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In the fields of scattering and inverse scattering theory techniques of microlocal analysis, including
the use of eikonal equations and of complex geometrical optics solutions to Schrödinger and other
equations, has led to substantial progress in recent years. The purpose of the workshop was be
to bring together people working on different aspects of these fields, to appraise the current status
of development and to encourage interaction between mathematicians and scientists and engineers
working directly with the applications of scattering and inverse scattering.

Despite close mathematical connections between the fields of scattering and inverse scattering,
there has not always been a strong interaction between these fields. Part of the rationale of this
workshop was to bring together workers who might not ordinarily interact, but could benefit from
sharing ideas.

1 Basic ideas in direct and inverse scattering

Scattering theory, in the time dependent formulation, is the study of the long time behaviour of
solutions of an evolution equation that move out to infinity. The evolution equation might be the
time dependent Schrödinger equation, (quantum scattering), the scalar wave equation (acoustical
scattering), Maxwell’s equations (electromagnetic scattering) or even a non-linear evolution equation.
The underlying space might be Euclidean space or a Riemannian manifold. In each problem there is
a localized scattering target. Moving in space away from the target to infinity, the equations, or the
geometry, become simpler. The idea is that in the distant past and in the far future, the scattered
wave will be located in the region where the equation or geometry is simple. It then becomes possible
to compare distant past input to the far future output.

Inverse scattering is how we obtain a large part of our information about the world. An everyday
example is human vision: from the measurements of scattered light that reaches our retinas, our
brains construct a detailed three-dimensional map of the world around us. Dolphins and bats are
able to do the same thing from listening to scattered sound waves.

We know about the interior structure of the Earth by solving the inverse problem of determining
the sound speed by measuring travel times of seismic waves, the structure of DNA by solving inverse
X-ray diffraction problems and the structure of the atom and its constituents from studying the
scattering when materials are bombarded with particles.

Medical imaging uses scattering of X-rays, ultrasound waves and electromagnetic waves to make
images of the human body which is of invaluable help with medical diagnosis. The oil exploration
industry uses the reflection of seismic waves in oil prospecting. Inverse scattering is used in non
destructive evaluation of materials to find cracks and corrosions.
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In summary the task of direct scattering theory is to determine the relation between the input
and output waves, given the details about the scattering target. The task of inverse scattering theory
is to determine properties of the target, given sufficiently many input output pairs.

In fact, most often scattering problems are stated in a time independent formulation that results
after taking a Fourier transform in the time variable. Although the immediate connection to the
original scattering experiments is obscured, it can be easier to state and study scattering problems
in the this formulation. Here is the time independent formulation of the obstacle scattering problem,
which is relevant to applications in radar and sonar.

The underlying space is R
n and the obstacle Ω ⊂ R

n is a closed bounded set. We consider
solutions to the Helmholz equation

∆u(x) + k2u(x) = 0 for x ∈ R
n\Ω

with either Dirichlet (for a soft obstacle) or Neumann (for a hard obstacle) boundary conditions on
∂Ω. We look for a family of solutions, indexed by ω in the sphere Sn−1 with the following asymptotic
behaviour:

u(x; ω, k) = u(rξ; ω, k) ∼ eik〈ω,x〉 + r−(n−1)/2eikrA(ξ, ω, k)

as r → ∞. Here r = |x| and ξ = x/|x|, and ∼ denotes equality up to terms of order r−(n+1)/2.
For a given obstacle, these equations uniquely determine the function A(ξ, ω, k), called the scat-

tering amplitude or the far field pattern..
The scattering operator can be defined in the following way. If we consider any solution u(x) =

u(rξ) of the Helmholz equation with asymptotic expansion for large r of the form

u(rξ) ∼ r(n−1)/2eikra(ξ) + r(n−1)/2e−ikrb(ξ)

it turns out that the coefficients a(ξ) and b(ξ) are not independent. Specifying either a or b determines
the solution u uniquely and thus the other coefficient. The scattering operator S(k), acting on
functions (or distributions) on the sphere describes the relationship between a and b via

a = S(k)b

To find the relationship between the scattering amplitude and the scattering operator, think of
eik〈ω,x〉 = eikr〈ω,ξ〉, for fixed ω and k as a family of distributions on the the sphere. The asymptotics
of these distributions as r → ∞ are obtained by a stationary phase calculation. As a function of
ξ ∈ Sn−1 the phase k〈ω, ξ〉 has two critical points, one where ξ = ω and the other when ξ = −ω.
This results in

∫

Sn−1

eikr〈ω,ξ〉ϕ(ξ)ds(ξ) ∼

(

2π

r

)(n−1)/2
{

e−iπ(n−1)/4eikrϕ(ω) + eiπ(n−1)/4e−ikrϕ(−ω)
}

or

eikr〈ω,ξ〉 ∼ r−(n−1)/2eikr(2π)(n−1)/2e−iπ(n−1)/4δω(ξ) + r−(n−1)/2e−ikr(2π)(n−1)/2eiπ(n−1)/4δ−ω(ξ)

Comparing asymptotic expansions, we conclude that

S(k) = i−(n−1)R + (2π)−(n−1)/2e−iπ(n−1)/4A(k)R

where R is the reflection operator sending ϕ(ξ) to ϕ(−ξ) and A is the operator with integral kernel
A(ω, ξ, k).

In this formulation, the direct problem for obstacle scattering is to determine properties of the
scattering operator S(k) (or equivalently the scattering amplitude A(k)) given the shape of the
obstacle Ω and the type of boundary condition imposed. An example of a property of S(k) that
has been studied extensively is its meromorphic continuation in k. Poles in the this continuation
are called scattering poles or resonances. The goal is to estimate the location of these resonances,
depending on the geometry of Ω.
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The inverse problem for obstacle scattering is to determine the shape of the obstacle from knowl-
edge of S(k) (or A(k)). It turns out that that only partial information about S(k) is required.
However, when inverse scattering is used in practical applications, even this partial information is
never all available, since only finitely many measurements can be made. Therefore there are many
difficult computational issues that arise.

Similar problem direct and inverse scattering problems can be considered for the Helmholtz
equation with a variable coefficient index of refraction n(x) which is a positive function equal to one
outside a ball. The equation in this case is

(∆ + n(x)k2)u = 0

in Euclidean space.

2 Recent developments and open problems

2.1 Geometric Scattering Theory

In the early 1990’s Melrose proposed a far-reaching and novel program to study “geometric scattering
theory”. The investigations in this area and the main lines of study are influenced both by the
classical formulation of mathematical scattering theory and also by many results and methods in
the study of the spectral theory of noncompact complete Riemannian manifolds. The point is
to develop ‘nonrelative’ techniques to study questions of a scattering-theoretic nature; even when
applied back to classical Euclidean scattering, this perspective has led to some dramatic advances
and insights for the direct and inverse problem , e.g. for quantum N -body scattering. and hyperbolic
manifolds. The exploration of the various ramifications of this theory, in particular its connection
to Hodge theory and index theory, has occupied much of the efforts of Melrose and his coworkers
and students over the past decade. The lectures by Mazzeo and Sa Barreto were concerned with
this topic.

2.2 Inverse scattering in anisotropic media

The medium parameters in anisotropic media depend on direction and position. The inverse scatter-
ing problem of determining such media from the scattering amplitude is difficult and closely related
to rigidity questions in differential geometry. The index of refraction of the Earth for instance de-
pends on direction; with the fastest the direction of the axis of ration of the Earth. The problem
of recovering this anisotropic index of refraction from the singularities of the scattering operator
leads to the problem of determining a Riemannian metric on a bounded domain from the lengths
of geodesics joining points in the boundary. This corresponds physically to the first arrival times of
sound waves. In Riemannian geometry this is known as the boundary rigidity problem. The two
dimensional case has recently been solved by Pestov and Uhlmann but the higher dimensional case
remains largely open. Stefanov reported progress on this question in his lecture. Hansen considered
in his talk an inverse anisotropic scattering problem arising in the mechanics of materials in partic-
ular isotropic elastic materials with residual stress. Residual stresses (or initial stresses) in solids
and structures generally result from the manufacturing process.

2.3 Scattering poles

The scattering operator S(z) is initially defined for real z, but often has a meromorphic continuation
to the complex plane. Poles in this continuation are called scattering poles, or resonances. The term
resonance comes from physics where they are interpreted as long-lived or resonant states. The
lifetime of the resonant state is inversely proportional to its imaginary part. Thus, one is mostly
interested in resonances that lie close to the real axis. Often one looks to the corresponding classical
mechanical system as a guide to the location of resonances. Classical closed trajectories or stationary
orbits should give rise to families of resonances. This was the subject of the talk of Hitrik, who talked
about resonances associated to a non-degenerate maximum of a potential in two dimensions.
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In the case of a Riemannian manifold with an asymptotically hyperbolic metric, a conformal
structure is induced on the boundary at infinity. Zworski and Graham have studied the relation
between this conformal structure and the residues of non-spectral scattering poles in the case where
the metric is asymptotically Einstein.

There are still many open problems in this area. For example, one can consider the counting
function for resonances N(λ), defined to be the number of resonances of modulus less than λ.
Although upper bounds are known from the work of Melrose, Sjöstrand, Zworksi, Vodev and others,
lower bounds are much harder to come by, and exact asymptotics are only known in essentially one
dimensional situations.

2.4 Inverse Obstacle Problem

This problem is discussed in more detail in the previous section. A recent development in the inverse
scattering problem was the introduction by Colton and Kirsch and subsequent versions by Kirsch of
the linear sampling method which is a numerical reconstruction struction algorithm of the obstacle
that relies on the blow up of the associated Green’s function at the boundary of the region that one
ones to determine.

A very important open theoretical and applied problem is to determine the obstacle from a
single incident wave at a fixed frequency measured in every possible direction. This is a formally
determined problem since the dimension of the obstacle is the same as the manifold where the
scattering amplitude is given. The lectures of Colton and Kirsch dealt with this inverse problem.

2.5 Time reversal and scattering in random media

In time reversal experiments waves are emitted from a localized source recorded for an interval of
time by an array of receivers-transducers, time-reversed and retransmitted. This process is repeated
several times, leading in some cases to refocusing near the original source. This has several applica-
tions in nondestructive evaluation and medical techniques such as lithotripsy and hypothermia. This
process works because the wave equation is invariant under reversal of time and inhomogeneities and
randonmess contribute to a better refocusing. The talks by Bal and Ryzhikt with the mathematical
analysis of time reversal in random media.

Scattering and inverse scattering in random media is a topic that will attract a lot of attention in
the future because the only reasonable mathematical model for very complicated medium is that the
medium parameters are random variables. Besides time reversal other applications of scattering in
random media include propagation of radar waves through foliage and ultrasound in human tissue.

2.6 Complex geometrical optics solutions and inverse scattering at a fixed

energy

The inverse scattering problem for the case of the Helmholtz equation with index of refraction one
outside a compact set at a fixed energy k has been solved in dimension three or larger. This is
in fact a consequence of the fact that the Dirichlet-to-Neumann map associated to this equation
in any open and bounded domain uniquely determines the index of refraction. The solution of
this latter problem uses complex geometrical optics solutions for the Schrödinger equation. which
were developed by Calderón and Sylvester and Uhlmann. Challenges for the future include the two
dimensional case and the fixed energy problem for many body scattering, that is the case of several
particles interacting. Tamasan reported on progress in the two dimensional case for the two body
problem.

2.7 Inverse Backscattering Problem

For the inverse backscattering problem for the case of the Helmholtz equation with variable index
of refraction the medium is probed with waves in a given direction and the reflection is measured.
However very little progress has been made on this very important problem very relevant to remote
sensing and ultrasound except for the case that the index of refraction is small.
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2.8 Optical Tomography

In this relatively new medical imaging modality one attempts to determine the absorption and
scattering coefficient of an inhomogeneous medium by probing it with diffuse light. The problem
is modeled as an inverse scattering problem for the stationary linear Boltzmann equation or the
radiative transport equation. The information is encoded in the albedo operator, which is the
analog of the Dirichlet-to-Neumann map. Although theoretical results are very encouraging there
are no numerical reconstruction algorithms which deal with the severe ill-posedness of this problem.

2.9 Seismic Imaging

Seismic imaging creates images of the Earth’s upper crust using seismic waves generated by artificial
sources and recorded into extensive arrays of sensors (geophones or hydrophones). The heterogeneity
and anisotropy of the Earth’s upper crust require advanced mathematics to generate wave–equation
solutions suitable for seismic imaging. In this context, microlocal analysis and Fourier integral
operators have been shown to be promising because they offer the potential to manipulate a wavefield
directly on its phase space. The talks of Gibson, Lamoureux and Margrave described some of this
progress.

However very little is known for the case of anisotropic elastic medium which is a more accurate
model of the Earth’s subsurface and this is one of the challenges for the future.

2.10 Scattering in Complex Materials

When a body is exposed to an incident electromagnetic field, the resulting “scattered” field depends
on the electromagnetic properties of the body. By sending controlled incident fields, and measuring
the scattered fields (remote sensing), one may obtain information about the makeup of the body
with respect to these properties. Alternatively, one may control, say, the electric fields imposed on
an accessible boundary and record the magnetic fields on the boundary, again obtaining information
about the material makeup of the body.

The material properties one may seek include the body’s electric permittivity, ε, magnetic per-
meability, µ, conductivity, σ, and chirality, β. The relationship between the fields is modeled by
Maxwell’s system of equations. If we assume that the system is lossless (there is no loss of electro-
magnetic energy), then in greatest generality these take the form curl E = −∂tB, curl H = ∂tD.
Here, E, H are the electric and magnetic fields, and B, D are the magnetic induction and electric
displacement respectively. How B and D depend on E and H , and on the material properties of the
body, is described by the constituent relations; these may take a variety of forms depending on the
physical assumptions one is willing to make.

Chirality has not been included in the majority of prior analysis. Chirality is an asymmetry in the
molecular makeup of the material, and is physically significant and present in many applications. The
inclusion of chirality enriches Maxwell’s equations and yields the potential to determine practically
useful properties of the body.

A chiral molecule (typically a long carbon based corkscrew) is one whose mirror image has
reversed orientation. In the absence of life, chiral molecules usually appear in equal amounts in each
orientation. Living organisms, on the other hand, almost always produce chiral molecules with a
definite orientation.

Chiral molecules scatter light differently. When light is transmitted through chiral material
as a phase-coherent wave, left– and right–circularly polarized light are absorbed differently, and
propagate at different speeds (thus rotating the plane of polarization of linearly polarized light).
These phenomena are collectively termed optical activity consequence of optical activity is that
light scattered from chirally structured particles differs characteristically from light scattered from
achiral, non-living particles. Understanding chiral materials is of basic importance.

Another fundamental scattering and inverse scattering problem is dispersive materials for which
very little is known. These materials are such that the speed of propagation depends on the frequency
of the wave. Most materials are dispersive although sometimes one can neglect this dispersion but
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this is an important effect for broadband signals. A mathematical theory for Helmholtz equations
with dispersive index of refraction would have considerable theoretical and practical importance.

3 The talks

Here is a brief description of the talks presented at this workshop, presented in the order they were
given. Instead of giving references to published work, we provide web addresses with the most recent
work, where this is available

Rafe Mazzeo reported on his joint work with Andras Vasy on the meromorphic continuation
of the resolvent for arbitrary global symmetric spaces of noncompact type. This is related to the
meromorphic continuation of the scattering operator S(k). The geometry at infinity for these spaces
is complicated, but has an inductive structure that is similar to N -body Hamiltonians. Thus,
techniques developed for the study of N-body Hamiltonians can be extended. Mazzeo’s recent
papers can be found at http://math.stanford.edu/∼mazzeo/papers/papers.html.

David Colton considered the inverse scattering problem of determining the shape and surface
impedance of a partially coated perfect conductor from a knowledge of the electric far field pattern
of the scattered field due to an incident time harmonic plane wave at fixed frequency. Colton’s
publication list is located at http://www.math.udel.edu/∼colton/Cbib/ColtonBib.html

Plamen Stefanov, in his talk about joint work with Gunther Uhlmann, considered the boundary
rigidity problem for Riemannian manifolds - is such a manifold uniquely determined, up to an
isometry, by the boundary distance function, the function that assigns to two boundary points the
distance between them? Selected publications of Stefanov are available at his web page located at
http://www.math.purdue.edu/∼stefanov/

Sönke Hansen talked about the construction of high-frequency solutions and parametrices
for systems of real principal type and indicated some applications. His preprints can be found at
http://www-math.uni-paderborn.de/∼soenke/

Lenya Ryzhik and Guillaume Bal each gave a talk about their work on a mathematical
theory of time-reversal experiments. In such experiments a signal emitted by a localized source
is recorded by an array of receivers-transducers and re-emitted into the medium reversed in time.
The new signal refocuses approximately on the location of the original source despite the small size
of the array. Surprisingly, medium heterogeneities improve significantly the quality of refocusing.
Ryzhik explained how this phenomenon may be understood in the general framework of refocusing
of re-transmitted high frequency acoustic waves recorded at a single time. He discussed in particular
the self-averaging properties of the re-transmitted signal that appear due to wave mixing and related
them to the self-averaging properties of the phase space energy density of waves in random media.
Bal explained why refocusing is improved by random inhomogeneities and related the time-reversal
theory to the phase space description of energy propagation in random media, radiative transport
and random geometrical optics. He also showed

Ricardo Weder discussed recent results that he obtained on direct and inverse scattering for the
forced non-linear Schroedinger equation on the half-line, namely, the construction of the scattering
operator and the unique reconstruction of the potential and the non-linearity. The new technical
tools that made possible to prove these results are the L1–L∞ estimate and the boundedness in
the Lp spaces of the wave operators for the Schroedinger equation that is obtained linearizing our
problem with force identically zero.

Ira Herbst reported on work with Erik Skibsted about quantum scattering for the Schrödinger
equation associated with a symbol h(x, ξ) that is homogeneous of degree zero in x. In classical
mechanics, radial points that vary smoothly in energy have corresponding stable and unstable man-
ifolds. Herbst showed that (under certain generic assumptions) as long as there is an unstable
manifold, there are no quantum states corresponding to the stable manifold. Selected papers of
Herbst are available at http://www.math.virginia.edu/Faculty/herbst/

Robin Graham discussed his joint work with Maciej Zworski on the ”non-spectral” poles of the
scattering matrix of an asymptotically hyperbolic metric. Such poles always exist and the residues
are differential operators. In the case when the metric is asymptotically Einstein, these residues are
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invariantly associated to the induced conformal structure at infinity and this relationship can be
viewed in the framework of the AdS/CFT correspondence of string theory.

Michael Hitrik reported on his work with Johannes Sjöstrand about scattering poles for a semi-
classical Schrdinger operator in dimension 2, generated by a unique non-degenerate maximum of the
potential. Assuming that the classical frequencies at the critical point satisfy the resonance condition,
he obtained a complete asymptotic description of the poles which are at a distance hδ, 0 < δ < 1/2,
away from the critical energy. Hitik’s web page is as http://math.berkeley.edu/∼hitrik/

Alexandru Tamasan talked about the inverse scattering method used to prove (global) unique-
ness in the 2D inverse conductivity problem. This method needs a little help when changed to a
method of reconstruction. One needs a characterization of the Cauchy data in terms of the measure-
ments. For Nachman’s method (which uses a reduction to the Schroedinger equation,) this is given
by the Dirichlet-to-Neumann map. In Brown and Uhlmann’s method (which uses a reduction to a
first order elliptic hermitian system,) it involves more then just the Dirichlet-to-Neumann map. For
the particular case coming from the conductivity equation, such a characterization lead to an algo-
rithm in EIT which allowed W 1+ε conductivities. This was joint work with K. Knudsen. Preprints
are available at http://www.math.toronto.edu/tamasan/

Jenn-Nan Wang discussed recent joint work with Gen Nakamura on the unique continuation
property for the two-dimensional inhomogeneous anisotropic elasticity system

Peter Gibson talked about the the use of pseudo-differential operators and the Gabor transform
in seismic imaging.

Victor Isakov discussed uniqueness and stability of recovery of two- and three-dimensional
domains and of the boundary conditions from the far field data at one or few frequencies. He
reviewed old results and gave some new theorems proven by the method of singular solutions. In
particular, he considered penetrable obstacles with unknown general transmission conditions Isakov’s
publication list is at http://www.math.wichita.edu/∼isakov/

Antonio Sá Barreto defined radiation fields, showed how to obtain the scattering matrix from
them, and used this characterization to study the problem of recovering the metric and the manifold
from the scattering matrix at all energies. Sá Barreto’s recent papers can be obtained from the web
page http://www.math.purdue.edu/∼sabarre/papers.html

Peter Hislop presented some new results on the spectral properties of quantum Hall Hamilto-
nians associated with unbounded regions in the plane. For one-edge regions that are deformations of
the half-plane, he proved a lower-bound on the edge current, and the equality of the edge and bulk
conductivity. He also gave a new proof of the existence of bands of absolutely continuous spectrum
at energies between the Landau levels. He also studied straight, strip-like regions. This was joint
work with J.-M. Combes and E. Soccorsi.

Victor Ivrii considered operators on compact closed manifolds, with coefficients, first derivatives
of which are continuous with continuity modulus O(| log |x−y||−1). He derived semiclassical spectral
asymptotics with sharp remainder estimate O(h1−d). In the process he discussed the question
“Where does microlocal analysis start?” and the answer to it “From the logarithmic uncertainty
principle”. These asymptotics easily yield standard asymptotics with respect to spectral parameter
λ → ∞. Ivrii’s preprints are at http://www.math.toronto.edu/ivrii/Research/Preprints.html

Peter Perry, in joint work with Carolyn Gordon, constructed continuous families of met-
rics on Rn, n ≥ 8, with the following properties: (1) The metrics are Euclidean outside a com-
pact set, (2) the support of the perturbation may be arbitrarily small, and (3) the continuous
families have the same scattering phase. The construction is based on constructions of isospec-
tral compact manifolds by Carolyn Gordon and Dorothee Scheuth. There are examples of pairs
of isophasal metrics which have very different isometry groups. Perry’s preprints are located at
http://www.ms.uky.edu/∼perry/papers.html

Oliver Dorn talked about level set method for describing propagating fronts, which has become
quite popular in the application of medical or geophysical tomography. The goal in these applica-
tions is to reconstruct unknown objects inside a given domain from a finite set of boundary data.
Mathematically, these problems define nonlinear inverse problems, where usually iterative solution
strategies are required. Starting out from some initial guess for the unknown obstacles, successive
corrections to this initial shape are calculated such that the so evolving shapes eventually converge
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to a shape which satisfies the collected data. Since the hidden objects can have a complicated topo-
logical structure which is not known a priori, the shapes usually undergo several topology changes
during this evolution before converging to the final solution. Therefore, a powerful and flexible tool
for the numerical description of these propagating shapes is essential for the success of the inversion
method of choice. In the talk, Dorn presented a recently developed shape reconstruction method
which uses a level set representation of the shapes for this purpose. Numerical results were presented
for three different practically relevant examples: cross-borehole electromagnetic tomography using a
2D Helmholtz model, surface to borehole 3D electromagnetic induction tomography (EMIT) using
a model based on the full 3D system of Maxwell’s equations, and diffuse optical tomography (DOT)
for medical imaging using a model based on the linear transport equation in 2D. Dorn’s publications
can be accessed at http://www.cs.ubc.ca/∼dorn/publications.html

David Finch considered the problem of inversion of the spherical mean transform on Euclidean
space, when the centers are restricted to a hypersurface. He gave some uniqueness results. For the
case of functions supported in a ball in an odd dimensional space, he gave closed form inversion
formulas analogous to the Radon inversion formula when the spherical means are known for spheres
centered on the boundary of the ball. Some applications were presented. This is joint work with
Rakesh and Sarah Patch.

A robust approach to seismic imaging can be derived from the Born approximation to wave-
field scattering. The resulting imaging algorithm estimates subsurface reflectivity as the ratio
of backward extrapolated seismic data to a forward extrapolated model of the seismic source.
This places key importance on the ability to extrapolate wavefield through heterogeneous me-
dia. In the case where the wavespeed is a function only of the coordinates orthogonal to the
direction of extrapolation, an exact solution to the extrapolation problem is available. Gary

Margrave sketched this solution and compare it to two approximations. The first approxima-
tion is appears as a Fourier integral operator while the second uses the Gabor transform to ap-
proximately factorize this operator. I will discuss this approximate factorization and compare
numerical results from all three methods. Selected publications of Margrave can be found at
http://www.crewes.org/AboutCREWES/Faculty/margrave/margrave.php

One dimensional scattering theory serves as the basis for an exact wavefield extrapolator in
seismic imaging, where the propagation of a seismic wave through the earth’s subsurface is modeled
by the acoustic wave equation. Michael Lamoureux showed a comparison between results of
exact eigenvalue calculations on a bounded domain, with the results from the scattering theory
of a (unbounded) 1D line, as well as with other standard imaging methods. Recent preprints of
Lamoureux are available at http://www.math.ucalgary.ca/∼mikel/papers.html

Chi-Kun Lin talked about the homogenization of the Dirac type system. It generates memory
effects. The memory (or nonlocal) kernel is described by the Volterra integral equation (or Fredholm
integral equation depending on the initial or boundary value problem). When the coefficient is
independent of time, the memory kernel can be characterized explicitly in terms of Young’s measure.

Georgi Vodev discussed some recent results concerning estimates of the local energy decay
of solutions to the wave equation on unbounded Riemannian manifolds with non-trapping metrics.
These estimates are derived from the properties of the resolvent at high frequency. Applications
to a class of asymptotically Euclidean manifolds as well as to perturbations by non-negative long-
range potentials were given. Vodev’s preprints appear on preprint server of the Nantes mathematics
department at http://www.math.sciences.univ-nantes.fr/prepub/liste.phtml?annee=2003

Andreas Kirsch talked about the factorization method, a new approach to solve classes of in-
verse scattering problems for time harmonic acoustic or elastic waves. In the first part of the talk he
explained the idea for the simplest case where one tries to recover an unknown (acoustically soft) ob-
stacle from the far field patterns for plane wave incidence. In the second part he will presented recent
extensions to problems with absorption and to mixed boundary conditions and discussed the relation-
ship to the well known MUSIC algorithm in signal processing. Current publications of Kirsch are at
http://www.mathematik.uni-karlsruhe.de/∼ma2ki/page.php?id=kirsch&pid=publication


