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Outline

1 Graph representation learning: spectral vs spatial methods
2 Efficiency: spectral-inspired message-passing networks
3 Expressivity: graph spectra and graph symmetry
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Graph Representation Learning

• Learn a finite-dimensional Euclidean embedding of the graph
while preserving structural information
• Perform subsequent inferences directly on graph embedding
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Testbed: Node Classification/Community Detection

Problem Setup: predict node labels of Ym+1, · · · ,Yn, using
• adjacency matrix A ∈ Rn×n, node features X ∈ Rn×d ,
• m out of n labels: Y1, · · · ,Ym
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Graph Representation Learning: Methods

Given a graph G (V ,E ) with a graph operator S

Spectral methods: S = UΛUT

• Spectral graph embedding

hASE = U[:k]

√
Λ[:k]

• Spectral graph neural
networks

h(l+1) = σ(p(S) h(l)W (l) + b(l))

GFT
=⇒ ĥ(l+1) = σ(p(Λ) ĥ(l)W (l) + b̂(l))

Message-passing algorithms
• Belief propogation

• Message-passing neural
networks (MPNNs)

h(l+1) = σ(S h(l)W (l) + b(l))

= σ(
∑

j∈N (i)

h
(l)
j W (l) + b(l)).
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Injecting Global Information to Local MPNN

Can we compute global information from local MPNNs?
• Functional-calculus spectral filters (Levie et al. 2020;

Perlmutter et al. 2019)
• Transformer-based GNNs (Kreuzer et al. 2021; Ying et al.

2021).

Can we compute global spectra information from local MPNNs?
• PowerEmbed (Huang et al. 2022)
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PowerEmbed

1 A simple normalization step to express top-k eigenvectors
2 Intermediate embeddings span from local spatial signals to

global spectral information
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PowerEmbed
1 A simple normalization step to express top-k eigenvectors
2 Representation: intermediate embeddings span from local

spatial signals to global spectral information
3 Classification: an inception network
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PowerEmbed

3 Provably avoid over-smoothing (Li et al. 2018) and
over-squashing (Topping et al. 2021) in un-normalized MPNNs
3 Computationally efficient to capture both global spectral
information and local spatial signals
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Expressivity

How powerful are spectral methods compared to spatial methods?
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Expressivity: Signal Processing Viewpoint

Spectral GNN: S = UΛUT

h(l+1) = σ(p(S) h(l)W (l) + b(l))

Spatial MPNN:

h(l+1) = σ(S h(l)W (l) + b(l))

If we choose p(·) as a degree-k polynomial, then one layer of
spectral GNN can be expressed by a k-layer MPNN.

• p(·) can be generalized to rational function (Levie et al. 2021)
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Expressivity: Graph Isomorphism Viewpoint

What functions on graphs can be expressed?
Connection to graph isomorphism test.

Definition (Graph Isomorphism)

G = (V ,E ,XV ) and G ′ = (V ′,E ′,X ′V ) are isomorphic if there
exists a relabeling of the nodes of G that produce the graph G ′.

Definition (Graph Invariant)

A graph invariant i is a function from the set of graphs to some
fixed target domain such that this function is invariant under graph
isomorphisms, i.e. i(G ) = i(G ′) when G is isomorphic to G ′.
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Graph Isomorphism and Graph Invariant

Spectral invariants:

• Eigenvalues, graph angles
(Cvetković et al. 2010;
Van Dam et al. 2003)

• Multiset of the eigen-projectors
(Fürer 2010; Rattan et al.
2021)

Spatial invariants:

• Weisfeiler-Lehman (WL)
hierarchy

• 1-WL: MPNN (Morris
et al. 2019; Xu et al.
2018)

• k-WL: k-th order MPNN
(Maron et al. 2019)

Which invariants are stronger?

Abovementioned Spectral invariants are less powerful than 2-WL
(Rattan et al. 2021).

Can we design stronger spectral invariants?
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Towards Stronger Spectral Invariant:
Graph Spectra and Graph Symmetry

Ingredients:
• Spectral-decomposition: A =

∑n
i=1 λiuiu

>
i

• Automorphism: ΠA = AΠ for some permutation Π.
• stabilizer(ui ) := {Π : Πui = ±uj , uj ∈ E(λi )}.

aut(G ) =
n⋂

i=1

stabilizer(ui ).
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