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Outline of the talk
▸ Concurrent extremes: simultaneous occurrence of extreme

values for multiple climate variables [Zscheischler et al., 2018]

▸ Conditional approaches for estimating concurrent extremes:

[Y,X large] = [X large]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

EVA

[Y ∣X large]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

?

▸ Quantile regression
▸ Conditional extreme value models

▸ Estimating concurrent extremes using a large ensemble
climate simulations

▸ Estimating concurrent wind and precipitation extremes
▸ Illustrating the use of large ensemble climate model

simulations to study extremes



Some examples of concurrent extreme events

Credit: Shuttershock Source: www.standardmedia.co.ke



Concurrent wind and precipitation extremes
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▸ Most (climate) literature focus on estimating the occurrence
probability of an concurrent extreme event

▸ Here we would like to estimate the “tail distribution” via a
conditional approach



Conditional approaches for estimating
concurrent extremes:

[Y, X large] = [X large]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

EVA

[Y ∣X large]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

?

▸ Quantile regression
▸ Conditional extreme value models



An illustration of conditional approach
Let X and Y be daily precipitation and wind speed

1. Condition on X being “large” e.g., annual maximum
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Question: Which distribution to use to model [X large]?



Extremal Types Theorem (Fisher–Tippett 1928, Gnedenko 1943)
Define Mn = max{X1,⋯,Xn} where X1,⋯,Xn

i.i.d.
∼ F . If ∃an > 0

and bn ∈ R such that, as n→∞, if

P(
Mn − bn
an

≤ x)
d
→ G(x)

then G must be the same type of the following form:

G(x;µ,σ, ξ) = exp{ − [1 + ξ(x − µ
σ

)]

−1
ξ

+

}

where x+ = max(x,0) and G(x) is the distribution function of the
generalized extreme value distribution (GEV(µ,σ, ξ))

▸ µ and σ are location and scale parameters
▸ ξ is a shape parameter determining the rate of tail decay, with

▸ ξ > 0 giving the heavy-tailed case (Fréchet)
▸ ξ = 0 giving the light-tailed case (Gumbel)
▸ ξ < 0 giving the bounded-tailed case (reversed Weibull)

An Animation



An illustration of conditional approach
1. Condition on X being “large” e.g., annual maximum
2. Model [Y ∣X“large”]
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Next, we will talk about the approaches we use for 2



Approximating [Y ∣X“large”] via Quantile Regression
[Koenker and Bassett, 1978]

▸ Goal: To estimate the conditional upper quantiles, i.e.,
estimating QY (τ ∣x) = inf{y ∶ F (y∣x) ≥ τ}, τ ∈ (0,1) at a
finite number of quantile levels τ1, τ2,⋯, τJ

▸ Estimating each quantile separately can lead to the issue of
quantile curves crossing i.e.,

QY (τi∣x) > QY (τj ∣x)

for some x ∈ R when 0 < τi < τj < 1 /

▸ We use the monotone composite quantile regression neural
network (MCQRNN) [Cannon, 2018] to estimate multiple
non-crossing, nonlinear conditional quantile functions
simultaneously



Estimating [Y ∣X“large”] via Extreme Value Approach
Conditional extreme value (CEV) models [Heffernan & Tawn, 04]:
models the conditional distribution by assuming a parametric
location-scale form after marginal transformation

▸ Marginal modeling:

1. Estimate marginal distributions of Y and X

2. Transform (Y,X)T to Laplace marginals (Ỹ , X̃)T

▸ Dependence modeling:
Assume for large u,

⎡
⎢
⎢
⎢
⎣

Ỹ − a (X̃)

b (X̃)
≤ z∣X̃ > u

⎤
⎥
⎥
⎥
⎦
∼ G(z),

where a(x) = αx and b(x) = xβ, α ∈ [−1,1], β ∈ (−∞,1)



A cartoon illustration of the CEV dependence modeling
Assume for large u,

⎡
⎢
⎢
⎢
⎣

Ỹ − a (X̃)

b (X̃)
≤ z∣X̃ > u

⎤
⎥
⎥
⎥
⎦
∼ G(z),

where a(x) = αx and b(x) = xβ, α ∈ [−1,1], β ∈ (−∞,1)

Source: Heffernan’s slides given at the Interface 2008
Symposium

▸ Ỹ = αX̃ + X̃βZ,
⇒ Z = Ỹ −αX̃

X̃β ∼ G

▸ α and β are estimated by
making a parametric
assumption of Ỹ

▸ G estimated
nonparametrically



“Data”

Output from CanRCM4, Canadian Regional Climate Model 4

▸ 35-member initial-condition ensemble

▸ Using output from 1950-1999 with CMIP5 historical forcings

▸ North American region, 0.44° horizontal grid (∼ 50 km). We
will show the results from a “Vancouver” (NW) grid cell

Each run in ensemble produces (nearly) statistically independent
realizations of climate system, which allows us to:

+ provide more accurate estimates in climate extremes

+ assess how well statistical procedures work



Estimating concurrent extremes using large
ensemble climate simulations

▸ Estimating concurrent wind and precipitation extremes

▸ Illustrating the use of large ensemble climate model
simulations to evaluate statistical methods



Estimating conditional quantiles using MCQRNN and CEV
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Bootstrap ensemble runs to obtain uncertainty estimates
Here we show the bootstrap confidence interval for 0.9 quantile
function estimates
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Assessing statistical model performance via large
ensemble∗∗

▸ We treat the fitted conditional quantile function at τ = 0.9
using all 35 ensemble members as the “truth”

▸ We assess the model performance by fitting CEV and
MCQRNN for each individual ensemble member

** See Sec. 2.3 of “Some Statistical Issues in Climate Science”, 2019 Stat. Sci. by Michael Stein



Summary & discussion

▸ We explore conditional approaches to estimate the concurrent
wind and precipitation extremes

▸ Large climate model ensemble is a powerful tool for studying
climate extremes

▸ Ongoing work
▸ Nonstationary extension account for both seasonality and long

term trend for marginal and dependence structures
▸ Spatial extension to borrow strength across space to improve

estimation of concurrent extremes

Thank you for your attention!
Paper: www.sciencedirect.com/science/article/pii/
S221209472100030X.
Code:
https://github.com/whitneyhuang83/ConcurrentExtremes

www.sciencedirect.com/science/article/pii/S221209472100030X
www.sciencedirect.com/science/article/pii/S221209472100030X
https://github.com/whitneyhuang83/ConcurrentExtremes
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Some thoughts on financial risk
Nice review paper: Nolde, N., & Zhou, C. (2021). Extreme value
analysis for financial risk management. Annual Review of Statistics
and Its Application, 8, 217-240.

▸ Estimation of
▸ marginal expected shortfall (MES)

MESp = E[Y ∣X > VaRp(X)]

▸ Conditional value-at-risk (CoVaR)

P(X > CoVaRp∣Y > VaRp(Y )) = 1 − p

▸ Hedging against climate risks using weather derivatives

▸ Large ensemble in finance (GARCH-like stochastic differential
equations)?



Backup Slides



Estimating the magnitude of concurrent extremes
Consider the bivariate case, i.e., X = (X1,X2)

T

▸ There is no natural ordering to define an extreme value for
multivariate data

“order properties ... exist only in one dimension” – Kendall
(1966)
“there is no natural concept of rank for bivariate data”–Bell
and Haller (1969)

▸ Traditional multivariate extreme value analysis mainly focus
on modeling component-wise maximum ⇒ may lead to
“wrong” events /

▸ It is important to account for “event simultaneity” for
modeling concurrent extremes ⇒ we do this by conditioning
on one variable being extremes



Extremal Types Theorem in Action
1. Generate 100 (n) random numbers from an Exponential

distribution (population distribution)
2. Compute the sample maximum of these 100 random numbers
3. Repeat this process 120 times

Back



Classical multivariate extreme value analysis
Modeling componentwise maxima using multivariate extreme value
distribution (extreme-value marginals + tail copula)
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Issue: Ignore the event simultaneity



Componentwise maxima vs. concomitants of maxima
Red: (annual max precip, annual max wind speed)
Blue: (annual max precip, concurrent wind speed)
Green: (annual max wind speed, concurrent precip)
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