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The study of dynamics in the plane has recently seen a surge in interest due to three
recent breakthroughs: the Sullivan-McMullen-Lyubich proof of the Feigenbaum Univer-
sality, the introduction by O. Schramm of SLE processes, and the work of S. Smirnov
on percolation. The fields of Holomorphic Dynamics, SLE, and Conformal Field Theory
(CFT) are now seen to be closely linked, the glue being provided by renormalization ar-
guments, conformal mappings, Brownian Motion, and other methods related to Conformal
Invariance. Indeed, there is an emerging field where these different dynamical processes,
as well as more classical areas in conformal mappings, are unified into a more general the-
ory. Though it is still early in the game, much progress has been made. The workshop has
brought together leading experts from the areas of SLE, Holomorphic Dynamics, Probabil-
ity Theory, and Conformal Mappings to present the latest developments in these areas and
search for further unification of the fields.

1 Holomorphic Dynamics of Rational Maps and Kleinian
Groups.

Hyperbolic geometry in 3 dimensions has experienced some very exciting progress re-
cently. The main recent achievement is the completion of the program of Minsky of proving
Thurston’s Ending Lamination Conjecture (ELC) by J. Brock, D. Canary, and Y. Minsky
[15, 3] (both in the incompressible-boundary case). The Conjecture had the same place in
the field as the MLC (Mandelbrot set is Locally Connected) Conjecture occupies in Holo-
morphic Dynamics. It is a rigidity statement which postulates that combinatorial invariants
(ending laminations) uniquely describe the geometry of the 3 manifolds. Another exciting
recent progress is the proof of the Tameness Conjecture by Agol [1] and Calegari & Gabai
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[4]. It implies, in particular, the Ahlfors’ Conjecture: If the limit set of a finitely generated
Kleinian group has no interior, then its area is zero.

These achievements are of particular interest to holomorphic dynamicists as both have
analogues in the dynamics of rational maps (see below) which remain open. This, of course,
is largely due to the fact that the geometric objects (hyperbolic 3-manifolds) provide an
additional set of tools to the study of the dynamics of Kleinian groups, which are at best
still being developed in the dynamics of rational maps. However, the intuition coming from
Kleinian groups has historically played a very important role in Holomorphic Dynamics.
Yair Minsky’s mini-course was a major event of the workshop. In his lectures Minsky has
outlined the proof of ELC, and tried to present the material in the form understandable to
complex analysts and dynamicists.

In dynamics of rational maps the counterpart of the Ahlfors’ Conjecture would state that
the Julia set of a rational map is either equal to the sphere (that is has non-empty interior),
or has area zero. Given parallels between the two fields, it is both exciting and unexpected
that the feeling in rational dynamics is now that this statement may be false.

A decade ago A. Douady has initiated a program to the end of constructing a quadratic
polynomial whose Julia set has positive measure. A. Chéritat [5] has recently been able to
push through a large part of this program, and gave a lecture on his results. The Douady’s
program consists in approximating the candidate quadratic polynomial by a sequence of
carefully chosen quadratics with parabolic periodic orbits.

Each step of approximation is done through two stages. If we write the rotation number
of a parabolic point using the digits of its continued fraction expansion as [a0, a1, . . . , an,∞],
the first stage consists of perturbing the parabolic point to a nearby Siegel disk with rotation
number

[a0, a1, . . . , an, very large N, 1, 1, 1, 1, . . .];

and the second stage with going back to a parabolic

[a0, a1, . . . , an, very large N, 1, 1, 1, 1, . . . , 1,∞].

Geometrically, each successive approximation should correspond to removing some thin
cusps from the filled Julia set – the hope is to bound the area of what is left from below.
The limit filled Julia set would then have a Cremer point. Such a filled Julia set would
coincide with its Julia set and have a positive measure.

Chéritat has shown that the second stage of an approximation step may be carried out
with an arbitrarily small loss of measure. Moreover, due to the work of X. Buff and A.
Chéritat, making the loss arbitrarily small at the first stage boils down to several conjectures
about cylinder renormalization. The latter was introduced by M. Yampolsky for proving the
hyperbolicity of renormalization of critical circle maps. Geometrically, this renormaliza-
tion boils down to successive blow-ups of the golden-mean Siegel Julia set. A convergence
result for this procedure has been established earlier by McMullen; what is required now is
a proof of the hyperbolic properties of the limiting fixed point.

The appearance of renormalization-type arguments is common for this class of prob-
lems: for example, Shishikura [19] used a parabolic renormalization procedure to demon-
strate the existence of quadratic Julia sets of Hausdorff Dimension 2 used in his proof of
HDim(∂M) = 2. The one-dimensional renormalization theory (see e.g. [13]) has seen
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a spectacular progress since the works of Douady, Hubbard, and Sullivan which related
it to Holomorphic Dynamics, culminating in a proof of the Feigenbaum Universality by
Sullivan, McMullen, and Lyubich [11, 14, 21]. Many important problems of scaling invari-
ance and universality still remain open, however, even in the setting of One-Dimensional
Dynamics.

In particular, a renormalization hyperbolicity result for Siegel disks which would imply
positive measure is still missing. However, a lot of numerical evidence exists in its favour,
and moreover, the recent unpublished work of Shishikura opens an approach for settling
this conjecture. In the light of the recent proof of Ahlfors’ Conjecture, the existence of
positive measure Julia sets would truly be surprising.

Figure 1: The Mandelbrot set near the Feigenbaum parameter: “hairy”, but locally con-
nected?

Of course, renormalization has been the main tool for the attack at the MLC Conjecture.
This counterpart of ELC in the dynamics of quadratic polynomials, and its higher degree
generalization, the Fatou Conjecture are arguably the main open problems in Holomorphic
Dynamics.

In the early 1990’s Yoccoz proved that MLC holds at all parameter values c in the
boundary of the Mandelbrot set which are at most finitely many times renormalizable. His
proof also showed that the corresponding Julia sets are also locally connected, provided
all periodic orbits are repelling. Several partial results exist for infinitely renormalizable
values of c, however, MLC is still not known in full generality. A particular example of an
infinitely-renormalizable quadratic for which MLC is still open is the celebrated Feigen-
baum quadratic polynomial. This particular map is infinitely renormalizable with the same
combinatorial type (a particular case of sattelite type.

M. Lyubich has spoken on a new progress on this front in his recent joint works with
J. Kahn [7, 8]. In these works the authors have introduced a new analytic tool for study
of Julia sets, which they call a Quasi-Additivity Law. This law is a statement about ex-
tremal lenghts of families of curves, in the vein of the classical Grötsch Inequality, which
is strongly motivated with the analogy with Kleinian groups. They use this law to prove that
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the Julia set J(f) of at most finitely renormalizable unicritical polynomial f : z 7→ zd + c
with all periodic points repelling is locally connected, thus providing a higher-degree ana-
logue of the results of Yoccoz. The theorem of Yoccoz was a major step towards MLC,
and with the new tool, further progress can be expected. In particular, it is likely that the
Quasi-Addittivity Law will lead to MLC for certain infinitely renormalizable values of c of
satellite type, thereby bringing the conjecture closer to completion.

As we have seen above, Cremer Julia sets are conjecturally capable of having extreme
measure-theoretical properties. Shishikura [19] has established earlier that these Julia sets
can have Hdim = 2; and it is well-known that they are bad topologically, in particular, never
locally connected. All the more surprising that the recent work of I. Binder, M. Braverman,
and M. Yampolsky shows that these sets are algorithmically computable. That is, an al-
gorithm may be produced to, given the value of the parameter c, draw such Julia sets on
the computer screen with an arbitrary magnification. This nothwithstanding the fact that
informative pictures of Cremer Julia sets have never been produced. M. Braverman re-
ported on this work, as well as on his earlier result with M. Yampolsky demonstrating the
existence of non-computable Julia sets in the quadratic family. These results led to a lively
discussion, as a number of natural questions follow. Computability results for limit sets of
Kleinian groups are not yet known. And in the quadratic case, the size of the set of values
c for which the Julia set is uncomputable is interesting – and in particular, whether some
such values are actually computable reals themselves.

2 Random shapes and conformal invariance

2.1 SLE

One of the central topics of the workshop was Stochastic (or Schramm) Loewner evolution
(SLE) (see [18, 17]). It is a process defined by using one-dimensional Brownian motion
as the driving parameter in Loewner’s differential equation. There is one free parameter
in SLE, which is the speed of the Brownian driving process. Thus the whole family of
conformally invariant processes, SLEκ, is defined. Introduction to the properties of SLE
and the general overview of the subject was given by Oded Schramm, the inventor of SLE
in the first talk of his three-lecture mini-course.

The SLE paths are conjectured to be the scaling limits of various natural random pro-
cesses in the plane, such as the interface of critical percolation, the Ising model or the
self avoiding walk. Some such statements have been recently proved by several authors:
Smirnov [20] for Critical Percolation on the triangular lattice (κ = 6); Lawler, Schramm,
and Werner [10] for the Uniform Spanning Tree (κ = 8), and Loop Erased Random Walk
(κ = 2). Quite a few other statements of this sort remain unproven. The direction of the
research is currently extremely active. Two of the talks of the mini-course series by Oded
Schramm were devoted to the problem. First, he discussed the so-called harmonic explorer
process, which, as proven by the speaker and Scott Sheffield, converges to SLE4. Using the
result, they establish that the level lines of the discrete Gaussian Free Field also converge to
SLE4. It was also explained how one can find SLEκ for κ 6= 4 in the Gaussian Free Field.

Although the conjectures about the value of κ for scaling limits of different lattice mod-
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els are widely believed, it is not clear in a few cases which particular form of the SLE is
obtained in the limit – there can be different parameterizations, boundary conditions, etc.
To understand this situation in a few specific cases, Monte Carlo simulations of the two
dimensional self-avoiding walk (SAW) were discussed at the talk by T. Kennedy entitled
Monte Carlo comparisons of the self-avoiding walk and SLE. This simulations have given
support to the conjecture that the scaling limit of the SAW is SLE with parameter 8/3.
These past simulations treated the SAW and SLE as subsets of the plane, i.e., the parame-
terization of the curves was ignored. In this talk the speaker considered the SAW and SLE
as parameterized curves and compared things that depend on the parameterization.

Another very active area of research is understanding of the fine geometric properties
of the SLE. It is known that for κ ≤ 4 SLE is almost surely a simple path (Rohde and
Schramm [17]), for κ > 4 SLE is not a simple path almost surely, but is still generated
by a curve called trace(Rohde and Schramm for κ 6= 8, Lawler, Schramm, and Werner for
κ = 8). The estimate for the upper bound, 1 + κ/8 on the Hausdorff dimension of SLE
trace was established by S. Rohde and O. Schramm. It was shown by V. Beffara that the
Hausdorff dimension of the SLEκ-trace is actually equal to 1+κ/8. On the other hand, the
conjecture that the dimension of the boundary of the hull when κ > 4 is equal to 1 + 2/κ
still remains open.

Normalized Schwarzian derivatives of SLE maps and other geometric properties of the
SLE boundary were discussed by Nam-Gyu Kang in his talk Boundary Behavior of SLE.
He showed that the normalized (pre-)Schwarzian derivatives of SLE maps with higher or-
der terms are continuous square integrable martingales with second moment obeying the
Duplantier duality. Also he showed that they have correlations that decay exponentially in
the hyperbolic distance. The BMO space, or the space of functions of bounded mean os-
cillation, is the appropriate substitute for L∞ in many results concerning singular integrals.
This notion can be modified in the setting of continuous martingales. The normalized (pre-
)Schwarzian derivatives of SLE maps with negligible terms are BMO martingales. As a
corollary, they satisfy the John-Nirenberg inequality. This result may lead to an estimate
on the lower bound for the Hausdorff dimension of the boundary of SLE hull. The results
obtained by Kang allows to make a formal argument for the lower bound.

Stas Smirnov in his talk entitled Conformally invariant fractals discussed some recent
progress and techniques in the study of the fine geometric properties of the SLE. In particu-
lar, he explained the multifractal analysis of harmonic measure on SLE. In a joint work with
D. Beliaev the speaker derived a formula for one of the multifractal spectra, the so-called
integral means spectrum, of the SLE. The spectrum reflects the behavior of the Riemann
map for SLE near the boundary. Using these calculations one can see that the fine behavior
of harmonic measure of the boundary, predicted by B. Duplantier, is very plausible.

Many geometric properties of the SLE were predicted by theoretical physicists (for
example Cardy, Duplantier).

Overview of the physics point of view on SLE (see [6]) was given in the talk by
Bertrand Duplantier entitled Conformal fractal geometry and Quantum Gravity. More
specifically, he discussed the fractal geometry of conformally-invariant (CI) scaling curves.
He focused on deriving critical exponents associated with interacting random paths, by ex-
ploiting an underlying quantum gravity (QG) structure, which uses KPZ maps relating
exponents in the plane to those on a random lattice, i.e., in a fluctuating metric. This
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was accomplished within the framework of conformal field theory (CFT), with applica-
tions to well-recognized critical models, like O(N) and Potts models, and to the Stochastic
Löwner Evolution (SLE). Two fundamental ingredients of the QG construction are relating
bulk and Dirichlet boundary exponents, and establishing additivity rules for QG boundary
conformal dimensions associated with mutually-avoiding random sets. These rules are es-
tablished from the general structure of correlation functions of arbitrary interacting random
sets on a random lattice, as derived from random matrix theory. The physics derivation of
the multifractal spectra was also discussed.

An essential role in the derivation is played by the Quantum Gravity, i.e. the the-
ory of random two-dimensional Riemann surfaces, and especially by Knizhnik-Polyakov-
Zamolodchikov (KPZ) equation [9]. It would be extremely important both for SLE theory
and for String Theory to obtain the rigorous mathematical justification of the Quantum
Gravity and KPZ.

The talk of Angel was devoted to the construction of the rigorous theory of discrete
random Riemann surfaces.

One can also consider the talk of J. Dubedat entitled Commutation of SLEs related to
this program. In the talk he discusses questions pertaining to the definition of several SLEs
in a domain (i.e. several random curves). In particular, the speaker derived infinitesimal
commutation conditions, discussed some solutions, and show how to lift these infinitesimal
relations to global relations in simple cases. All these relations agree to what is predicted
by the means of Quantum Gravity, and they give some insights on how Quantum Gravity
can be defined using SLE.

The workshop finished with an informal talk by Peter Jones. In the talk he presented
his new result related to the welding problem for the SLE. Peter Jones proposed a family
of (random) homeomorphisms of the circle which are conjectured to be the welding home-
omorphisms of SLE. The family of the homeomorphisms is related to the Gaussian Free
Field on the unit circle. He also discussed the connection of this new family with some
previous conjectures.

2.2 Other random shapes

Other random shapes were discussed during the workshop.
One of the most important questions in the Geometric function theory is understand-

ing of the extremal behavior of the multifractal spectra. The answer to the question would
incorporate the Makarov’s and Jones-Wolff’s dimension theorem, affirm the famous Bren-
nan’s conjecture, and answer many classical questions related to the coefficient growth
problem for the univalent functions. It is known that the extremal behavior of the spectra is
the same for general and for the simply-connected domains, and that this behavior “almost”
occur on Julia sets. Nice upper estimates on the spectra were obtained by H. Hedenmalm
and S. Shimorin using the technique of Bergman spaces.

D. Beliaev in the joint work with S. Smirnov proposed a new class of random fractals,
so-called Random Snowflakes. It is proven that the almost extremal behavior of the integral
means spectrum also occur for the class of objects. Because of the stochastic nature of
the random snowflakes, the explicit calculations of the multifractal spectra for them are
much easier to control. Using the random snowflakes new rigorous lower estimates on
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multifractal spectra are obtained. The estimates are now extremely close to the conjectured
values.

A generalization of the simple random walk and SLE to two- and higher-dimensional
processes is another active area of research. One of such analogies was given by Rick
Kenyon in the talk entitled Simple random surfaces. The talk was devoted to the speaker’s
joint work in progress with David Brydges and Jessica Young. They consider a natural
model of random immersed surfaces in a (finite or infinite) 2-complex. This is in many
ways a natural generalization of the simple random walk. Although little is known about
this model, certain expectations can be computed using the Green’s function on 1-forms.

While SLE provide at least conjectural limit for various two dimensional lattice model,
nothing like this exists in higher dimensions. G. Slade in the talk entitled Scaling lim-
its and super-Brownian motion explained how critical percolation and related models can
be described by super-Brownian motion, in high spatial dimensions. The talk provided a
survey of several results and gave all the necessary background on super-Brownian motion.

3 Complex Analysis

Holomorphic Dynamics, the analytic theory of Kleinian groups, and SLE have their roots
in classical complex analysis and geometric function theory. In this section we report on
some developments and talks that are dealing with fundamental questions from complex
analysis. They are not necessarily directly related to the topics described above, but in
most cases the relevance to the central theme of the workshop is very obvious.

Joan Lind discussed how properties of the driving term in the Loewner equation affect
the geometry of solutions to the Loewner equation. Since the Schramm-Loewner evolution
is the Loewner equation driven by one-dimensional Brownian motion, this can be viewed
as the ”deterministic” counterpart to the path properties of SLE. A natural space of driving
terms is the space of Hoelder continuous functions with exponent 1/2, with the Hoelder
norm c replacing the speed κ in SLE. It was shown that for c < 4 the Loewner equation
always generates simple curves whereas for c ≥ 4 selfintersections and even topologically
wild compacts can occur. This phase transition at c = 4 is the deterministic counterpart to
the phase transition in SLE at κ = 4 from simple to non-simple curves. In her talk she also
illustrated by means of examples that there is no simple other phase transition that would
correspond to the transition at κ = 8 from ”swallowing curves” to ”space filling” curves.

Another topic very closely related to the Loewner equation was discussed by Don Mar-
shall. He (and independently Rainer Kühnau) discovered in the early 1980’s an elementary
algorithm for computing conformal maps (see [12]). The algorithm is fast and accurate,
but convergence was not known. Given points z0, , zn in the plane, the algorithm computes
an explicit conformal map of the unit disk onto a region bounded by a smooth curve γ
with z0, , zn ∈ γ. Marshall reported on joint work with S. Rohde, proving convergence for
Jordan regions in the sense of uniformly close boundaries, and gave corresponding uniform
estimates on the closed disc for the mapping functions. Improved estimates are obtained if
the data points lie on a smooth or a K-quasicircle. The algorithm was discovered as an ap-
proximate method for conformal welding, however it can also be viewed as a discretization
of the Loewner differential equation.
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A central topic of complex analysis is quasiconformal mappings. Quasiconformal map-
pings appear naturally in the deformation theory of Riemann surfaces and are an indispen-
sible tool in Kleinian groups. Since their introduction to complex dynamics in the proof
of Sullivan’s no wandering domain theorem, they have become one of the most powerful
tools in dynamics. They are the main tool in the work of Marshall-Rohde and of Lind, as
well as a cornerstone of the work of Peter Jones described above. Kari Astala and Daniel
Meyer both talked about exciting developments related to the theory of quasiconformal
maps. Astala described his deep joint work with Päivärinta [2], solving the Calderon’s
inverse conductivity problem: In tomography, or inverse problems in general, one aims
to determine the structure of an object from indirect observations. Such methods have a
variety of immediate applications, ranging e.g. from medical imaging to different indus-
trial processes. A typical example is to determine the (conductivity) structure of a body
from (electrical) measurements on the boundary. From the mathematical point of view this
question has a clear and precise formulation, asking if the Dirichlet-to-Neumann boundary
data determines the coefficients of a differential operator in the interior of a domain. In
his talk, Astala discussed recent joint work with L. Päivärinta, solving the problem in two
dimensions. Complex analysis, quasiconformal methods and, in particular, the function
theoretic view to elliptic PDE’s developed by Bers, are unavoidable for the solution in its
full generality.

Self-similar sets in two dimensions often can be quasisymmetrically (quasiconformally)
mapped to standard sets: For instance, limit sets of quasifuchsian groups and Julia sets of
hyperbolic rational maps are quasiconformal circles (if they are topological circles). The
powerful tools to prove such statements, an explicit geometric characterization of quasicir-
cles (the Ahlfors three-point condition) and the λ− Lemma about holomorphic motions,
are not available in dimensions higher than two. Already in three dimensions, there are
self-similar surfaces (such as the product of the van koch snowflake with the real line,
known as ”Rickman’s rug”) that cannot be quasisymmetrically parametrized by the plane.
Daniel Meyer discussed quasisymmetric parametrizations of fractal surfaces in three di-
mensions. A Quasisphere is the image of the sphere under a quasiconformal map (of R

3).
The largest known class of quasispheres are called snowballs, they are topologically 2-
dimensional analogues of the snowflake curve. For those surfaces the qc-embedding can
be constructed explicitly. Many questions about the mapping behavior can be answered, at
least numerically. For instance, Meyer showed that the ”harmonic measure on a snowball”,
i.e. the image of Lebesgue measure of the sphere under the quasisymmetric parametriza-
tion, has dimension strictly smaller than the dimension of the snowball. This can be viewed
as an analog of the celebrated Makarov theorem concerning harmonic measure of simply
connected planar domains, and its higher dimensional generalization by Bourgain. The
question if the dimension is greater than two (reminiscent of Wolff’s example) was raised,
at this point a positive answer is suggested by numerical results.

Nick Makarov reported on joint work with H. Hedenmalm on the quantum Hele-Shaw
flow. The Hele-Shaw flow is closely related to the Loewner differential equation and de-
scribes the geometry of a growing ”cell”. It is used to model the interface between two
fluids of different viscosity (such as water and oil). It appears as the formal limit of diffu-
sion limited aggregation DLA.

Michel Zinsmeister talked about joint work with S.Rohde. The physicists Hastings
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and Levitov proposed a stochastic model for Laplacian growth, based on compositions of
”random” conformal maps, depending on a parameter 0 ≤ α ≤ 2. For α = 2, the process
is a version of DLA. SLE can also be viewed as (the scaling limit of) random composi-
tions of conformal maps, but the difference is that in SLE the growth is restricted to a
specified boundary point, whereas in the Hastings-Levitov model HL(α) the growth is uni-
formly distributed with respect to harmonic measure. Incidentally, the special case HL(0)
was considered in the late 1980’s by Richard Rochberg and his son and called ”stochastic
Loewner evolution”. As no result was published, the name did not stick. Indeed, the cele-
brated work of Hastings and Levitov appeared about ten years after Rochberg’s unpublished
work. Zinsmeister proved some rigorous results about HL(α). In particular, he proved that
the scaling limit for α = 0 exists, he described this limit in terms of the Loewner equation,
and proved that the Hausdorff dimension of the random set is 1 almost surely. For α near
two, he explained how the Carleson-Makarov formalism can be adopted to the current set-
ting to obtain nontrivial lower bounds for the dimension of the cluster. He also discussed
the formal limit of the model and its relation to the Hele-Shaw equation.

A. Poltoratski described joint work with N. Makarov. He generalized the definition of
Toeplitz operators to larger spaces of analytic functions. After that he studied the problem
of injectivity of Toeplitz operators in these spaces. It turns out that many problems of clas-
sical analysis, such as distributions of zeros of entire functions (Levinson), completeness of
bases of reproducing kernels (Beurling-Malliavin), spectral problems for the Schroedinger
and string operators (Krein, Marchenko, ...), naturally become a part of the picture. One
can use the Toeplitz approach together with some of the recent advances in complex and
harmonic analysis to give shorter proves and further generalizations to the classical results.
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[2] K. Astala, L. Päivärinta, M. Lassas, Calderón’s inverse problem for anisotropic conduc-
tivity in the plane. Comm. Partial Differential Equations 30 (2005), no. 1-3, 207–224.

[3] J. Brock, D. Canary, Y.Minsky. The classification of Kleinian surface groups, II.
Manuscript in preparation.

[4] D. Calegari, D. Gabai. Shrinkwrapping and the taming of hyperbolic 3-manifolds, e-
print math.GT/0407161.
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