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Convection Patterns

Fluid cools by losing heat through the surface
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Vestring

Figure 13: A phase defect in three dimensions with a concave disclination backbone.

Figure 14: A phase defect with a convex disclination backbone.
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Figure 6: A nnmerical simulation of the Swift-Hohenberg equation on an elliptical domain. Compare
the eikonal solution on the same domain shown in Fig. 5.

Z—W ) regularized by a
PGB hetween the two foci. This would indeed be the solution forBan idealized elastic
blister whose energy is very similar to (3.2) with carefully controlled boundary conditions.
The surface height would rise with constant slope and meet in a ridge located between
the two foci where the cavities begin.

However, one observes that the angles at which the phase contours meet the PGB
become larger and larger. Figure 6 shows us what happens. The white triangle marks
the focus, the center of curvature of the end of the boundary along the major axis. The
white diamond marks the point at which the angle rcaches its critical value and from
that point to the center we sce a scquence of dislocations with the contours closest to
the major axis parallel to that rather than being shaped as they would if they followed
the eikonal solution exactly. But as Fig 7 indicates, the deviation from kg (here chosen
to be unity) is very small and well within the k — kg = O(¢) tolerance. Fig 8 shows the
local energy density which is clearly largest on the sequence of VX pairs near the foci
and on the sequence of dislocations nearer the center of the ellipse. Fig. 9 is a repeat
of Fig. 6 with a 4:1 aspect ratio with results very close to that of Fig 6. Fig. 10 is the
result of a simulation of the Oberbeck-Boussinesq equation at a Prandtl number of 100
(at which the equations are almost but not exactly gradient) and a Rayleigh number of
2000. Figures 11a and 11b are the results of an experiment by Meevasana and Ahlers [9]
with ethanol and a simulation of Swift-Hohenberg in an identical geometry. Figures 12a.
b are simulations of Swift-Hohenberg.

The challenge is to deduce all this structurc from the stationary phasc diffusion cqua-
tion (3.1) for the cnergy minimizing ficld. In the far ficld, away from the major axis
between the foci, the Gaussian curvaturce (Hessian) would appear to be so small as to be
negligible so it is likely the self dual approximation obtains. On the outside, the mean
curvature is also small so the eikonal solution dominates.

boundary normals with phases 0,27, etc. marked at intervals of
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Figure 7: Deviation |V6| — kg of the local wave-number from the preferred wavenumber for the Swift-
Hohenberg solution on an clliptical domain.
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Figure 8: The local energy density on the Swift-Hohenberg solution on an elliptical domain.

Figurc 9: The Swift-Hohenberg solution on an clliptical domain with a larger aspect ratio.
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Figure 10: Nurmerical simnulation of the Overbeck-Boussinesq equations for convection.

Figure 11: (a) Experiinental results for couvection in an elliptical container. (b) Simulation of the Swift-
Hohenberg cquation on the same domain.
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Figure 12: Simulations of the Swift-Hohenberg equation. Note the flattening of the phase contours as
the major axis is approached.

But as we move in, the curvature of the phase contours is slightly more pronounced as
to allow, if in balance with the strain energy, proportional to (k% — k%)?2, small deviations
in the latter in which & > kg but well within the Busse balloon and still of order e.
Therefore the self dual approximation will allow for some flattening of phase contonurs
as the major axis is approached. Most of the energy in the pattern, as is clear from
Fig. 8, resides along the major axis. This behavior can be approximated by a series

08
of phase contours where f/ = 0 and gaps where T 0. Following through with this

approach allows us to calculate the optimal placinéé of the divisions so as to minimizc
the energy [10]. In all likclihood that will be the multidislocation solution (a sum of
(3.14) solutions). Another question to address is whether, at the dislocations, one has
to reintroduce the amplitude as an additional order parameter as the local wavevector
approaches the neutral stability curve where the amplitude is small. In any event, the
matching of what is observed, in experiments and in simulations of both the large Prandtl
number Oberbeck-Boussinesq equations and its toy model the Swift-Hohenberg equation,
provides a healthy but yet unresolved challenge for the theory.

3.2. Pattern quarks and leptons and a second challenge

We saw in 3.1 that the canonical point defects in two dimensional striped patterns
were concave (V) and convex (X) disclinations. Their associated invariants, namely the
“Twists”, measuring the amount of Gaussian curvature condensed onto the point defects.

1 il
when divided by 27 were fractional, = and — respectively. In three dimensions, the
point defect analogucs of the V and X will casily dissociate, while loop defects arc stable
and encode interesting topology [11]. The defects that are structurally stable are loops
(see Figures 13 and 14) in which the cross sections are concave and convex disclinations.
1, ;
As we shall see, they still retain their “spin” or i; invariants. However because

the tori which cnvelope these loops have two indcpcndcﬂt closcd loops on their surfaces
on which the amount of twists of the k dircctor arc invariant, cach loop defect has an
additional invariant which in the casc of the V (X) string or loop with a concave (convex)

disclination cross-section, can be integer multiples of = (1). Because of the analogy with

“charge” we call these objects pattern quarks and lep‘tons.
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Convection and Megalithic Art




