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The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:
Model of Convolutional Neural Networks.
Predefined (wavelet) filters.

Advantages:
Provable stability and invariance properties.
Very good numerical results in certain situations.
Needs less training data.
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Example Task: Image Classification

You have a data set of many photos of cats and dogs.
How do you decide if a new image is a cat or a dog?
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Scattering is an Embedding

Deep Neural Networks consist of an embedding an a classifier
An embedding (front end) creates a hidden representation of
each input in some high-dimensional vector space

x 7→ h(x) = (hi(x))H
i=1

The classifier (back end) then makes the final prediction
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The Wavelet Transform
Definition:

Wj f (x) = (ψj ⋆ f )(x),
ψj(x) = 1

2j ψ
(

x
2j

)
for some mean zero “mother wavelet” ψ.

Properties
Collects information at different scales of resolution or
frequency bands
Heuristic: supp(ψ̂j) ≈ [2−ja, 2−jb]
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Wavelets Sparsify Natural Images
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The Scattering Transform

The Scattering Transform:
Multilayered cascade of nonlinear measurements.
Each “layer” uses a wavelet transform WJ and a nonlinearity,
Uj f (x) = σ((ψj ⋆ f )(x)), j ≤ J , σ(x) = M(x) = |x |.
Uj1,j2f (x) = Uj2Uj1f (x)
Uj1,...,jm f (x) = Ujm . . .Uj1f (x)
Sj1,...jm f (x) = ϕJ ⋆ Uj1,...,jm f (x), ϕJ(x) = 1

2J ϕ
(

x
2J

)
, or,

S̄j1,...jm f = ∥Uj1,...,jm f ∥1.
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Why a Nonlinear Structure?
A good representation should be:

Stable on L2

Invariant to translations (or rotations etc.)
Sufficiently descriptive

The limits of linearity:
A linear network can be invariant or descriptive, but not both.

f̂ (0) =
∫
Rd f (x)dx is invariant, but throws away all

high-frequency information.
Filters which focus in on high-frequency information are
unstable to translations.

The wavelet transform captures high-frequency information, and
the modulus pushes this information down to lower frequencies.
Theorem (Mallat 2012)
Scattering is stable on L2 and invariant to translations.
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Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?
Scattering Transform and Sparse Linear Classifiers for Art
Authentication (Leonarduzzi, Liu, and Wang)
Dataset of 64 real Van Gogh’s and 15 fakes.
Scattering achieves state-of-the-art (96%) accuracy.
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Scattering for Quantum Chemistry
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Same Power Spectrum, Different Scattering
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Synthesis of random textures
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Geometric Scattering on Graphs and Manifolds

Geometric Wavelets
Key challenge is defining wavelets.
Once wavelets are defined, scattering is then an alternating
cascade of wavelets and non-linearities.

Different Version of the Graph Scattering Transform
Dongmian Zou and Gilad Lerman
Fernado Gama, Alejandro Ribeiro, and Joan Bruna
Gao, Wolf, and Hirn
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Spectral Convolution

Generalized Fourier Multiplication
Let L be the Laplace-Beltrami operator or graph Laplacian with
eigenbasis {φk}, Lφk = λkφk . A spectral convolution operator has
the form

Tf =
∞∑

k=0
hk⟨f , φk⟩φk .

This notion of convolution is used in many popular Graph Neural
Networks such as ChebNet (Defferrard et al. 2016) or CayleyNet
(Levie et al. 2017)

Spectral filters
T is called a spectral filter if hk = h(λk)
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Equivariant Filters

Theorem: (P., Gao, W., Hirn)
Spectral filters commute with isometries on a manifold or
permutations of a graph.
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Heat Flow

Heat Semigroup
{Pt}t≥0 family of operators such that u(x , t) = Pt f (x) solves

Lxu = ∂tu, u(x , 0) = f (x).

Spectral Representation

Pt f (x) =
∞∑

k=0
g(λk)t⟨f , φk⟩φk , g(λ) = e−λ

Geometric Descriptor
Heat diffuses differently on manifolds of different shapes.

Probablistic Interpretation
Pt f (x) = E(Xt |X0 = x), where (Xt)t≥0 is a Brownian Motion.
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Spectral Wavelets

Definition

W(1)
J f (x) = {Ψ(1)

j f (x),Φ(1)
J f (x)}0≤j≤J ,

where Φ(1)
J = P2J , g(λ) = e−λ and

Ψ(1)
j f = (P2j+1 − P2j )1/2 f =

∞∑
k=0

[g(λk)2j+1 − g(λk)2j ]1/2⟨f , φk⟩φk .

Theorem: P., Gao, Wolf, Hirn
W(1)

J is an isometry, i.e.,∑
j

∥Ψ(1)
j f ∥2 + ∥Φ(1)

J f ∥2 = ∥f ∥2.
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Wavelets on the Faust Dataset
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Diffusion Wavelets on Manifolds

Definition

W(2)
J f (x) = {Ψ(2)

j f (x),Φ(2)
J f (x)}0≤j≤J ,

where Φ(2)
J = P2J+1 , g(λ) = e−λ and

Ψ(2)
j f = (P2j+1 − P2j )f =

∞∑
k=0

[g(λk)2j+1 − g(λk)2j ]1⟨f , φk⟩φk .

Theorem: P., Gao, Wolf, Hirn
W(2)

J is a non-expansive frame on a suitable weighted space, i.e.,

c∥f ∥2 ≤
∑

j
∥Ψ(2)

j f ∥2 + ∥Φ(2)
J f ∥2 ≤ ∥f ∥2.
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Diffusion Wavelets on Graphs

Probabilistic interpretation
On a manifold, the heat-semigroup describes the transistion
probabilities of a Brownian motion.
Natural Analog on graphs is a (lazy) random-walk.

Definition
Let G be a graph and let P be a lazy random walk matrix. For
0 ≤ j ≤ J , let

Ψ(2)
j = P2j+1 − P2j

, Φ(2)
J = P2J+1

.

LEGS - Learnable Scales
Subsequent work with Tong et. al showed that dyadic scales are
unnecessary and the same result holds with any sequence of
increasing scales. Moreover, one may learn the scales through data.
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Theoretical Guarantees Manifold Scattering

Theorem (P. Gao, Wolf, Hirn)

∥Sf1 − Sf2∥ ≤ ∥f1 − f2∥, ∀f1, f2 ∈ L2(M).

Theorem (P. Gao, Wolf, Hirn)
Let ζ be an isometry, Vζ f (x) = f (ζ−1(x)).

∥Sf − SVζ f ∥ = O
(
2−dJ

)
∀f ∈ L2(M) .

Theorem (P. Gao, Wolf, Hirn)
Let ζ be an diffeomorphism, and assume f is bandlimited (finitely
many non-zero Fourier coefficients). Then

∥Sf − SVζ f ∥ = O
(
2−dJ

)
+ O

(
λd

maxd(ζ, Isom)
)
.

Theorem (P., Gao, Wolf, Hirn)
Similar results hold for graph scattering.
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Manifold Scattering Results

Example (Spherical MNIST)
MNIST digits projected on the sphere:

Single manifold, multiple signals
95% classification accuracy from scattering features
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Manifold Scattering Results

Example (FAUST dataset)
Ten people in ten different poses:

Mesh grids & Shot features (Tombari et al., 2010; Prakya et
al.,2015)

Accuracy: 81% person recognition, 95% pose classification
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Scattering on Point Clouds

Motivation (The Manifold Hypothesis)
In many real-world applications you don’t know the manifold
Instead, you have a high-dimensional point cloud which you
model as lying upon an unknown manifold

ICML Workshop (TAGs ML)- Joint work with Chew, Steach,
Viswani, Needell, Krishnaswamy, Hirn, and Wu

Diffusion maps style algorithm for implementing manifold
scattering on point clouds
Recover mesh-based results on spherical MNIST
Apply method to single-cell data
Convergence guarantees coming soon
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Geometric Wavelets vs GCN style filters

GCN Style Filters
Take averages over local neighborhoods - promote smoothness
Low-pass filter

Wavelets
Detects changes at different scales

How is my four-step neighborhood different than my two-step
neighborhood?

Band-pass filter
Capture long range interactions
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Discriminative Power

When can a network tell two nodes apart?
Necessary condition: The network learns different
representations of the two nodes
Lots of work on the analogous problem for graph classification

GCN ≲ Weisfeiler-Lehman Kernel
Little work for node classification
Do GCNs rely on informative features? Or can they learn from
the geometry of the graph?

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))
There are situations where GCN provably not discriminate two
nodes if their local neighborhoods have the same structure
Graph Scattering can discriminate some of those nodes
Thus GCN-Scattering Hybrid networks have more
discriminative power than pure GCN networks.
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Incorporating Learning

Scattering helps us understand GNNs and
a theoretical level
Let’s use this understanding to build
(trained) GNNs incorporating the
principals of scattering
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Scattering GCN Hybrid

Scattering Channels
Layer-wise update rule:

X ℓ
sct := σ

(
(P2J+1 − P2J )X ℓ−1Θ

)
.

Hybrid Network
Wenkel, Min, Hirn, P., and Wolf (2022) use both GCN
channels and Scattering channels of each layer.
GCN channels focus on low-frequency information.
Scattering Channels retain high-frequency information.
Can use an attention mechanism to balance channel ratios.
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Scattering Attention Network

Attention Mechanism

Xℓ = C−1σ̃

( Clow∑
j=1

αℓ
low,j ⊙ X̄ℓ

low,j +
Cband∑
j=1

αℓ
band,j ⊙ X̄ℓ

band,j

)
C = Clow + Chigh, α⊙ X = diag(α)X
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Attention Network Results
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LEGS - Learning the Scales

32 Perlmutter(UCLA) Geometric Scattering



Molecular Graph Generation via Geometric Scattering
(GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network
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Conclusion

The Euclidean scattering transform is a model of CNNs.
Provable Stability / Invariance Guarantees
Designed filters - useful for low-data environments

Geometric Versions for Graphs and Manifolds
Similar theoretical guarantees to the Euclidean scattering
transform
Wavelets can be constructed either spatially or spectrally
Can be incorporated in hybrid Scattering - GCN networks
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THANK YOU!
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