , εA)

Y = fY (A,X , εY )

where εX ⊥⊥ εA ⊥⊥ εY

Causal effect ≡ β1
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Example: Linear Structural Equation
Models with Independent Errors
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A = α0 + α1X + εA
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Framework 1: Structural Equation Models
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SEMs specify what happens in an
observational world.

Coincides with parametric regres-
sion models:

X = εX

A = α0 + α1X + εA

Y = β0 + β1A + β2X + εY
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SEMs also specify what would hap-
pen in an experimental world!

Example: fixing A to 0

X = εX

A = 0
Y = β0 + β1×0 + β2X + εY

where εX ⊥⊥ εA ⊥⊥ εY

Causal effect ≡ β1
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Analogy: Physics Law
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Framework 1: Structural Equation Models
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Stability: The parameters of SEMs
remain the same across different
worlds

where εX ⊥⊥ εA ⊥⊥ εY

Regression coefficient = Causal ef-
fect!

Causal effect ≡ β1
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Summary of Parametric SEMs

A mechanistic approach to causal inference

Permits inferences with real-world interpretations and
detailed predictions

Rely on strong assumptions:

SEM: Assumes knowledge on the relationships among all
the variables in the system

Linear SEM: Also makes parametric assumptions

Stability assumption: The coefficients remain constant
across observational/experimental worlds

If these assumptions fail: how to even define the causal
effects?
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Framework 2: Potential Outcome (Agnostic Approach)

Y (a) ≡ “the outcome Y that would have been observed if a
subject had received treatment a”

Requires pre-specified treatment and outcome

Does not require knowledge of the causal system: only A
and Y but not X
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Framework 2: Potential Outcome (Agnostic Approach)
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Y (1) = what the temperature in a loca-
tion would be if there were air pollution
in this location

Under a NPSEM

X = εX

A = fA(X , εA)
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NPSEM⇒ Potential Outcomes
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weather conditions

Y (0) = what the temperature in a loca-
tion would be if there were no air pollu-
tion in this location

Under a NPSEM

X = εX

A = fA(X , εA)

Y = fY (A,X , εY )

We have Y (0) = fY (0,X , εY )
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Potential Outcome: Causal Contrast

CE = Y (1)− Y (0)

= fY (1,X , εY )− fY (0,X , εY ) under the NPSEM
= β1 under the linear SEM

Does not depends on any parametric assumption

Does not require knowledge of the full causal system
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Relating Potential Outcomes to Observed Outcomes

The consistency assumption: Y = AY (1)+(1−A)Y (0) = Y (A)
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Potential Outcomes (Oracle’s Table)

For every row, only see one outcome Y !

Yi(1) Yi(0) Yi(1)− Yi(0) Ai

1.1 2.3 -1.2 1
1.8 0.3 1.5 0
2.0 2.1 -0.1 0
0.1 1.3 -1.2 1

Fundamentally the potential outcome framework reduces
causal inference to a missing data problem

A is the missing data indicator
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The Fundamental Problem of Causal Inference

For every row, only see one outcome Y !

Yi(1) Yi(0) Yi(1)− Yi(0) Ai

1.1 ? ? 1
? 0.3 ? 0
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Individual vs Population Causal Effects

Individual causal effects Yi(1)− Yi(0) not identifiable
Aim for Average Causal Effect (ACE) instead:

E [Y (1)− Y (0)]

Under our NPSEMs, this is E [fY (1,X , εY )− fY (0,X , εY )]
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SEMs vs Potential Outcomes
Parametric Structural Equation Models

� Permits detailed predictions on what would be observed in an
experimental setting

� Definition of causal effects relies on correct specification of
the Parametric SEMs (parametric assumption + knowledge of
the whole system)

Relate the observational world to the (hypothetical) experimental
world via the stability assumption

Potential Outcomes

À Often used for studying the effect of a particular cause on a
particular outcome

� Causal effects defined non-parametrically

Relate the observational world to the (hypothetical) experimental
world via the consistency assumption
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Problem Description

A

ppair pollutionp

Y

temperature

X

weather conditions

Assume no unmeasured confounding

SEM: no unmeasured variables
in the system
Potential outcome:
A ⊥⊥ Y (1),Y (0) | X

Interested in estimating

E [Y (1)− Y (0)],

where E [Y (a)] = EX E [Y | A = a,X ]

A Statistical Problem!
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Approach 1: Regression Adjustment

E [Y (1)] = EX E [Y | A = 1,X ]

Specify a regression model for E [Y | A = 1,X ]

Linear regression

E [Y | A = 1,X ] = β′0 + β2X

Non-parametric regression: spline, basis expansion, etc.
Machine learning: random forest, neural networks, etc.
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Approach 2: Inverse Probability Weighting (IPW)
Causal estimation is also a missing data problem

X Y (1) Y (0) Y (1)− Y (0) A

1 1.1 ? ? 1
1 ? 0.3 ? 0
0 ? 2.1 ? 0
0 0.1 ? ? 1

No unmeasured confounding = Missing at random

+ Can use inverse probability weighting

E [Y (1)] = E
AY

P(A = 1 | X )

P(A = 1 | X ) is known as the propensity score
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Regression vs Inverse probability weighting

f (Y ,A,X ) = f (Y | A,X )f (A | X )f (X )

Regression adjustment: model E [Y | A = a,X ]

Propensity score: model P(A = a | X )

Doubly robust approach: model both E [Y | A = a,X ] and
P(A = a | X )
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Approach 3: Doubly Robust (DR) Approach

f (Y ,A,X ) = f (Y | A,X )f (A | X )f (X )

Regression adjustment: model E [Y | A = a,X ]

Propensity score: model P(A = a | X )

Doubly robust approach: model both E [Y | A = a,X ] and
P(A = a | X )
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Approach 3: Doubly Robust (DR) Approach

One canonical doubly robust estimator is

Ê [Y (1)] = Pn

{
B̂ +

A
Π̂

(Y − B̂)

}
where Pn = empirical mean, B = E [Y | A = 1,X ],
Π = P(A = 1 | X )

Double robustness:

Bias(DR) ∼̇ Bias(Regression)× Bias(Prop. Score)
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Estimators for Average Causal Effect

Regression
Propensity score subclassification
Propensity score weighting
Doubly robust
Many more...

All assuming no unmeasured confounding...
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Frameworks in Causal Inference
Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects
Causal Estimation Under No Unmeasured Confounding
Instrumental Variables
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Unmeasured Confounding
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unmeasured
confounding!
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Randomized Experiment
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Instrumental Variable
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Identification of Causal Effects

Z

Policy

A

Pollution

Y

Temperature

U

Industrialization

Γ ∆

Key Result: Under additional assumptions,

ACE (Z → Y )

=

ACE (Z → A )

× ACE (A→ Y ).

↑ ↑
Observation: identifiable identifiable
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Instrumental Variable Model

Key Formula: ACE(Z → Y) = ACE(Z→ A) × ACE(A→ Y)

Z

policy

A

pollution

Y

temperature

U

industrialization

7

7

No direct effect on Y

Z ⊥⊥ U

ACE(Z → A ) 6= 0
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Summary

Mechanistic (Parametric SEM) vs Agnostic (Potential
outcome) approaches

Parametric SEM: More intuitive, permits detailed prediction
Potential outcome: Fewer assumptions, more robust to
model misspecification

Causal effect estimation
(Randomized experiment)
Assume no unmeasured confounding
Instrumental variable methods
Many more...
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Thank you!

Contact: Linbo Wang (University of Toronto), linbo.wang@utoronto.ca
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