The Scattering Transform for Data with Geometric Structure

Michael Perlmutter

Department of Mathematics University of California, Los Angeles

Perlmutter(UCLA)

The Euclidean Scattering Transform
Graph and Manifold Scattering
Incorporating Learning

The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:

- Model of Convolutional Neural Networks.
- Predefined (wavelet) filters.

Advantages:

- Provable stability and invariance properties.
- Very good numerical results in certain situations.
- Needs less training data.

Example Task: Image Classification

- You have a data set of many photos of cats and dogs.
- How do you decide if a new image is a cat or a dog?

Scattering is an Embedding

- Deep Neural Networks consist of an embedding an a classifier
- An embedding (front end) creates a hidden representation of each input in some high-dimensional vector space

$$\mathbf{x} \mapsto h(x) = (h_i(\mathbf{x}))_{i=1}^H$$

• The classifier (back end) then makes the final prediction

The Wavelet Transform

Definition:

•
$$W_j f(x) = (\psi_j \star f)(x),$$

•
$$\psi_j(x) = rac{1}{2^j}\psi\left(rac{x}{2^j}
ight)$$
 for some mean zero "mother wavelet" ψ_j

Properties

- Collects information at different scales of resolution or frequency bands
- Heuristic: supp $(\hat{\psi}_j) \approx [2^{-j}a, 2^{-j}b]$

Wavelets Sparsify Natural Images

The Scattering Transform

The Scattering Transform:

- Multilayered cascade of nonlinear measurements.
- Each "layer" uses a wavelet transform W_J and a nonlinearity,
- $U_j f(x) = \sigma((\psi_j \star f)(x)), \ j \leq J, \quad \sigma(x) = M(x) = |x|.$
- $U_{j_1,j_2}f(x) = U_{j_2}U_{j_1}f(x)$

•
$$U_{j_1,\ldots,j_m}f(x) = U_{j_m}\ldots U_{j_1}f(x)$$

• $S_{j_1,...,j_m}f(x) = \phi_J \star U_{j_1,...,j_m}f(x), \quad \phi_J(x) = \frac{1}{2^J}\phi\left(\frac{x}{2^J}\right), \quad \text{or,}$

•
$$\bar{S}_{j_1,...,j_m}f = \|U_{j_1,...,j_m}f\|_1$$

$$f \rightarrow W_J \qquad f * \psi_{j_1} \rightarrow |\cdot| \rightarrow W_J \qquad |f * \psi_{j_1}| * \psi_{j_2} \rightarrow |\cdot| \rightarrow W_J \qquad ||f * \psi_{j_1}| * \psi_{j_2}| * \psi_{j_3} \cdots$$

$$S_J^2 f = \left[f * \phi_J \qquad ||f * \psi_{j_1}| * \phi_J \qquad ||f * \psi_{j_1}| * \psi_{j_2}| * \phi_J \right]$$

Why a Nonlinear Structure?

A good representation should be:

- Stable on L²
- Invariant to translations (or rotations etc.)
- Sufficiently descriptive

The limits of linearity:

A linear network can be invariant or descriptive, but not both.

- *f*(0) = ∫_{ℝ^d} f(x)dx is invariant, but throws away all high-frequency information.
- Filters which focus in on high-frequency information are unstable to translations.

The wavelet transform captures high-frequency information, and the modulus pushes this information down to lower frequencies.

Theorem (Mallat 2012)

Scattering is stable on $\boldsymbol{\mathsf{L}}^2$ and invariant to translations.

Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?

- Scattering Transform and Sparse Linear Classifiers for Art Authentication (Leonarduzzi, Liu, and Wang)
- Dataset of 64 real Van Gogh's and 15 fakes.
- Scattering achieves state-of-the-art (96%) accuracy.

Scattering for Quantum Chemistry

3s

3d

Same Power Spectrum, Different Scattering

Figure 9: Two different textures having the same Fourier power spectrum. (a) Textures X(u). Top: Brodatz texture. Bottom: Gaussian process. (b) Same estimated power spectrum $\Re X(\omega)$. (c) Nearly same scattering coefficients $S_J[p]X$ for m = 1 and 2^J equal to the image width. (d) Different scattering coefficients $S_J[p]X$ for m = 2.

Synthesis of random textures

(a): Original texture. (b): texture synthesized with wavelet l^2 norms. (c): synthesized with wavelet l^1 norms. (d): synthesized with scattering coefficients.

13

Geometric Scattering

Geometric Scattering on Graphs and Manifolds

Geometric Wavelets

- Key challenge is defining wavelets.
- Once wavelets are defined, scattering is then an alternating cascade of wavelets and non-linearities.

Different Version of the Graph Scattering Transform

- Dongmian Zou and Gilad Lerman
- Fernado Gama, Alejandro Ribeiro, and Joan Bruna
- Gao, Wolf, and Hirn

Generalized Fourier Multiplication

Let *L* be the Laplace-Beltrami operator or graph Laplacian with eigenbasis $\{\varphi_k\}$, $L\varphi_k = \lambda_k \varphi_k$. A spectral convolution operator has the form

$$Tf = \sum_{k=0}^{\infty} h_k \langle f, \varphi_k \rangle \varphi_k.$$

This notion of convolution is used in many popular Graph Neural Networks such as ChebNet (Defferrard et al. 2016) or CayleyNet (Levie et al. 2017)

Spectral filters

T is called a spectral filter if $h_k = h(\lambda_k)$

Equivariant Filters

Theorem: (P., Gao, W., Hirn)

Spectral filters commute with isometries on a manifold or permutations of a graph.

Heat Flow

Heat Semigroup

 $\{P_t\}_{t\geq 0}$ family of operators such that $u(x,t) = P_t f(x)$ solves

$$L_x u = \partial_t u, \quad u(x,0) = f(x).$$

Spectral Representation

$$P_t f(x) = \sum_{k=0}^{\infty} g(\lambda_k)^t \langle f, \varphi_k \rangle \varphi_k, \quad g(\lambda) = e^{-\lambda}$$

Geometric Descriptor

Heat diffuses differently on manifolds of different shapes.

Probablistic Interpretation

• $P_t f(x) = \mathbb{E}(X_t | X_0 = x)$, where $(X_t)_{t \ge 0}$ is a Brownian Motion.

Spectral Wavelets

Definition

$$\mathcal{W}_{J}^{(1)}f(x) = \{\Psi_{j}^{(1)}f(x), \Phi_{J}^{(1)}f(x)\}_{0 \le j \le J},$$

where $\Phi_J^{(1)} = P_{2^J}$, $g(\lambda) = e^{-\lambda}$ and

$$\Psi_{j}^{(1)}f = (P_{2^{j+1}} - P_{2^{j}})^{1/2}f = \sum_{k=0}^{\infty} [g(\lambda_{k})^{2^{j+1}} - g(\lambda_{k})^{2^{j}}]^{1/2} \langle f, \varphi_{k} \rangle \varphi_{k}.$$

Theorem: P., Gao, Wolf, Hirn

$$\mathcal{W}_J^{(1)}$$
 is an isometry, i.e., $\sum_i \|\Psi_j^{(1)}f\|^2 + \|\Phi_J^{(1)}f\|^2 = \|f\|^2.$

Wavelets on the Faust Dataset

Diffusion Wavelets on Manifolds

Definition

$$\mathcal{W}_{J}^{(2)}f(x) = \{\Psi_{j}^{(2)}f(x), \Phi_{J}^{(2)}f(x)\}_{0 \le j \le J},$$

where $\Phi_J^{(2)} = P_{2^{J+1}}$, $g(\lambda) = e^{-\lambda}$ and

$$\Psi_{j}^{(2)}f = (P_{2^{j+1}} - P_{2^{j}})f = \sum_{k=0}^{\infty} [g(\lambda_{k})^{2^{j+1}} - g(\lambda_{k})^{2^{j}}]^{1} \langle f, \varphi_{k} \rangle \varphi_{k}.$$

Theorem: P., Gao, Wolf, Hirn

 $\mathcal{W}_J^{(2)}$ is a non-expansive frame on a suitable weighted space, i.e.,

$$c\|f\|^2 \leq \sum_j \|\Psi_j^{(2)}f\|^2 + \|\Phi_J^{(2)}f\|^2 \leq \|f\|^2.$$

Probabilistic interpretation

- On a manifold, the heat-semigroup describes the transistion probabilities of a Brownian motion.
- Natural Analog on graphs is a (lazy) random-walk.

Definition

Let G be a graph and let P be a lazy random walk matrix. For $0\leq j\leq J,$ let

$$\Psi_{j}^{(2)}=P^{2^{j+1}}-P^{2^{j}}, \quad \Phi_{J}^{(2)}=P^{2^{J+1}}$$

LEGS - Learnable Scales

Subsequent work with Tong et. al showed that dyadic scales are unnecessary and the same result holds with *any* sequence of increasing scales. Moreover, one may learn the scales through data.

Theoretical Guarantees Manifold Scattering

Theorem (P. Gao, Wolf, Hirn)

$$\|Sf_1 - Sf_2\| \le \|f_1 - f_2\|, \quad \forall f_1, f_2 \in L^2(\mathcal{M}).$$

Theorem (P. Gao, Wolf, Hirn)

Let
$$\zeta$$
 be an isometry, $V_{\zeta}f(x) = f(\zeta^{-1}(x))$.
 $\|Sf - SV_{\zeta}f\| = \mathcal{O}(2^{-dJ}) \quad \forall f \in L^{2}(\mathcal{M})$

Theorem (P. Gao, Wolf, Hirn)

Let ζ be an diffeomorphism, and assume f is bandlimited (finitely many non-zero Fourier coefficients). Then $\|Sf - SV_{\zeta}f\| = O\left(2^{-dJ}\right) + O\left(\lambda_{\max}^{d}d(\zeta, Isom)\right).$

Theorem (P., Gao, Wolf, Hirn)

Similar results hold for graph scattering.

Example (Spherical MNIST)

MNIST digits projected on the sphere:

- Single manifold, multiple signals
- 95% classification accuracy from scattering features

Example (FAUST dataset)

Ten people in ten different poses:

- Mesh grids & Shot features (Tombari et al., 2010; Prakya et al., 2015)
- Accuracy: 81% person recognition, 95% pose classification

Motivation (The Manifold Hypothesis)

- In many real-world applications you don't know the manifold
- Instead, you have a high-dimensional point cloud which you model as lying upon an unknown manifold

ICML Workshop (TAGs ML)- Joint work with Chew, Steach, Viswani, Needell, Krishnaswamy, Hirn, and Wu

- Diffusion maps style algorithm for implementing manifold scattering on point clouds
- Recover mesh-based results on spherical MNIST
- Apply method to single-cell data
- Convergence guarantees coming soon

Geometric Wavelets vs GCN style filters

GCN Style Filters

- Take averages over local neighborhoods promote smoothness
- Low-pass filter

Wavelets

- Detects changes at different scales
 - How is my four-step neighborhood different than my two-step neighborhood?
- Band-pass filter
- Capture long range interactions

Discriminative Power

When can a network tell two nodes apart?

- Necessary condition: The network learns different representations of the two nodes
- Lots of work on the analogous problem for graph classification
 - GCN \lesssim Weisfeiler-Lehman Kernel
- Little work for node classification
- Do GCNs rely on informative features? Or can they learn from the geometry of the graph?

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))

- There are situations where GCN provably not discriminate two nodes if their local neighborhoods have the same structure
- Graph Scattering can discriminate some of those nodes
- Thus GCN-Scattering Hybrid networks have more discriminative power than pure GCN networks.

- Scattering helps us understand GNNs and a theoretical level
- Let's use this understanding to build (trained) GNNs incorporating the principals of scattering

Scattering Channels

Layer-wise update rule:

$$X_{sct}^{\ell} \coloneqq \sigma\left((P^{2^{J+1}} - P^{2^J})X^{\ell-1}\Theta\right).$$

Hybrid Network

- Wenkel, Min, Hirn, P., and Wolf (2022) use both GCN channels and Scattering channels of each layer.
- GCN channels focus on low-frequency information.
- Scattering Channels retain high-frequency information.
- Can use an attention mechanism to balance channel ratios.

Scattering Attention Network

Attention Mechanism

Perlmutter(UCLA)

$$\begin{split} \mathbf{X}^{\ell} &= C^{-1} \tilde{\sigma} \Big(\sum_{j=1}^{C_{\mathsf{low}}} \alpha_{\mathsf{low},j}^{\ell} \odot \mathbf{\bar{X}}_{\mathsf{low},j}^{\ell} + \sum_{j=1}^{C_{\mathsf{band}}} \alpha_{\mathsf{band},j}^{\ell} \odot \mathbf{\bar{X}}_{\mathsf{band},j}^{\ell} \Big) \\ C &= C_{\mathsf{low}} + C_{\mathsf{high}}, \quad \alpha \odot \mathbf{X} = \mathsf{diag}(\alpha) \mathbf{X} \end{split}$$

Attention Network Results

Dataset	Classes	Nodes	Edges	Homophily	GCN	GAT	Sc-GCN	GSAN
Texas	5	183	295	0.11	59.5	58.4	60.3	60.5
Chameleon	5	2,277	31,421	0.23	28.2	42.9	51.2	61.2
CoraFull	70	19,793	63,421	0.57	62.2	51.9	62.5	64.5
Wiki-CS	10	11,701	216,123	0.65	77.2	77.7	78.1	78.6
Citeseer	6	3,327	4,676	0.74	70.3	72.5	71.7	71.3
Pubmed	3	19,717	44,327	0.80	79.0	79.0	79.4	79.8
Cora	7	2,708	5,276	0.81	81.5	83.0	84.2	84.0
DBLP	4	17,716	52,867	0.83	59.3	66.1	81.5	84.3

Fig. 6. Distribution of attention ratios per node between band-pass (scattering) and low-pass (GCN) channels across all heads for DBLP, Chameleon, Citeseer, and WikiCS.

31

Geometric Scattering

LEGS - Learning the Scales

b) Learnable Geometric Scattering

Molecular Graph Generation via Geometric Scattering (GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network

Geometric Scattering

Perlmutter(UCLA)

- The Euclidean scattering transform is a model of CNNs.
 - Provable Stability / Invariance Guarantees
 - Designed filters useful for low-data environments
- Geometric Versions for Graphs and Manifolds
 - Similar theoretical guarantees to the Euclidean scattering transform
 - Wavelets can be constructed either spatially or spectrally
 - Can be incorporated in hybrid Scattering GCN networks

THANK YOU!