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1 Introduction

Currently some of the most difficult problems in computational science involve moving interfaces
between flowing or deforming media. Typically partial differential equations must be satisfied on
each side of the interface (often different equations on each side) and these solutions coupled through
relationships or jump conditions that must hold at the interface. These conditions may be in the form
of differential equations on the lower-dimensional interface. Often the movement of the interface is
unknown in advance and must be determined as part of the solution. The interface shape may be
geometrically complex and may change topology with time. Particularly in three space dimensions,
the ability to solve such problems accurately is limited. Exciting research is currently underway in
the development of better algorithms, the analysis of the accuracy and stability of such algorithms,
and the application of these techniques to specific scientific and engineering problems.

The primary goal of this Workshop was to bring together a number of researchers (mostly applied
mathematicians) who are working on such methods, to foster interaction and the exchange of ideas.
The focus was primarily on three broad classes of methods and the workshop started with intro-
ductory talks on these basic methodologies — Moving Grid Methods by Mike Baines, Level Set
Methods by Hong-Kai Zhao, and Fixed Grid / Moving Interface Methods by Randy LeVeque.
These overview talks were fleshed out over the course of the 5-day workshop in 24 additional talks
on various mathematical aspects and applications. Several informal evening sessions were held to
discuss technical details, recent progress, and directions for future research.

There was consensus that the Banff setting and informal workshop format created an ideal en-
vironment to foster openness and the surprisingly frank discussions. The organizers are extremely
grateful to BIRS for having had the opportunity to hold this exciting workshop. Participants dis-
cussed the shortcomings as well as the successes of each approach and cross-fertilization between the
groups led to interesting discussions and some new directions for research.

2 Moving Grid Methods

There are 3 types of methods to perform grid, or mesh, adaption — the so-called h−, p−, and r−
methods. The first two do static (fixed time) regridding, where the h− method does coarsening
or refining as needed and the p− method takes higher or lower order approximations locally as
needed. In contrast, the r− methods, or moving grid methods, are designed in principle to move
the grid in conjunction with the solutions to the time-dependent PDEs or corresponding interfaces.
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These r− methods have received considerably less attention than the others; nevertheless, there
have been some recent developments which clearly demonstrate their potential for problems such
as those having moving interfaces. The intention at this workshop was to discuss implementation
techniques and success at solving physical problems as well as progress in deriving an underlying
theory for these methods.

2.1 Some general issues

The excellent overview of moving grid methods by Mike Baines set the stage for the talks to
follow in this area. The grid generation problem can be equated to constructing a mapping x(ξ, t)
from computational space (with coordinate ξ) to physical space (with coordinate x). The two basic
types of methods, location based and velocity based, generally involve respectively computing x

by minimizing a variational form or computing the mesh velocity v = xt using a Lagrangian like
formulation.

For the location based methods, several variational forms were reviewed. One common type of
method involves solving the variational problem using a steepest descent method to introduce the
time derivative for grid movement. Another is the classical moving finite element method of Miller.
There is frequently no clear consensus on the relative merits of one of these approaches over another.

Several velocity based methods designed for general problems were then discussed. The ALE
methods were described in a general framework, and then related to the Geometric Conservation
Law, or GCL, method. The GCL method [1], which has undergone renewed interest and spawned
investigation of related methods, was discussed in several talks.

Near the end of the workshop, a moving grid breakout session was held. It was attended by
those working in the field as well as interested participants with expertise in the other workshop
areas. Since moving grid methods are generally less developed and less well-known than the other
adaptive techniques, there was felt to be a need to discuss what attempts should be made to see
that recent advances make their way into the repertoire of more scientists and engineers. It was
agreed that there were three key challenges (and partial solutions): (1) providing better reviews of
the literature (e.g., through a SIAM Review article), (2) having more accessible software (aided by
developing modular codes on a web site and compiling a list of test problems), and (3) developing
a firmer theoretical foundation.

2.2 Overview of work presented

There was a diversity of talks varying from very theoretical talks to ones about the concrete solution
of specific physical problems.

An underlying question with any adaptive method is how to interpret the various factors arising
in anisotropic grid generation. Weizhang Huang discussed a general steady state error analysis for
such grids. The three key grid features or qualities which play a role in determing the interpolation
error (e.g., in a finite element analysis setting) are (1) geometric quality in physical space, (2)
alignment quality in physical space or isotropy in computational space, and (3) adaptive quality
or level of equidistribution. From the way that terms representing these three features arise in the
interpolation error bound, it was shown how these terms tend to compensate for one another, but
argued that generally the latter two are the most important. Weiming Cao performed a related
analysis for anisotropic triangular grids. One additional feature was the role of two different types
of stretched triangles – those with small and large angles – in the alignment. It was demonstrated
why care must be taken to choose the former over the latter.

Chris Budd considered the class of PDEs for which scaling invariance and self similar solutions
play a primary role. For them, moving grid methods are used which have the same scaling invariance
built into the expanded physical PDE/moving grid PDE system. Numerical results for the resulting
methods were shown for a number of challenging blowup problems in one space dimension. The
argument was made that these moving grid methods are ideally suited for blowup problems because
the grid naturally evolves on the proper space and time scales.
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Figure 1: Starting from a uniform mesh, the mesh is adapted to put more grid points near the
domain boundary (left). As the domain grows outwards with some constant normal velocity, a
change in topology is automatically handled (right) [4].

Jeff Williams discussed a method for doing adaptivity for time-dependent PDES based upon
the Monge-Ampere equation. Specifically, relating the coordinate mapping x(ξ, t) for mesh adap-
tivity to the mapping used for solving the classical Mass Transfer Problem (recast as a dynamic
framework), the Monge-Ampere equation is solved for the gradient of v = xt, allowing straight-
forward computation of x. The relation was given between this and the GCL method, another
velocity based. Advantages and disadvantages of this promising method were presented, as well as
computational results for two and three dimensional problems.

John Mackenzie discussed a number of features of his numerical implementation of a moving
grid method for solving PDEs. An analysis of several choices of monitor functions was given and
the importance of using a conservative form for the PDE in computational (quasi-Lagrangian) space
discussed. Numerical examples of the method, including on a Stefan problem with grid moving with
the interface, were given.

Ben Ong gave a talk bridging moving grid methods and level set methods. In his preliminary
computational experiments, he demonstrated how the change in topology of a physical region, while
captured well by level set methods when the boundary is fairly smooth, can lose resolution around
areas of high curvature. Using a GCL approach, he was able to demonstrate the clear potential of
combining these two areas. See Figure 1 for an illustration of his approach on an evolving domain
with topological change.

3 Level Set Methods

Level set methods are numerical techniques introduced by Osher and Sethian in 1988 to track the
motion of interfaces. Rather than evolving marker cells placed along the interface, these methods
represent the interface as the zero contour of a function, φ, defined over the computational domain.
The evolution of the interface is carried out according to the level set PDE,

φt + v · |∇φ| = 0

where v is the normal velocity of the evolving interface. This interface velocity can depend on
the geometry of the interface or on external physics defined by equations off the interface. It is
commonplace to discretize level set equations on fixed, uniform grids, leading to relatively simple
methods with good stability properties. These methods have the powerful advantage of automatically
handling topological merger and breakage.

The generality and robustness of level set techniques have made them natural choices for a wide
range of applications, including problems in fluid mechanics, computer graphics, manufacturing of
computer chips, combustion and image processing.
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3.1 A general issue

A particularly lively debate arose in the discussion following Hong-Kai Zhao’s introductory talk. It
was noted that while level set methods automatically handle topological shape changes, there will
be situations where the corresponding evolutions are not physically correct. While the theory of
viscosity solutions may provide some answers, it is clear that detailed modelling of the underlying
physics will be needed in certain problems. No universal solution to this interesting problem was
found during the workshop, however, discussions illuminated the need for careful design of level set
algorithms in physical problems.

3.2 Overview of work presented

A broad spectrum of level set talks were given over the course of the workshop.
David Adalsteinsson gave a talk on his recent work on transport and diffusion of material

quantities on propagating interfaces using level set methods. Material quantities defined on an in-
terface are not easily handled by traditional level set methods. Adalsteinsson described an approach
for extending the level set method to these problems.

Anne Bourlioux gave a talk on her research into multi-scale strategies for turbulent burning
fronts. In many practical applications (for instance, engines), flame fronts are thin and can be
viewed at the large scale as a zero-thickness interface that separates burnt and unburnt gases. Her
talk described research on how the effective dynamics of the front at the large scales of interest are
influenced by the small scale stirring by the turbulent flow.

Li-Tien Cheng discussed work that combines the level set method and the heterogeneous
multiscale method for interface problems in multi-scale settings. Examples that were considered
included flows related to the homogenization of Hamilton-Jacobi equations and to the phase-field
model, all in the presence of highly oscillating or random data that introduce a small scale. His
approach incorporated the advantages of both methods to produce a fast algorithm that handles the
multiscale and topological aspects of the interface dynamics.

Oliver Dorn reported on his recent work on identifying, localizing and tracking penetrable
objects. In this problem, an array of electromagnetic or acoustic sources is located at a certain
position and emits waves which propagate through the environment and are scattered by objects.
Dorn described approach for finding information on the location, trajectory, orientation and the
shape of the moving object in a stable way using a variety of techniques including level set methods.

Isaac Klapper described recent work in the study of biofilm response to mechanical stress.
Biofilms are dense ubiquitous aggregates of microorganisms. Klapper and collaborators are interested
in characterizing physical properties of biofilm with the longterm aim of understanding phenomena
such as mechanical failure. He described work on methods to treat these problems efficiently and
accurately.

Ian Mitchell reported on some of his recent work on level set methods for control and verifica-
tion. His talk described a recent method for warning air traffic controllers of of potential collisions.
Drawing on results from optimal control, differential games and level set methods, he described
methods for calculating the reachable sets corresponding to aircraft collisions. High dimensional
systems are still difficult; however, one possible counter to Bellman’s curse of dimensionality that
was given is to compute an overapproximation of a high dimensional reachable set as a collision of
lower dimensional projections. See Figure 2. Recent related work on particle level set methods for
increasing the accuracy of level set methods near high curvature regions was also described.

Jamie Sethian reported on a variety of recent work including the industrial simulation of
evolving droplets in ink jet printers. His work on ink jet printers made use of recent level set
techniques to robustly treat the evolving drops. He discussed how mass conservation is particularly
relevant to the treatment of such problems and showed how practical methods can be designed by
combining a 2nd order Godunov method, a finite element projection method and fast marching
algorithms.

Peter Smereka described a Monte-Carlo method for surface growth simulations. His approach
combined aspects of continuum mechanics and kinetic Monte-Carlo to achieve an efficient way to
approximate models arising in epitaxial growth. The methods give a more realistic account of
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Figure 2: Overapproximating Reachable Sets by Hamilton-Jacobi Projections. From [3].

fluctuations in island shape than deterministic methods while still maintaining efficiency in problems
where kinetic Monte-Carlo is impractically slow.

4 Fixed Grid / Moving Interface Methods

With this class of methods, a fixed computational grid is used over the global spatial domain that
typically does not align with any internal interfaces. The interfaces are then represented as codimen-
sion 1 surfaces moving relative to the fixed grid. An advantage of this approach is that expensive
grid generation and regridding is avoided each time step. Fast and accurate methods can often be
used on the fixd grid, at least away from the interface, and special methods are needed only near
the lower dimensional surface.

4.1 Some general issues

A number of issues arise that can each be addressed in many ways, leading to a multitude of methods
of this type. Some of these issues will be broadly described and then some some specific methods
and discussion points from the workshop will be mentioned.

What sort of global grid should be used and what is the underlying discretization

method away from the interfaces? For example, a finite difference method might be applied
to obtain pointwise approximations to the solution at discrete points as illustrated in Figure 3(a),
or a finite volume method might be applied over grid cells as indicated in Figure 3(b). In each
case an interface is also shown that cuts between grid points or through grid cells. A finite element
method might be used with elements consisting of the distinct cells shown in Figure 3(b) or of the
full rectangular cells with special basis functions that incorporate jump conditions at the interface.

How are the equations discretized near the interface? Typically a PDE must be solved
on each side with some coupling or jump conditions imposed at the interface. Depending on the
application, it may be the same equation on each side or two very different equations. If the equation
has the same form then it may be possible to difference across the interface with additional terms
included from the interface, or it may be ncessary to use one-sided approximations on each side with
appropriate coupling.
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Figure 3: (a) A finite difference grid (b) A finite volume grid.

How is the interface represented and moved? The interface might be specified by a set of
marker points that are densely distributed on the interface (with spacing comparable to the mesh
spacing) and the interface determined solely by these points. Alternatively, marker points may be
spaced more widely and a curve or surface fit through these points at each time to determine the
interface. For some problems it is better to have an entire spatial domain covered by marker points.
In any case the marker points must be moved in an appropriate manner each time step. Another
approach is to represent the interface location implicitly via a level set function. Then an evolution
equation for this function must be developed that is compatible with the desired interface motion,
and this equation coupled with the equations being solved.

4.2 Overview of work presented

A number of participants work on immersed boundary methods, an approach pioneered by Charles
Peskin originally for modeling blood flow in the heart that has since been applied to many other
problems, particularly in biofluid dynamics. See [5] for a recent review. In recent years a great deal
of progress has been made in applying this method to full three dimensional simulations in biofluid
dynamics. Figure 4 shows a sample computation of a swimming organaism, from [2].

Robert Dillon reported on recent work modeling the movement of eucaryotic flagella and cilia.
A three-dimensional model has been developed that represents the physiology of the axoneme in
a detailed manner and links the elastic properties of this structure to the fluid dynamics via the
immersed boundary method.

Gretar Tryggvason described recent work on simulating bubbly flow, where full three dimen-
sional simulations are being performed with hundreds of bubbles in some cases. Figure 5 shows a
portion of such a simulation. Recent work has focused on the use of methods for simulations of
multifluid flows to understand the dynamics of large disperse systems and on the development of
methods for systems where it is necessary to deal with complex physics, such as phase change in
boiling processes.

Ricardo Cortez reported on regularized Stokeslets, a method for Stokes flow with immersed
boundaries or obstacles that is based on smoothing a point force and explicitly calculating the result-
ing pressure and velocity. These can be superposed to determine the response to forces distributed
along an interface. The velocity expression can be inverted to find the forces that impose a given
velocity boundary condition. This allows the solution of flow problems past fixed obstacles as well
as flexible boundaries.

Anna-Karin Tornberg described some recent research on the accuracy that can be achieved
when using discrete delta functions distributed along an interface. This is an issue both in im-
mersed boundary methods, where a tensor product of one-dimensional delta approximations is fre-
quently used for a multidimensional delta function at a point, and in level set methods where a
one-dimensional delta function based on the distance function comes into play.

John Stockie gave a talk on the stability of fluid flows containing immersed elastic boundaries,
where the fluid-structure interaction is driven by periodic variations in the elastic properties of
the solid material. This leads to parametric resonances that can be studied with Floquet theory
and compared to direct numerical simulations of the fluid-structure interaction problem using the
immersed boundary method.
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Figure 4: An immersed boundary computation of the motion of a nematode, depicting the fluid
velocity field on the plane coinciding with the organism’s centerline. From [2].

Figure 5: Flow field near rising bubbles. From [6].
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Zhilin Li gave an overview talk on the immersed interface method and recent applications. This
approach is based on the immersed boundary method, but instead of using a discretized version of a
delta function or a dipole at an interface, the appropriate jump conditions for the partial differential
equations are built into the discretization of the equations directly. When this can be done it
typically results in sharper approximations of the the solution near the interface and perhaps higher
order of accuracy overall. This has been applied to a number of moving interface problems in fluid
dynamics, solidification, and elasticity. Some recent progress on finite element formulations was also
described.

Xudong Liu described joint work with Songming Hou on a numerical method for solving variable
coefficient elliptic equation with interfaces. In his talk a new 2nd order accurate numerical method
on non-body-fitting grids was given for solving the variable coefficient elliptic equation. His method
allowed the presence of interfaces where the variable coefficients, the source term, and hence the
solution itself and its derivatives may be discontinuous.

Deborah Sulsky presented work on the material-point method, an extension of the particle-
in-cell approach in fluid dynamics to problems in solid mechanics. Rather than tracking only the
interfaces, particles within the solid are tracked. By tracking particles and their stress tensors during
the deformation of the body, it is possible to represent large deformations without the problems of
mesh tangling that could arise in other Lagrangian descriptions. Information from the particles is
transferred to a background computational grid to solve the momentum equations and efficiently
compute interactions. The method can be used to solve problems where elastic bodies come in
contact, such as the problem shown in Figure 6.

Xiaolin Li discussed a front tracking approach to solving interface problems that is an integra-
tion of the original front tracking approach of Glimm and McBryan, the Eulerian level-set method
by Osher and Sethian, and the marching cube method for computer graphics by Lorenson and Cline.
The interface is described as a set of topologically connected marker points which follow the La-
grangian propagation based on the solution of Riemann problem (in fluid dynamics), and the use
of the Riemann solution along an oblique boundary in space-time to compute the interface fluxes,
making the method conservative.

Petri Fast talked about the use of moving overset grids to track interface dynamics. The key
idea is to use thin, body-fitted grids that move and deform with moving boundaries, while using
fixed Cartesian grids to cover most of the computational domain. This has the advantage of using a
grid that conforms to the interface locally but without the need for global regridding. Fast discussed
the Overture code developed at LLNL and applications to viscous fingering and to simulations of
elastic boundaries in a flow.
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Figure 6: Axisymmetric calculation of a pre-inflated airbag being impacted by a solid, cylindrical
probe, the deformation of the airbag as it is compressed and the subsequent rebound of the probe.
From [7].


