A Brief Introduction to Causal Inference

Linbo Wang

BIRS Workshop on Causality, Extremes and Climate Kelowna, BC June 27, 2022

A Motivating Example

A Motivating Example

air pollution temperature $A \longrightarrow Y$

Association \neq Causation!

Association \neq Causation!

Association \neq Causation!

Association = Causation + Confounding

Association = Causation + Confounding

weather conditions

Causation leads to actionable insights!

Canonical Approach in Statistics

Regression Modeling

$$Y = \beta_0 + \beta_1 A + \beta_2 X + \epsilon_Y$$

Canonical Approach in Statistics

Regression Modeling

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{A} + \beta_2 \mathbf{X} + \epsilon_{\mathbf{Y}}$$

• When can we interpret the coefficient β_1 as causal?

What can we do otherwise?

Canonical Approach in Statistics

Regression Modeling

$$Y = \beta_0 + \beta_1 A + \beta_2 X + \epsilon_Y$$

• When can we interpret the coefficient β_1 as causal?

- What do we mean by a causal effect?
- What are the conditions for the two quantities to equal?
- What can we do otherwise?

Frameworks in Causal Inference

Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects Causal Estimation Under No Unmeasured Confounding Instrumental Variables

Frameworks in Causal Inference

Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects Causal Estimation Under No Unmeasured Confounding Instrumental Variables

weather conditions

where $\epsilon_X \perp\!\!\!\perp \epsilon_A \perp\!\!\!\perp \epsilon_Y$

SEMs specify what happens in an observational world.

air pollution temperature

Coincides with parametric regression models:

$$X = \epsilon_X$$

$$A = \alpha_0 + \alpha_1 X + \epsilon_A$$

$$Y = \beta_0 + \beta_1 A + \beta_2 X + \epsilon_Y$$

weather conditions

where $\epsilon_X \perp\!\!\!\perp \epsilon_A \perp\!\!\!\perp \epsilon_Y$

SEMs also specify what would hapair pollution temperature pen in an experimental world!

Example: fixing A to 0 $X = \epsilon_X$ A = 0 $Y = \beta_0 + \beta_1 \times 0 + \beta_2 X + \epsilon_Y$

weather conditions

where $\epsilon_X \perp\!\!\!\perp \epsilon_A \perp\!\!\!\perp \epsilon_Y$

Analogy: Physics Law

SEMs also specify what would hapair pollution temperature pen in an experimental world!

Example: fixing A to 0 $X = \epsilon_X$ A = 0 $Y = \beta_0 + \beta_1 \times 0 + \beta_2 X + \epsilon_Y$

weather conditions

where $\epsilon_X \perp\!\!\!\perp \epsilon_A \perp\!\!\!\perp \epsilon_Y$

Causal effect $\equiv \beta_1$

air pollution temperature

Stability: The parameters of SEMs remain the same across different worlds

Regression coefficient = Causal effect!

Summary of Parametric SEMs

A mechanistic approach to causal inference

Permits inferences with real-world interpretations and detailed predictions

Summary of Parametric SEMs

A mechanistic approach to causal inference

- Permits inferences with real-world interpretations and detailed predictions
- Rely on strong assumptions:
 - SEM: Assumes knowledge on the relationships among *all* the variables in the system
 - Linear SEM: Also makes parametric assumptions
 - Stability assumption: The coefficients remain constant across observational/experimental worlds

Summary of Parametric SEMs

A mechanistic approach to causal inference

- Permits inferences with real-world interpretations and detailed predictions
- Rely on strong assumptions:
 - SEM: Assumes knowledge on the relationships among *all* the variables in the system
 - Linear SEM: Also makes parametric assumptions
 - Stability assumption: The coefficients remain constant across observational/experimental worlds
- If these assumptions fail: how to even *define* the causal effects?

Framework 2: Potential Outcome (Agnostic Approach)

 $Y(a) \equiv$ "the outcome Y that would have been observed if a subject had received treatment *a*"

Framework 2: Potential Outcome (Agnostic Approach)

$Y(a) \equiv$ "the outcome Y that would have been observed if a subject had received treatment *a*"

- Requires pre-specified treatment and outcome
- Does not require knowledge of the causal system: only A and Y but not X

Framework 2: Potential Outcome (Agnostic Approach)

air pollution temperature Y(1) = what the temperature in a location would be if there were air pollution in this location

NPSEM \Rightarrow Potential Outcomes

weather conditions

We have $Y(1) = f_Y(1, X, \epsilon_Y)$

weather conditions

We have $Y(0) = f_Y(0, X, \epsilon_Y)$

Potential Outcome: Causal Contrast

$$CE = Y(1) - Y(0)$$

= $f_Y(1, X, \epsilon_Y) - f_Y(0, X, \epsilon_Y)$ under the NPSEM
= β_1 under the linear SEM

- Does not depends on any parametric assumption
- Does not require knowledge of the full causal system

Relating Potential Outcomes to Observed Outcomes

The consistency assumption: Y = AY(1) + (1-A)Y(0) = Y(A)

Potential Outcomes (Oracle's Table)

$Y_{i}(1)$	$Y_{i}(0)$	$Y_{i}(1) - Y_{i}(0)$	A _i
1.1	2.3	-1.2	1
1.8	0.3	1.5	0
2.0	2.1	-0.1	0
0.1	1.3	-1.2	1

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	-1.2	1
1.8	0.3	1.5	0
2.0	2.1	-0.1	0
0.1	1.3	-1.2	1

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
1.8	0.3	1.5	0
2.0	2.1	-0.1	0
0.1	1.3	-1.2	1

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
?	0.3	1.5	0
2.0	2.1	-0.1	0
0.1	1.3	-1.2	1

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
?	0.3	?	0
2.0	2.1	-0.1	0
0.1	1.3	-1.2	1

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
?	0.3	?	0
?	2.1	?	0
0.1	1.3	-1.2	1
Observed Outcomes (via Consistency)

For every row, only see one outcome Y !

$Y_{i}(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
?	0.3	?	0
?	2.1	?	0
0.1	?	?	1

The Fundamental Problem of Causal Inference

For every row, only see one outcome Y !

$Y_{i}(1)$	$Y_{i}(0)$	$Y_i(1) - Y_i(0)$	A _i
1.1	?	?	1
?	0.3	?	0
?	2.1	?	0
0.1	?	?	1

Fundamentally the potential outcome framework reduces causal inference to a missing data problem

• A is the missing data indicator

Individual vs Population Causal Effects

- Individual causal effects $Y_i(1) Y_i(0)$ not identifiable
- Aim for Average Causal Effect (ACE) instead:

E[Y(1) - Y(0)]

• Under our NPSEMs, this is $E[f_Y(1, X, \epsilon_Y) - f_Y(0, X, \epsilon_Y)]$

SEMs vs Potential Outcomes

Parametric Structural Equation Models

Permits detailed predictions on what would be observed in an experimental setting

Potential Outcomes

 Often used for studying the effect of a particular cause on a particular outcome

SEMs vs Potential Outcomes

Parametric Structural Equation Models

- Permits detailed predictions on what would be observed in an experimental setting
- Example 2 Construction of Construction of Construction of Construction of Construction (Construction of Construction of Construction)
 Example 2 Construction of Cons

Potential Outcomes

- Often used for studying the effect of a particular cause on a particular outcome
- Causal effects defined non-parametrically

SEMs vs Potential Outcomes

Parametric Structural Equation Models

- Permits detailed predictions on what would be observed in an experimental setting
- Example 2 Definition of causal effects relies on correct specification of the Parametric SEMs (parametric assumption + knowledge of the whole system)
- Relate the observational world to the (hypothetical) experimental world via the stability assumption

Potential Outcomes

- Often used for studying the effect of a particular cause on a particular outcome
- Causal effects defined non-parametrically
- Relate the observational world to the (hypothetical) experimental world via the consistency assumption

Frameworks in Causal Inference

Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects

Causal Estimation Under No Unmeasured Confounding Instrumental Variables

Frameworks in Causal Inference

Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects Causal Estimation Under No Unmeasured Confounding Instrumental Variables

Problem Description

Assume no unmeasured confounding

- air pollution temperature SEM: no unmeasured variables in the system
 - Potential outcome: $A \perp Y(1), Y(0) \mid X$

Interested in estimating

weather conditions

E[Y(1) - Y(0)],

where
$$E[Y(a)] = E_X E[Y | A = a, X]$$

Problem Description

Assume no unmeasured confounding

- air pollution temperature SEM: no unmeasured variables in the system
 - Potential outcome: $A \perp Y(1), Y(0) \mid X$

Interested in estimating

E[Y(1) - Y(0)],

weather conditions

where $E[Y(a)] = E_X E[Y \mid A = a, X]$

A Statistical Problem!

Approach 1: Regression Adjustment

$$E[Y(1)] = E_X E[Y \mid A = 1, X]$$

Specify a regression model for E[Y | A = 1, X]

Linear regression

$$E[Y \mid A = 1, X] = \beta_0' + \beta_2 X$$

- Non-parametric regression: spline, basis expansion, etc.
- Machine learning: random forest, neural networks, etc.

Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

Х	<i>Y</i> (1)	Y(0)	Y(1) - Y(0)	Α
1	1.1	?	?	1
1	?	0.3	?	0
0	?	2.1	?	0
0	0.1	?	?	1

Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

Х	<i>Y</i> (1)	A
1	1.1	1
1	?	0
0	?	0
0	0.1	1

Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

Х	<i>Y</i> (1)	A
1	1.1	1
1	?	0
0	?	0
0	0.1	1

No unmeasured confounding = Missing at random

Can use inverse probability weighting

$$E[Y(1)] = E\frac{AY}{P(A=1 \mid X)}$$

• P(A = 1 | X) is known as the propensity score

Regression vs Inverse probability weighting

$f(Y, A, X) = f(Y \mid A, X)f(A \mid X)f(X)$

Regression vs Inverse probability weighting

$f(Y, A, X) = f(Y \mid A, X)f(A \mid X)f(X)$

• Regression adjustment: model E[Y | A = a, X]

Regression vs Inverse probability weighting

$f(Y, A, X) = f(Y \mid A, X) f(A \mid X) f(X)$

- Regression adjustment: model E[Y | A = a, X]
- Propensity score: model $P(A = a \mid X)$

Approach 3: Doubly Robust (DR) Approach

 $f(Y, A, X) = f(Y \mid A, X) f(A \mid X) f(X)$

- Regression adjustment: model E[Y | A = a, X]
- Propensity score: model $P(A = a \mid X)$

Doubly robust approach: model both E[Y | A = a, X] and P(A = a | X)

Approach 3: Doubly Robust (DR) Approach

One canonical doubly robust estimator is

$$\hat{E}[Y(1)] = \mathbb{P}_n\left\{\hat{B} + \frac{A}{\hat{\Pi}}(Y-\hat{B})\right\}$$

where \mathbb{P}_n = empirical mean, B = E[Y | A = 1, X], $\Pi = P(A = 1 | X)$

Double robustness:

 $Bias(DR) \sim Bias(Regression) \times Bias(Prop. Score)$

Estimators for Average Causal Effect

Regression

- Propensity score subclassification
- Propensity score weighting
- Doubly robust
- Many more...

All assuming no unmeasured confounding...

Frameworks in Causal Inference

Mechanistic versus agnostic approach to causal inference

Identification and estimation of causal effects Causal Estimation Under No Unmeasured Confounding Instrumental Variables

Unmeasured Confounding

unmeasured confounding!

Randomized Experiment

Randomized Experiment

May not be feasible ...

Z = A: randomized trial

weather conditions

Z = A: randomized trial

 $Z \perp \!\!\!\perp A$: observational study

weather conditions

- Z = A: randomized trial
- Reality: quasi-experiment
- $Z \perp \!\!\!\perp A$: observational study

Identification of Causal Effects

Identification of Causal Effects

Identification of Causal Effects

Key Result: Under additional assumptions,

$$\begin{array}{c} ACE\left(Z \rightarrow Y\right) = ACE\left(Z \rightarrow A\right) \times ACE\left(A \rightarrow Y\right), \\ \uparrow \qquad \uparrow \\ identifiable \qquad identifiable \end{array}$$

Key Formula: ACE(Z \rightarrow Y) = ACE(Z \rightarrow A) \times ACE(A \rightarrow Y)

Key Formula: $ACE(Z \rightarrow Y) = ACE(Z \rightarrow A) \times ACE(A \rightarrow Y)$

No direct effect on Y

Key Formula: ACE(Z \rightarrow Y) = ACE(Z \rightarrow A) \times ACE(A \rightarrow Y)

- No direct effect on Y
- Z ⊥⊥ U

Key Formula: ACE(Z \rightarrow Y) = ACE(Z \rightarrow A) \times ACE(A \rightarrow Y)

- No direct effect on Y
- Z ⊥⊥ U
- $ACE(Z \rightarrow A) \neq 0$

Summary

- Mechanistic (Parametric SEM) vs Agnostic (Potential outcome) approaches
 - Parametric SEM: More intuitive, permits detailed prediction
 - Potential outcome: Fewer assumptions, more robust to model misspecification
- Causal effect estimation
 - (Randomized experiment)
 - Assume no unmeasured confounding
 - Instrumental variable methods
 - Many more...
Thank you!

Contact: Linbo Wang (University of Toronto), linbo.wang@utoronto.ca