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Introduction Partial tail correlation coefficient Extremal network learning Applications References

Extremal networks: Literature review

In the context of modeling extremal dependence using graphs:

Huang et al. (2019) provide exploratory tools, such as the χ-network for extremal
dependence modeling, used in their analysis of the maximum precipitation during
the hurricane season at the US Gulf Coast and surrounding areas;

Engelke and Hitz (2020) introduce a new notion of conditional independence
adapted to multivariate Pareto distributions, and propose parametric graphical
models for extremes;

Gissibl (2018) and Klüppelberg and Krali (2021) propose max-linear model-based
frameworks;
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Extremal networks: Literature review

Tran et al. (2021) propose QTree, a simple and efficient algorithm to solve the
Latent River Problem;

For the important case of tree models, Engelke and Volgushev (2020) develop a
data-driven methodology for learning the graphical structure;

Röttger et al. (2021) propose Hüsler–Reiss graphical models under multivariate
total positivity of order 2 (MTP2);

Engelke and Ivanovs (2021) review the recent developments of graphical models
for extremes.

Existing graphical models for extremes rely on asymptotically justified models,
sometimes yielding dimensionality issues and/or the lack of general graph structures.
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Our goal

Complementing these approaches by

defining the new concept of “partial tail correlation” (by analogy to the usual
partial correlation);

defining a new coefficient that can be used to estimate general extremal networks
under minimal modeling assumptions.

Although “partial tail uncorrelatedness” is a weaker assumption than “conditional tail
independence”, it can still

provide interesting insights into extremal dependence structures,

guide modeling choices in exploratory data analyses.
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Regular variation framework and transformed linear algebra

To introduce the partial tail correlation coefficient (PTCC), we first briefly review the
multivariate regular variation framework and the foundations of transformed-linear
algebra (Cooley and Thibaud, 2019), which

is within the framework of regular variation;

uses a transformation to define a vector space on the positive orthant;

employs transformed-linear operations applied to regularly-varying random vectors
that preserve regular variation;

summarizes tail dependence via a matrix of pairwise tail dependence metrics.



Introduction Partial tail correlation coefficient Extremal network learning Applications References

Inner product space construction

Let t be a bijection (transformation) from R onto some open set X, and t−1 be its
inverse. For a p-dimensional vector y ∈ Rp, x = t(y) ∈ Xp is defined componentwise.

Define

vector addition: x1⊕x2 = t{t−1(x1) + t−1(x2)},
scalar multiplication: a◦x = t{at−1(x)}, for a ∈ R,
additive identity: 0Xp = t(0),

additive inverse: x1⊖x2 = t{t−1(x1)− t−1(x2)}, for any x1, x2 ∈ Xp.

A particular inner product space on the positive orthant whose operations have a
negligible effect on large values can be defined using a specific transformation
t : R 7→ (0,∞), given by

t(y) = log{1 + exp(y)},

which may be used to perform transformed-linear operations.
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Inner product space construction

Using the transformation, regularly varying random vectors can be constructed on the
positive orthant. Let Z = (Z1, . . . ,Zq)

T be a vector of i.i.d. regularly varying random
variables with tail index α, i.e., there exists a sequence {bn} such that, as n → ∞,

nPr(Zj > bnz) → z−α, nPr{Zj ≤ exp(−kbn)} → 0,

for any k > 0 and for all j .

Construct p-dimensional random vector X = (X1, . . . ,Xp)
T as

X =
q
⊕
j=1

aj ◦ Zj .

Let A = (a1, . . . , aq) ∈ Rp×q
+ , where aj ∈ Rp

+, then, we have X = A ◦ Z ∈ RVp
+(α).
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Inner product space construction

This construction guarantees the regular variation preservation, according to Cooley
and Thibaud (2019), Corollary 1. Furthermore, we require A to have full row-rank.

Following Lee and Cooley (2021), we further define the inner product of < Xi ,Xk > as
follows:

< Xi ,Xk >= aT
i ak =

q∑
j=1

aijakj ,

and the norm is ||Xi || =
√
< Xi ,Xi >. The metric induced by the inner product is

d(Xi ,Xk) = ||Xi ⊖ Xk || =
[ q∑
j=1

(aij − akj)
2
]1/2

, for i , k = 1, . . . , p.
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Tail pairwise dependence matrix (TPDM)

The TPDM is inspired from statistical practice in nonextreme settings, where the
covariance matrix is widely used to summarize dependence information in multivariate
distributions, sometimes even when they are non-Gaussian.

Choose α = 2, and employ L2-norm when making radial/angular transformation. Then
the TPDM is defined as

σXik
:=

∫
Θ+

p−1

wiwkdHX (w), ΣX = (σik)i ,k=1,...,p,

where HX is a Radon measure on the Θ+
p−1 = {w ∈ Rp

+ : ||w ||2 = 1}, which gives
useful but incomplete dependence information.
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TPDM properties

Diagonals describe scale (variance)

lim
n→∞

nPr

(
Xi√
n
> x

)
= x−2σii .

The sum of the diagonal elements is equal to the total mass of the angular
measure.

Asymptotic independence: σik = 0 (Sibuya, 1960; Ledford and Tawn, 1996).

ΣX is positive semi-definite and completely positive,
i.e., there exists a finite p × q matrix A with non-negative entries ΣX = AAT .

We further request ΣX to be positive definite which guarantees the existence of the
inverse.
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Definition of the PTCC

Remove Xi and Xk from the random vector X , and the remaining (p − 2)-dimensional
vector is denoted as X-ik . A-ik denotes the matrix without A’s i-th and k-th columns.

Write vectors in the form Xik = (Xi ,Xk)
T and re-order the columns of X as

X ′ = (XT
ik ,X

T
-ik)

T = (Aik ,A-ik) ◦ Z .

The best linear unbiased predictor of Xik given X-ik can be expressed as

X̂ik = bT ◦ X−ik

such that d(Xik , X̂-ik) attains its minimum.
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Definition of the PTCC

Suppose that the TPDM of X ′ is of the form

ΣX ′ =

[
Σhh Σhl

Σlh Σll

]
, and Σhh = TPDM(Xik) =

[
Σii Σik

Σki Σkk

]
,

where Σhl = ΣT
lh = (Σil ,Σkl)

T . Then, based on the projection theorem, we have

b̂ = Σ−1
ll Σlh = arg min

b
d(Xik , X̂-ik).

Then, we can show that the prediction error e = Xik ⊖ X̂-ik has the following TPDM:

TPDM(e) = Σhh − ΣhlΣ
−1
ll Σlh =

[
Σii − ΣilΣ

−1
ll Σli Σik − ΣilΣ

−1
ll Σlk

Σki − ΣklΣ
−1
ll Σli Σkk − ΣklΣ

−1
ll Σlk

]
. (1)
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Definition of the PTCC

Definition

The PTCC of two random variables Xi and Xk is defined as the TPDM of the residuals
with linear dependence of all other random variables removed, as expressed in (1).

Definition

Let Xik = (Xi ,Xk)
T and X-ik be defined as above. Given X-ik , Xi and Xk are partially

tail uncorrelated, if the PTCC of Xi and Xk (given X-ik) equals zero, i.e., if
Σki − ΣklΣ

−1
ll Σli = 0 according to (1).

Notice that the residuals of two partially tail uncorrelated random variables are
necessarily asymptotically independent.
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Properties

Proposition

If a matrix is represented as

ΣX ′ = TPDM{(Xi ,Xk ,XT
-ik)

T} =

Σii Σik Σil

Σki Σkk Σkl

Σli Σlk Σll

 , (2)

which is a 3× 3 block matrix. Then the following statements are equivalent
(Proposition 1 in Speed and Kiiveri (1986)):

(1) Σki − ΣklΣ
−1
ll Σli = 0, (2) (Σ−1)ik = 0.

Corollary

Denote the inverse matrix Q = Σ−1, where Σ is the TPDM of random vector X .
Qik = 0 ⇐⇒ PTCCik = 0, where PTCCik is the PTCC of components Xi and Xk .
Recall that zero PTCC means partial tail uncorrelatedness.
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Graphical structures for extremes

Let G = (V ,E ) be a graph, where V = {1, . . . , d} represents the node set and
E ∈ V × V represents the edge set. G is called an undirected graph, if for two nodes
i , j ∈ V , edge (i , j) ∈ E if and only if edge (j , i) ∈ E .

In this study, we estimate graphical structures for extremes for any type of undirected
graphs, where an edge (i , j) is missing when the variables Xi and Xj are partially tail
uncorrelated given all the other variables in the graph, written as

Xi ⊥p Xj | X\{i ,j}.
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Graphical structures for extremes

Our methods work for general undirected graph structures: For example, a tree, a
decomposable graph, and a non-decomposable graph.
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Figure 1: Undirected graph structures: a tree, a decomposable graph, and a non-decomposable graph
(from the left to the right).
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Sparse representation of high-dimensional extreme networks

For high-dimensional extremes, a graphical representation of the extremal dependence
structure is desired for reasons of parsimony and interpretability.

We now introduce two inference methods to learn extremal networks from
high-dimensional data via the PTCC based on state-of-the-art graph theories:

extremal graphical Lasso;

structured graph learning method via Laplacian spectral constraints.

These two methods both work efficiently in high-dimensional settings, while returning
sparse partial tail correlation structures.
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Extremal graphical Lasso

For an empirical TPDM estimator, Σ̂, and a tuning parameter, λ ≥ 0, the extremal
graphical Lasso is expressed as follows (Friedman et al., 2008):

Θ̂λ = argmax
Θ⪰0

[
log detΘ− tr(Σ̂Θ)− λ

∑
i ̸=j

|Θij |
]

where Θ̂λ contains the information on the extremal graph structure. Larger λ enforces
more zeros in Θ̂λ and hence fewer edges in the graph.

Choosing an ideal value for λ is essential.

On the one hand, we want to enforce sparsity in the graph, where the significant
connections are mainly identified in the network.

On the other hand, Θ̂λ should be well-defined and estimated stably.
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Structured graph learning via Laplacian spectral constraints

Structured Graph Laplacian (SGL) (Kumar et al., 2019) can control the sparsity and
also conveniently preserve the graph connectedness using Laplacian spectral
constraints. The optimization problem can be approximated as follows:

max
w ,λ,U

log dget(Diag(λ))− tr(Σ̂Lw) + α||Lw ||1 +
β

2
||Lw − UDiag(λ)UT ||2F ,

subject to w ≥ 0, λ ∈ Sλ, and UTU = I ,

where Sλ denotes the set of vectors that constrains the eigenvalues of the Laplacian
matrix, and a Laplacian matrix Θ = Lw , where L is a linear operator that maps a
non-negative set of edge weights w into Θ.

This method can be seen as an extension of the graphical Lasso.

Similarly, a larger α increases the sparsity level of the graph, while β additionally
controls the level of connectedness, and a larger β enforces a higher level of the
connectedness of the estimated graph structure.
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Simulation results
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Figure 2: Extremal graph learning using extremal graphical Lasso method for Case 3.
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Applications

Risk networks are critical for quantitative risk management to elucidate the complex
extremal dependence of random variables. We show two examples in both
environmental and financial risk analysis.

First, we study the river discharge data of the upper Danube basin, which is a
benchmark example from the recent literature, and the true underlying physical
river flow network is available.

Second, we apply our method to exploring the historical global currency exchange
rate data from different historical periods, including different two economic cycles,
COVID-19, and the 2022 Russian invasion of Ukraine (2022.02.24–2022.04.15).
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Extremal network estimation for Danube river network
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Figure 3: (a) Topographic map of the upper Danube basin, showing 31 sites of gauging stations (red
circles) and the altitudes of the region. (b) The true physical river flow connections; the arrows show
the flow directions.
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Graph structure learning using extremal graphical Lasso
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Figure 4: (a) Estimated TPDM of the river discharge from the upper Danube basin. (b) Votes (%) of
the edges based on the extremal graphical Lasso method.
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Graph structure learning using the SGL method
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Figure 5: (a) Number of edges under different parameter settings. (b) Votes (%) of the edges based
on the SGL method.
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Estimated extremal river discharge networks
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Figure 6: Estimated extremal river discharge networks using the (a) extremal graphical Lasso and (b)
SGL methods. The thickness of the edges is proportional to the votes (in percentage). The edges are
drawn until no nodes are left isolated.
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Extremal network estimation for global currency exchange rate network
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Figure 7: Estimated extremal currency exchange rate risk networks (a) 2009–2014 and (b) 2015–2019.
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Extremal network estimation for global currency exchange rate network
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Figure 8: Estimated extremal currency exchange rate risk networks (a) COVID-19 and (b) the 2022
Russian invasion of Ukraine.
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Thanks for your attention!
Any comments?
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