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Abstract

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet
have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a
novel layer that incorporates global topological information of a graph using persistent homology.
TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of
the Weisfeiler–Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial
predictive performance for graph and node classification tasks, both on synthetic data sets, which can
be classified by humans using their topology but not by ordinary GNNs, and on real-world data.

1. Introduction

Graphs are a natural description of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address graph learning problems
such as graph classification or node classification. Graph neural networks (GNNs) describe a flexible set of
architectures for graph learning tasks and have seen many successful applications over recent years [50].
At their core, many GNNs are based on iterative message passing schemes. Since these schemes are
collating information over the neighbours of every node, GNNs cannot necessarily capture certain
simple topological structures in graphs, such as cycles [8]. These structures, however, are relevant
for certain applications, such as the analysis of molecular graphs, whose classification necessitates
knowledge about connectivity information [29, 46].

By contrast, methods based on topological features, commonly summarised under the term of
topological data analysis (TDA), have shown promising results in machine learning tasks. Focusing
on coarse structures—such as the presence or absence of cycles—they can be used to provide multi-
scale representations that capture the shape of complex structured and unstructured data sets. In this
paper, we propose a Topological Graph Layer (TOGL) that can be easily integrated into any GNN to
make it ‘topology-aware’. We thus obtain a generic way to augment existing GNNs and increase their
expressivity in graph learning tasks. Figure 1 provides a motivational example that showcases the
potential benefits of using topological information: high predictive performance is reached earlier for a
smaller number of layers.
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How to represent graphs?

� Graph G = {V ,E}
� Two graphs G and G′ can have a different number of vertices.

� Hence, we require a vectorised representation f : G →R
d of graphs.

� Such a representation f needs to be permutation-invariant.
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Graph neural networks in a nutshell

� Learn node representations hv based on aggregated attributes av .
� Aggregate them over neighbourhoods.

� Iteration k contains information up to k hops away.
� Repeat procedure K times.

a
(k)
v := aggregate(k)

({
h
(k−1)
u | u ∈ NG(v)

})
h
(k)
v := combine(k)

(
h
(k−1)
v , a

(k)
v

)
hG := readout

({
h
(K)
v | v ∈ VG

})
This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are

Graph Neural Networks?’, ICLR, 2019.
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Status quo

� GNNs are at most as expressive as the Weisfeiler–Lehman test for graph

isomorphism, commonly abbreviated as WL[1]1.
� Graphs are topological objects.

� But GNNs are incapable of recognising certain topological structures!

� What can we gain when imbuing themwith knowledge about the topology?
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1K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural Networks?’, ICLR, 2019.
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Graphs as simplicial complexes

G = {V ,E} as a simplicial complex K

� Let Kk = {σ ∈ K : dim(σ ) = k}, and ∂k : Kk→ Ck−1(K) σ →
∑

τ :τ⊂σ
dim(τ)=k−1

τ

� Topological features as the rank of the homolgy groups Hk = ker∂k/ im∂k+1

K0 = V , K1 = E

→ rank(H0) = β0: number of connected components and rank(H1) = β1: number of

edges.
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The expressivity of a filtration

Let f : Rd →Rwith f (1) < · · · < f (n).

Filtration ∅ = G(0) ⊆ G(1) ⊆ · · · ⊆ G(n) = G = (V ,E)

V (i) :=
{
v ∈ V | f

(
x(v)

)
≤ f (i)

}
, E(i) :=

{
v,w ∈ E |max

{
f
(
x(v)

)
, f

(
x(w)

)}
≤ f (i)

}
.

1

1 3

3

2

G(1)G(2)G(3)

1

2 3

4

5

G(1)G(2)G(3)G(4)G(5)
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Persistence Diagrams

∅ ⊂ G(0) ⊂ G(1) ⊂ ... ⊂ G(N ) ⊂ G

Let β
i,j
k the k-th persistent Betti number, that is the number of topological features of

dimension k that persist from G(i) to G(j).

� k = 0 : number of connected components

� k = 1 : number of cycles

We can build a persistence diagram by storing each point (fi , fj )with multiplicity

µ
i,j
k = (βi,j−1k − βi,jk )− (βi−1,j−1k − βi−1,jk ) (1)
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Persistence Diagrams

1

1 3

3

2

G(1) G(2) G(3)

1 2 3

0
1
2
3

f i

β
0

We know how to learn a filtration2, can we create a layer that neatly integrates with

arbitrary GNNs?
2C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020,

pp. 4314–4323.
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Topological graph neural networks
Overview

x(v) ∈Rd

Node attributes

2 1

2 1 = a
(v)
k

1 …

3 1

1 2 = a
(v)
1

2

k views

…

Diagrams

Ψ [v]

+

x(v)

x̃(v)

Aggregation

x̃(v) ∈Rd

Output x̃(v)

Φ Ψ

� Use a node map Φ : Rd →R
k to create k different filtrations of the graph.

� Use a coordinatisation function Ψ to create compatible representations of the

node attributes.
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Expressivity of a GNN

Typical GNN architectures are no more expressive than the Weisfeiler–Lehman test.

Theorem

Persistent homology is at least as expressive as WL[1], i.e. if the WL[1] label
sequences for two graphs G and G′ diverge, there exists an injective filtration f such

that the corresponding persistence diagrams D0 and D′0 are not equal.

Proof sketch.

We first show how to construct an appropriate filtration function f from aWL[1]
label sequence. Since f is not necessarily injective, we show that there is an injective

function f̃ that is arbitrarily close to f and whose corresponding persistence

diagrams D̃0, D̃′0 do not coincide. �
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Expressivity of a GNN
There’s more!

There are non-isomorphic graphs that WL[1] cannot distinguish, but persistent
homology can:

G G′

We have β0(G) = β1(G) = 2, because G consists of two connected components and

two cycles, whereas β0(G′) = β1(G′) = 1 as G′ only consists of one connected
component and one cycle.
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Experiments

� Take GCN architecture with 4 convolutional layers (GCN-4).

� Replace second layer by TOGL.

Plan

1 Assess expressivity on synthetic data sets.

2 Assess predictive performance on data sets without node features.

3 Assess predictive performance on benchmark data sets.
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Expressivity
Cycles data set

0 1 2 3 4 5 6 7 8
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Expressivity
Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the

utility of topological features. Hence, we replaced all node features by random ones.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0±3.6 22.0±3.3 76.2± 0.5 68.8± 2.8

GCN-3-TOGL-1 75.1±2.1 30.3±6.5 84.8± 0.4 73.8± 4.3

GIN-4 75.6±2.8 21.3±6.5 83.4± 0.9 74.6± 3.1

GIN-3-TOGL-1 76.2±2.4 23.7±6.9 84.4± 1.1 73.9± 4.9

GAT-4 63.3±3.7 21.7±2.9 63.2±10.4 67.5± 2.6

GAT-3-TOGL-1 75.7±2.1 23.5±6.1 77.2±10.5 72.4± 4.6

Node classification

Pattern

85.5 ± 0.4

86.6 ± 0.1

84.8 ± 0.0

86.7 ± 0.1

73.1 ± 1.9

59.6 ± 3.3
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not

driven by the availability of topological structures!

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GATED-GCN-4 67.3± 0.3 72.9± 2.1 65.7± 4.9 97.3± 0.1 76.4± 2.9 — —

WL — 77.7± 2.0 54.3± 0.9 — 73.1± 0.5 71.2± 0.5 78.0± 0.6
WL-OA — 77.8± 1.2 58.9± 0.9 — 73.5± 0.9 74.0± 0.7 87.6± 0.3

GCN-4 54.2± 1.5 72.8± 4.1 65.8± 4.6 90.0± 0.3 76.1± 2.4 68.6± 4.9 92.8± 1.7
GCN-3-TOGL-1 61.7± 1.0 73.2± 4.7 53.0± 9.2 95.5± 0.2 76.0± 3.9 72.0± 2.3 89.4± 2.2

GIN-4 54.8± 1.4 70.8± 3.8 50.0± 12.3 96.1± 0.3 72.3± 3.3 72.8± 2.5 81.7± 6.9
GIN-3-TOGL-1 61.3± 0.4 75.2± 4.2 43.8± 7.9 96.1± 0.1 73.6± 4.8 74.2± 4.2 89.7± 2.5

GAT-4 57.4± 0.6 71.1± 3.1 26.8± 4.1 94.1± 0.3 71.3± 5.4 73.2± 4.1 44.2± 6.6
GAT-3-TOGL-1 63.9± 1.2 73.7± 2.9 51.5± 7.3 95.9± 0.3 75.2± 3.9 70.8± 8.0 89.5± 8.7

Node classification

CLUSTER

60.4± 0.4
—

—

57.0± 0.9
60.4± 0.2

58.5± 0.1
60.4± 0.2

56.6± 0.4
58.4± 3.7
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What did we learn ?

� When topological structure is important, the addition of a topology-aware layer

boosts performance.

� The position of the topology layer is an hyper-parameter and does impact

performance.

� Should we incorporate higher-order structures (such as cliques) ?

� What do we gain from learning a filtration function (compared to fixed filtration)

?
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Thank you !
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