
Stochastic Processes in Evolutionary and Disease Genetics

Ellen Baake (Universität Bielefeld),
Don Dawson (Carleton University, Ottawa),

Warren Ewens (University of Pennsylvania, Philadelphia),
Bruce Rannala (University of Alberta, Edmonton)

August 7–12, 2004

1 General overview of the field and its developments

The broad subject area of the meeting was that of mathematical population genetics. It is concerned
with the analysis of the generation, nature, and maintenance of genetic variation within and between
biological populations. In its evolutionary aspects it describes the change in the genetic composition
of populations under the influence of various evolutionary forces, the most important of which are
mutation, selection, recombination, migration and random genetic drift. The latter is a consequence
of the fact that even without fitness differences, some individuals may, just by chance, have more
offspring than others, so that the offspring of one genotype may displace another one in a finite
population. Thus there is a significant element of randomness in genetic systems. From the point of
view of disease genetics, many diseases are caused by deleterious mutant genes, and the analysis of
the variation in a population for the disease and the normal gene is a significant component of this
area of research.

These two components of the theory have hitherto been somewhat separate. However, recent
trends in evolutionary genetics theory have brought them together, and one of the aims of this
meeting was to further this fusion of two important areas of population genetics.

Three new developments are shaping the area at present: a change in biological thinking, the
emergence of new data, and new mathematic(ian)s; these are, of course, all interrelated. Let us
explain this in some more detail.

The basic processes of evolution are known in principle, along with fundamental equations which
describe the effects of interactions between genes. Indeed, of the biological sciences, genetics is the
one with the most clearly defined mathematical models. The evolutionary behavior of a population
may be described by a stochastic model of gene frequency change, which is similar to corresponding
models in interacting particle systems. These models are well understood if mutation and drift are
the only forces present, or if selection is also present but acts on the genes at one or a small number
of gene loci. In particular, the pattern of genetic variation generated under these scenarios is quite
well known.

But for several decades, the area suffered from a lack of data to support - or reject - the hypotheses
about the evolutionary process and the genetic basis of various diseases. It was therefore often
criticized as ”l’art pour l’art”. This situation has suddenly been reversed due to the wealth of
molecular data flowing in during the past few years. The data come from the various genome
projects, and from studies aimed at the genetic basis of human diseases. The most valuable data
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derive from samples from a population (population sequence data), as opposed to single individuals.
For the first time in the history of the field, the theory is now lagging behind the data, and the lack
of analytical results translates into a lack of statistical methods for data analysis. The immediate
need of data evaluation methods is often satisfied by heuristic techniques of a preliminary nature.
But in the long run, there is a real need for methods which rest on a solid foundation with respect
to the underlying genetic stochastic processes.

Evolutionary genetics theory has thus moved in large part to an analysis of the corresponding
inverse problem, namely the reconstruction of evolutionary history from the observed patterns of
genetic variation. A particularly challenging problem is the detection of selection at the molecu-
lar level. Selective forces are not easy to analyze since their effects must be discerned against a
background of stochastic effects. Thus the analysis of the genetic data used to assess the effects
of selection presents particularly difficult statistical problems, which have no entirely satisfactory
answer even today.

The theoretical foundations of such analyses have been laid by the change in direction in pop-
ulation genetics from the classical prospective theory, considering the evolution of a population
forwards in time, to the retrospective theory, which considers the past history of the currently-
observed population. Mathematically, the backward view corresponds to the dual of the forward
process. Coalescent theory, the most frequently used area of the retrospective theory, is concerned
specifically with properties of the ancestry of a sample of genes as they trace back to a common
ancestor. If, for example, a disease mutation occurs only once, two or more disease genes in a
contemporary sample have an ancestry that traces back to a most recent common ancestor disease
gene.

Problems beyond those listed above are far more complex, have not been solved, and will re-
quire significant mathematical analysis for their resolution. This is particularly so if processes like
recombination are included, or if selection acts in a complicated way. These are exactly the prob-
lems encountered in disease genetics. Significant properties of the disease locus itself are in practice
often unknown, including its location - indeed a major aim of the theory is to attempt to locate
it. Inferences about its location are made by using genes at known marker loci. This leads to the
problem that the coalescent process of the disease gene is different from that of the markers, because
of recombination between disease and marker loci. The situation is further complicated by the fact
that diseases are often polygenic (and possibly under selection, which may be of complicated type
due to interaction between loci). Such diseases are called complex diseases, and their study forms
the center of current genetic investigation.

Another important development is the increasing interest of the mathematical community in
theoretical biology in general, and genetics in particular. Many professional probabilists have re-
cently moved into the area, with powerful modern methods at their fingertips, which has helped to
turn the mathematics of biological evolution into an active and growing field. This has resulted in a
productive interplay in which the problems of population biology have stimulated new mathematics
which in turn has provided powerful new analytical tools to address the emerging problems of bi-
ological evolution. In particular there have been important developments in the theory of Markov
processes stimulated by population biology - these include the introduction of important families
of interacting particle systems and the class of measure-valued Fleming-Viot processes including
the infinitely many types and infinitely many sites processes that now play an important role in
population genetics. A number of effective mathematical tools for the analysis of these systems have
been developed. Other mathematical tools will be described below, where appropriate.

After this general overview, let us now give a more detailed description of the various matters
described above, as discussed at the meeting. It had six main topics, each led by a key speaker:
Particle systems (Rick Durrett), The Coalescent (John Wakeley), Evolutionary population genetics
(John Gillespie), Branching processes (Peter Jagers), Human genetics (Robert Elston), and Haplo-
type blocks (Peter Donnelly). We will proceed from the more theoretical to the more applied, and
put special emphasis on the connections between the topics.
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2 Particle systems and coalescent process

A fundamental model class in population genetics is defined by the Moran model and its relatives
(and the closely related Wright-Fisher model with its variants). This is best described as an in-
teracting particle system with a fixed number of N individuals, each of which is assigned a type;
individuals reproduce and mutate independently, in discrete or continuous time. Every time an
individual reproduces, the offspring is assigned a type (according to a Markov chain that describes
mutation), and replaces another individual that is randomly chosen to die, thus keeping population
size constant. If N gets large, the system is described by a diffusion limit, known as the Fleming-Viot
measure-valued process. A very general particle representation that also remains valid in this limit
is provided by the so-called look-down process, which yields a joint representation of particles and
their genealogies [4].

¿From an evolutionary perspective, it is of particular interest to consider these particle systems
backward in time. Given a sample from the present population, one aims at finding its genealogy.
Here, a reproduction event forward in time corresponds to merging of individual lineages to a common
ancestor backward in time, that is, a coalescence event. Since its invention by Kingman [22], the
coalescence process has revolutionized population genetic thinking and data analysis.

This coalescent process is tractable and has been much studied in the case of neutral evolution,
that is, all types of individuals have the same reproduction rate (this is the ‘vanilla-flavoured’
coalescent). The emphasis of current research is on the extension of the underlying ideas and methods
to more complex systems involving selection, recombination, migration, and variable population size.

The mathematical description of the process becomes a great challenge when types have different
reproduction rates, that is, if selection is involved. This situation is particularly relevant for many
questions in molecular evolution, in particular, when one wants to infer the (most likely) evolutionary
history from a sample of individuals of a present-day population, and pinpoint selective events that
have happened in the past.

One major step has been the construction of Neuhauser and Krone [24, 26], which uses, forward
in time, two different reproduction events: definitive ones that will be used by every individual
regardless of its type, and potential ones that may only be used by ‘fit’ individuals. Backward in
time, this now induces a coalescing/branching structure, where the branching events correspond
to unresolved birth events, meaning that the ancestry here may only be decided in a second step,
when the types of the ancestors have been resolved. This process is rather complex, but some
explicit results may be obtained, with considerable technical effort, about the time to the most
recent common ancestor, for example.

The process becomes much simpler if, rather than full geneologies, only the ancestral lines of
single individuals are considered. This seems to have been overlooked for quite some time; some
explicit results (for two types) have recently appeared [13].

If more than two types are considered, explicit analytical results seem out of reach at present,
and even simulation of the backward coalescent is a challenge. The ‘first generation’ simulation
algorithms require sampling from the stationary distribution, which is, however, known only for the
unrealistic case of parent-independent mutation. Recently, however, some progress could be made
through exact sampling algorithms [10]. They do not require explicit knowledge of the stationary
distribution and are, therefore, more generally applicable.

A second important direction concerns the inclusion of spatial structure into the Moran model and
the resulting coalescent. A popular model here is the stepping-stone model, where individuals perform
a random walk on a one- or two-dimensional lattice (or torus, in a mathematical idealization).
Genetic structure may then be analyzed through the homozygosity as a function of the separation
of the colonies, and a genetic distance known as FST (fixation index of subpopulations relative to
the total population). Various limits, depending on the scaling of migration rate, subpopulation size
and number of subpopulations, must be considered. Recent results include the logarithmic growth of
FST with the number of colonies, the identification of parameter regimes where the stepping-stone
model is effectively panmictic, the structure of genealogies, the effect of migration on the mutation
patterns expected under the infinite-sites model, and the additional effect of selection [2, 5, 33, 32].

Another important line of development concerns the assumption of constant population size,
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which is a severe limitation. Traditionally, variable population size has been treated with the help of
the concept of effective population size; but a certain confusion has been associated with this notion.
Recently, this has been analyzed within the framework of the coalescent [30]: Having identified
conditions under which a model with stochastic demography converges to the coalescent with a
linear change in time scale, Sjodin et al. [30] have argued that this is a necessary condition for the
existence of a meaningful effective population size. Such a linear time scale change is obtained when
demographic fluctuations and coalescence events occur on different time scales.

3 Branching processes

Branching processes have a long history in population genetics theory. They were first used by
Wright to determine the fate (fixation or loss) of a rare mutant within a finite population (for
review, see [9, p. 27ff]); for this purpose, a single-type Galton-Watson process is relevant. Recently,
multi-type branching processes have been used in the context of mutation-selection models for large
populations [18]; here, as in the coalescent process, the view back in time has become important,
and earlier results by Jagers et al. [21] can now be used to investigate the relationship between the
forward and the backward process, and the present and ancestral distribution of types, respectively.

But coalescent and branching processes have more in common than the backward view along
single lines. Motivated by an earlier meeting on mathematical population genetics, Geiger [17] has
recently started to investigate an analogue to the coalescent for branching processes. If k individuals
are sampled uniformly at random from one generation of a large Galton-Watson population that has
persisted for n generations, then the shape of the subtrees spanned by the sampled vertices and the
root depends essentially on the tail of the offspring distribution: While in the finite variance case
the subtrees are asymptotically binary (as n → ∞), multiple branch-points do persist in the limit if
the variance of the offspring distribution is infinite.

Apart from concrete questions like this one, branching processes and particle systems can also
be subsumed under the general framework of particle systems and look-down processes mentioned
earlier [4].

4 Evolutionary genetics

An important topic in modern evolutionary genetics is the identification of selective events in the
history of a sample from the patterns of genetic variation observed in a present-day population.
This is often done by means of the so-called hitchhiking effect, namely the fact that the fixation of a
strongly selected beneficial mutation is accompanied by the increase of variants at other loci linked
with the beneficial mutation. This effect leaves numerous signatures of diversity in DNA sequences,
both within and between species, and affects the frequency spectrum of alleles, as well as linkage
disequilibria and codon bias. Depending on whether there has been a single (recent) hitchhiking
event or several repeated ones, the effects may be local or over a broader range. By comparing
theoretical predictions with actual sequence data, one can infer the rate and strength of beneficial
mutations in nature (among the many references available, see [23] for a recent example).

The hitchhiking effect has recently entered the level of large-scale analysis of SNP data. SNP’s,
‘single nucleotide polymorphisms’, are single nucleotide sites that are polymorphic in a population.
Much effort is devoted to the problem of detecting selective sweeps using large SNP data sets from
genomic scans. However, special care must be taken to overcome the ascertainment problem: Most
population genetical methods do not correctly accommodate the special discovery process used to
identify SNPs, which results in biased allele frequency distributions that must be corrected for [27].

Last but not least, our traditional understanding of the interplay of selection and genetic drift is
challenged by the pseudohithhiking model proposed by Gillespie [19]. Strongly selected substitutions
at one locus can induce stochastic dynamics that resemble genetic drift at a closely linked neutral
locus. The pseudohitchhiking model is a one-locus model that approximates these effects and can be
used to describe the major consequences of linked selection. The coalescent of the pseudohitchhiking
model has a random number of branches at each node, which leads to a frequency spectrum that



5 RECOMBINATION AND HAPLOTYPE BLOCKS 5

is different from that of the equilibrium neutral model. If genetic draft, the name given to these
induced stochastic effects, is a more important stochastic force than genetic drift, then a number of
paradoxes that have plagued population genetics disappear – but, at the same time, the estimation
procedures commonly employed in genetic analyses may be estimating parameters other than those
that are assumed.

Apart from its impact on population genetics, this approach is also having a significant impact on
mathematical research. Since the model relies on strongly selected mutants, the usual diffusion limit
and associated coalescence theory is not applicable. Durrett and Schweinsberg [6] have approximated
it with the help of random partitions created by a stick-breaking process, and Etheridge, Pfaffelhuber
and Wakolbinger have modelled the ancestry at the neutral locus by means of a structured coalescent
in a random background, and derived a corresponding sampling formula [8].

5 Recombination and haplotype blocks

Recombination is the formation of a chromosome passed on by a parent to an offspring by physical
exchange between the two parental chromosomes, so that the transmitted chromosome consists of
parts of each of the two parental chromosomes. There has been much recent speculation (based on
patterns of genetic variation), and occasionally experimental confirmation (via sperm typing), that
rates of recombination across the human genome vary on a fine scale. In particular, some regions of
the genome appear to contain recombination hotspots, where recombination occurs at rates several
times higher than the background average rate. Aside from inherent interest, an understanding
of this local variation is essential for the appropriate design and analysis of many studies aimed
at elucidating the genetic basis of common diseases or of human population histories. Standard
pedigree-based approaches do not have the fine scale (< 0.1 cM) resolution that is needed to address
this issue, because thousands of meioses are needed per recombination event. In contrast, samples
of DNA sequences from unrelated chromosomes in the population carry relevant information, as
there are a large number of meioses in the history of a sample of population data. But inference
from such data is extremely challenging in several respects: the underlying stochastic model (the
coalescent with recombination, a process that is practically intractable in the full-fledged version
required here), the statistical analysis, and the computational requirements.

Although there has been much recent interest in the development of full likelihood inference
methods for estimating local recombination rates from such data, they are not currently practicable
for data sets of the size being generated by modern experimental techniques. Fearnhead and Don-
nelly [11, 12] introduced and studied two approximate likelihood methods. The first, a marginal
likelihood, ignores some of the data. For larger sequences, they introduced a composite likelihood,
which approximates the model of interest by ignoring certain long-range dependencies. With a com-
bination of both methods, data from the lipoprotein lipase gene have been analyzed. A different
approach was pursued by Li and Stephens [25], who have related the patterns of genetic variation to
the underlying recombination process through their PAC model (product of approximate condition-
als). This method has already been applied to two problems: determining whether a recombination
hotspot identified in human males via sperm typing is also present in chimps; and quantifying the
frequency of recombination hotspots in genes in the human genome.

Closely related to the local variation of recombination rates is the concept of haplotype blocks. A
haplotype block is a region of a chromosome that tends to be passed on intact, without recombina-
tion, from parent to offspring. Partly as a result of this, the region of a chromosome corresponding
to a block tends to exhibit only a few haplotypes in the entire population. Identification of hap-
lotype blocks is a way of examining the extent of linkage disequilibrium in the genome, which
generally provides useful information for the planning of association studies in human genetics (see
the next Section). The aim is to identify a minimal subset of SNPs that can characterize the most
common haplotypes. No uniform definition of a haplotype block has yet been agreed upon; how-
ever, various operational definitions are in use, see, e.g., Daly et al. [3]. The Hap-Map project

(http://www.hapmap.org/index.html.en) describes haplotype blocks in the human genome. Partic-
ular interest is in the question whether there is similar haplotype block-structure between and within
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populations (Nigeria/Yoruba, Asia, African Americans, Europeans), see, e.g., [16].

6 Human genetics

In human genetics, finding genes underlying heritable traits has been a long-standing problem. In
recent years attention has shifted from ‘Mendelian’ disorders (that is, diseases caused by one defective
gene, such as Huntington’s disease or cystic fibrosis) to so-called complex traits, which are thought
to be influenced by multiple genes possibly interacting with each other and with environmental risk
factors. Many of these are common diseases, like diabetes.

As mentioned above, inference relies on the association with known marker genes, i.e., on linkage
disequilibrium; this association is complete if there is no recombination between disease and marker
locus, and decreases with distance (i.e. recombination rate) between them, thus giving a method of
estimating this distance.

On a finer scale, the coalescent-based methods of the previous Section are the methods of choice;
but for larger distances, pedigree-based methods are more appropriate. Here, one takes advantage
of one basic difference between general population genetics and human genetics, which uses family
(or pedigree) data rather than population data. Observations are made on a collection of markers
(usually SNP’s) transmitted from parents to affected (and sometimes unaffected) offspring, and as a
result an assessment can be made about which SNP’s the disease gene is close to. Since the locations
of the SNP’s are known, inferences can be made about the location of the disease gene. This area of
research is known as linkage analysis, is based on probability models and parametric inference, and
has a very long tradition; for review, see [28]. Over the years, each major development in parametric
statistical inference has been adopted by the developers of linkage analysis methods, and questions of
genetic analysis have prompted new statistical developments, from the work of Fisher [15] onwards.
In many ways, statistical inference and genetic analysis have developed in parallel over the last 100
years.

Currently, the field is moving from a situation in which marker typing was hard and expensive
to an era where this is relatively cheap, fast and easy, and the major cost of a study of a complex
trait is now in the family collection and trait phenotyping. Recent progress in sequence analysis
has made available the joint analysis of thousands and even hundreds of thousands of SNP’s, thus
making possible genome-wide screens for disease genes. Indeed, many researchers are already taking
advantage of this fact. The statistical challenge is now how to deal with the vastly larger number
of variables than observations: The enormous number of genotype configurations leads to a curse

of dimensionality. This situation is analogous to that in microarray expression analysis, where
expression levels of large numbers of genes are measured on a comparatively very small number of
individuals. In both cases, false positives are the main problem. This is now an area of intensive
statistical research; some recent approaches are discussed in [20].
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