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Abstract. This is the final report on the 5-day workshop on Moment maps in various
geometries, held at the BIRS from May 21 to May 26.

1. Background

Symplectic geometry was invented by Hamilton in the early nineteenth century, as a
mathematical framework for both classical mechanics and geometrical optics. Physical
states in both settings are described by points in an appropriate phase space (the space
of coordinates and momenta). Hamilton’s equations associate to any energy function
(“Hamiltonian”) on the phase space a dynamical system. Hamilton realized that his
equations are invariant under a very large group of symmetries, called canonical trans-
formations or, in modern terminology, symplectomorphisms. A symplectic manifold is a
space which is locally modeled by the phase spaces considered by Hamilton. In math-
ematical terms, a symplectic manifold is a manifold M with a closed, non-degenerate
2-form ω. A smooth function H ∈ C∞(M) defines a vector field XH on M by Hamilton’s
equations,

dH = −ω(XH , ·).

New techniques have transformed symplectic geometry into a deep and powerful subject
of pure mathematics. One concept of symplectic geometry that has proved particularly
useful in many areas of mathematics is the notion of a moment map. To recall the
original setting for this notion, let M be a symplectic manifold, and G a Lie group
acting on M by symplectomorphisms. A moment map for this action is an equivariant
map Φ: M → g∗ with values in the dual of the Lie algebra, with the property that the
infinitesimal generators of the action, corresponding to Lie algebra elements ξ ∈ g, are
the Hamiltonian vector fields X〈Φ,ξ〉. The linear momentum and angular momentum from
classical mechanics may be viewed as moment maps, corresponding to translational and
rotational symmetries, respectively.

In the past thirty years, tremendous progress has been made in the study of moment
maps and related areas: symplectic quotients, geometric quantization, localization phe-
nomena, and toric varieties. This has had applications to the study of moduli spaces,
representation theory, special metrics, and symplectic topology.

In recent years, moment maps have been generalized in many different directions and
have led to advances in geometries related to symplectic geometry. These include Pois-
son geometry, Kähler geometry, hyper-Kähler geometry, contact geometry, and Sasakian
geometry. While some headway has been made in understanding moment maps in these
fields, there remain many open questions. One of the goals of this workshop was to
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explore phenomena that are well understood in symplectic geometry but are not as well
understood in these new settings, and to seek potential applications of this new direc-
tion of research. For this purpose we brought together experts from these fields, thus
generating a fruitful exchange of ideas, which also enabled us to formulate and discuss
interesting open problems.

2. Objectives of the workshop

Let us review some of the achievements in and applications of equivariant symplectic
geometry in the past few years. We will then indicate some of the open questions that
were our motivation for holding the workshop.

We first recall some terminology. Let a Lie group G act on a symplectic manifold
(M,ω). As we already recalled, a moment map is an equivariant map Φ: M → g∗ to
the dual of the Lie algebra such that the G action is generated by the Hamiltonian
vector fields of the components of Φ. The symplectic quotient is Φ−1(0)/G. Localization
formulas express global invariants of M in terms of local data at the fixed point set of an
abelian subgroup of G. When G is a torus of half the dimension of M and M is compact,
(M,ω, Φ) is a toric manifold.

A contact structure is an odd dimensional counterpart of a symplectic structure. Sim-
ilarly, a Sasakian structure is an odd dimensional counterpart of a Kähler structure, and
a 3-Sasakian structure is an odd dimensional counterpart of a hyper-Kähler structure.
The goal of the workshop was to obtain a better understanding of moment maps and
their applications in these other geometries.

The development of equivariant symplectic geometry over the last two decades was
greatly motivated by attempts to understand the topology of moduli spaces of stable
bundles over Riemann surfaces. The symplectic and Morse theoretic approach to the
problem was pioneered by Atiyah and Bott in 1983, when they produced a set of gener-
ators for the cohomology ring of the moduli space M(n, d) of semi-stable rank n, degree
d holomorphic vector bundles over a Riemann surface, for n and d co-prime.

Given a Hamiltonian group action of a Lie group G on a compact symplectic manifold
M , with moment map Φ: M → g∗ such that 0 is a regular value for Φ, there is a
natural map from the equivariant cohomology H ∗

G(M) to the cohomology of the reduced
space, H∗(Φ−1(0)/G), obtained as the restriction H∗

G(M) → H∗
G(Φ−1(0)) followed by

the isomorphism H∗
G(Φ−1(0)) → H∗(Φ−1(0)/G). Kirwan refined the Morse-theoretic

methods of Atiyah and Bott to prove that this map, κ : H ∗
G(M) → H∗(Φ−1(0)/G), is

surjective. This enables one to compute Betti numbers of symplectic quotients Φ−1(0)/G.
The non-abelian localization theorem of Jeffrey and Kirwan gives an explicit formula for
the kernel of κ. Jeffrey and Kirwan used their version of the non-abelian localization
formula, and a description of M(n, d) as a finite-dimensional quotient of a so-called
“extended moduli space”, to obtain a mathematically rigorous proof of Witten’s formulas
for the intersection pairings in the cohomology of M(n, d).

In 1998, Alekseev, Malkin and Meinrenken introduced quasi-Hamiltonian spaces and
Lie group valued moment maps. They expressed the moduli space of flat G-connections



as a quasi-Hamiltonian quotient of a product G2 × · · · × G2, and were thus able to re-
cover Witten’s formulas for intersection numbers in the cohomology of moduli spaces.
In the moduli space case, quasi-Hamiltonian spaces enable one to avoid the use of ex-
tended moduli spaces; more generally, quasi-Hamiltonian spaces enlarge the collection of
situations to which similar techniques can be applied.

In 2002, Bott, Tolman and Weitsman proved surjectivity of Kirwan’s map κ : H ∗
LG(M) →

H∗(Φ−1(0)/G) in the case where LG is the loop group of a compact Lie group G, M is
a Banach manifold and Φ a proper moment map. As a consequence one obtains that,
while Kirwan’s map is not surjective for quasi-Hamiltonian spaces, its image together
with finitely many cohomology classes generates the cohomology ring of the quotient.
This work is related to Tolman and Weitsman’s earlier work (1998) determining the
kernel of the Kirwan map κ and thereby the structure of the cohomology ring of the
symplectic quotient H∗(Φ−1(0)/G) when G is a finite-dimensional Lie group.

In 2003, Xu introduced quasi-symplectic groupoids. This approach enables him to
unify into a single framework various moment map theories, including ordinary symplectic
moment maps and group valued moment maps.

Moment maps and symplectic quotients can be defined in other categories, such as
contact or hyper-Kähler. However, the topology of quotients in these categories remains
elusive. As noted in a recent book by Ginzburg, Guillemin, and Karshon, phenomena
such as Kirwan surjectivity and localization are often due to the underlying moment map
and group action more than to the geometry. However, we do not yet understand these
phenomena for contact or hyper-Kähler manifolds. For example, Kirwan surjectivity fails
for contact structures, and it is not yet clear why or how. Surjectivity is conjectured for
hyper-Kähler quotients, and known to be true for many classes of examples, but a general
theorem has not been proved. An interesting example of a hyper-Kähler quotient is the
moduli space of rank 2 parabolic Higgs bundles. Hausel and Thaddeus have produced
generators and relations for the cohomology ring of this space. This work is analogous to
the work of Jeffrey and Kirwan on the moduli space M(n, d). Another usage of hyper-
Kähler quotients is that they provide examples of Einstein manifolds.

In 1988 Delzant classified symplectic toric manifolds. These turn out to be symplectic
quotients of C

N . In particular, they inherit a complex structure from C
N , making them

into smooth Kähler toric varieties. The images of their moment maps are simple rational
polytopes satisfying certain integrality conditions. The polytope determines the toric
manifold together with its symplectic form and torus actions. This theorem of Delzant,
while simple in retrospect, inspired a lot of interesting mathematics. For example, the
removal of the integrality condition on simple rational polytopes leads to orbifold sin-
gularities. Symplectic toric orbifolds were classified in 1997 by Lerman and Tolman in
terms of simple rational polytopes with positive integers attached to facets. Delzant’s
work inspired Banyaga and Molino to initiate the study of contact toric manifolds. The
classification of contact toric manifolds has been recently completed by Lerman. Lerman
used this classification to prove conjectures of Toth and Zelditch on toric integrable ge-
odesic flows. Most, but not all, of the contact toric manifolds turn out to be Sasakian.
These contact toric manifolds are classified by rational polyhedral cones.



Yet another direction inspired by Delzant’s work is that of hyper-Kähler toric mani-
folds. These manifolds were first studied by Bielawski and Dancer, who defined them to
be hyper-Kähler quotients of a flat quaternionic vector space. They obtained a formula
for the Betti numbers of these manifolds in terms of the corresponding arrangements of
hyperplanes. Bielawski also showed that these are all complete hyper-Kähler manifolds
with torus symmetries of maximal dimension. At the same time, Bielawski obtained a
classification of toric 3-Sasakian manifolds. In 2000, Konno computed the full cohomol-
ogy ring of a hyper-Kähler toric manifold in terms of the hyperplane arrangement. In a
later paper Konno computed the total Chern classes of these manifolds.

An important use of toric varieties, in both complex and symplectic geometry, is to
provides a large “hands-on” family of examples. In particular, they have been used in
searches for examples of special Kähler metrics.

A formula for the Kähler metric on a toric manifold, in terms of natural linear functions
on the polytope, was obtained by Guillemin in 1994. Guillemin’s work, in turn, inspired
Abreu, who studied other metrics on symplectic toric manifolds. For example, Abreu
obtained an explicit description of Bochner-Kähler metrics studied by Bryant. He also
obtained a combinatorial formula for their scalar curvature and used it to explicitly
construct Kähler metrics that are extremal in the sense of Calabi. One question that
remains open is to obtain explicit formulas for Kähler-Einstein metrics on CP

2 blown up
at three generic points; such metrics are only known to exist.

Recently a great deal of progress has been made by Boyer, Galicki and their collab-
orators in proving the existence of Sasakian-Einstein metrics on a large class of contact
manifolds. These metrics, however, are not known explicitly. One expects that an ana-
logue of Guillemin’s formula for Kähler metrics on symplectic toric manifolds to hold for
the Sasakian toric manifolds. These metrics are unlikely to be Einstein (this follows from
very recent work of Guillemin and Burns). However, it might be possible to construct
the Sasakian-Einstein metrics explicitly in terms of polyhedral cones.

There have been a variety of other applications of moment maps to the study of spe-
cial metrics. Futaki and Tian used localization to compute an invariant which provides
an obstruction to the existence of constant scalar curvature metrics in a fixed Kähler
class. For a toric variety, Mabuchi expressed this invariant in terms of the corresponding
polytope. Claude Lebrun and Michael Singer used moment maps to explore scalar-flat
Kähler metrics on ruled surfaces. “Extremal” metrics and “central” metrics are ones
for which certain elementary symmetric functions of the Ricci curvature are moment
maps for Killing fields. An outstanding conjecture is whether the existence of constant
scalar curvature metrics, or Kähler-Einstein metrics, is equivalent to certain notions of
“stability”. Results in this direction have been obtained by Tian (1997) and Tian-Chen
(as announced very recently). Another part of this conjecture was recently proved by
Donaldson for the special case of toric manifolds in complex dimension 2. In a different
direction, one can exhibit the scalar curvature as a moment map in an infinite dimen-
sional setting. This description is due to Mabuchi and was used by Donaldson. It is
analogous to Atiyah and Bott’s influential work on the Yang Mills functional.



One of our motivating goals was to determine which invariants developed in symplectic
geometry for understanding symplectic quotients (for example their cohomology ring)
carry over to the settings of hyper-Kähler, contact, Sasakian, and 3-Sasakian geometries.
In particular, we proposed to explore the question of surjectivity in contact and hyper-
Kähler geometry. Additionally, we aimed to study natural metrics on such quotients
and to use this to seek explicit descriptions for special metrics on Kähler and Sasakian
manifolds.

At the workshop, besides an under-representation of the odd dimensional structures
(contact, Sasakian, 3-Sasakian), the lectures and discussions addressed many aspects of
moment maps in a wide variety of contexts: Kähler geometry and special metrics, appli-
cations to symplectic topology, approaches through Lie groupoids, algebraic geometric,
several aspects of hyper-Kähler geometry, and more.

3. Activities of the workshop

The formal activities during the workshop included research talks, survey lectures on
special topics, and two problem sessions, aimed as forums for discussion. We believe that
this format has been highly successful and very stimulating. Below, we will summarize
some of the new developments and open questions presented at the workshop.

Moment maps and symplectomorphism groups

Let (M,ω) be a symplectic manifold, and Diffω(M) its group of symplectomorphisms.
The group Diffω(M) contains an important subgroup DiffHam(M) of Hamiltonian diffeo-
morphisms, i.e., the subgroup generated by time-one flows of Hamiltonian vector fields.
The topology of the groups DiffHam(M) and Diffω(M) has been the subject of intense
research over the past few years.

Miguel Abreu (Instituto Superior Tecnico, Lisbon) (joint work with Granja
and Kitchloo) reported on recent progress on the topology of Diff ω(M). The basic new
input goes back to Donaldson, and uses the moment map geometry for the action of
a symplectomorphism group on the space of compatible almost complex structures. In
conjunction with his earlier work [1] with McDuff, employing Gromov’s technique of
pseudo-holomorphic curves, this approach turns out to be particularly successful for a
class of 4-dimensional symplectic manifolds, including rational ruled surfaces.

Susan Tolman (University of Illinois at Urbana-Champaign) (joint work with
McDuff) described exciting new results on the fundamental group of symplectomorphism
groups of 4-dimensional symplectic toric varieties M , i.e., spaces carrying an effective
Hamiltonian action of a torus of dimension 1

2 dim M = 2. A well-known theorem of
Delzant (see e.g. [11]) states that such spaces are completely determined (up to equi-
variant symplectomorphism) by the convex polytope in R

2 given as their moment map
image. Moreover, one can specify exactly which polytopes arise as moment polytopes
of Delzant spaces. In their work, McDuff-Tolman discovered a relationship between the
topology of the symplectomorphism group of such spaces with the shape of the moment
polytope. This then leads to the following problem: Which Delzant polytopes admit a



linear function so that the center of mass of the polytope depends linearly on the facet
position? The solution to this problem allows them to prove that, for all but a few ex-
ceptional cases, the inclusion of the (compact) group of Kähler automorphism into the
group of symplectomorphism induces an isomorphism of fundamental groups.

Victor Guillemin (M.I.T.) (joint work with Sternberg) described a very different
aspect of symplectomorphism groups. He explained that for certain maps from finite di-
mensional manifolds into the group of symplectomorphisms, there is an intriguing notion
of a moment map even if there is no Hamiltonian group action! In his beautiful talk,
he motivated how this type of generalized moment map fits with Weinsteins symplectic
category [27]. This is the “category” with objects Obj symplectic manifolds M , and
morphisms Mor(M1,M2) the canonical relations, meaning, Lagrangian submanifolds of
M−

1 × M2. (Here “category” is put in quotes, since composition is not always defined.)
Concrete applications of this theory arise in micro-local analysis, in the study of families
of Fourier integral operators.

Moment maps and Poisson geometry

Poisson manifolds are manifolds M equipped with a Poisson bracket {·, ·} on the
algebra of smooth functions on M . Symplectic manifolds are special cases of Poisson
manifolds, where the bracket is given as

{f, g} = Xf (g).

A Poisson structure determines a singular foliation (in the sense of Sussmann) whose
leaves are symplectic manifolds.

Rui Fernandes (Instituto Superior Tecnico, Lisbon) (joint work with Crainic).
The Poisson bracket descends to a canonical Lie bracket on the space of 1-forms on any
Poisson manifold. In this way, the cotangent bundle T ∗M acquires the structure of a Lie
algebroid. A global object ‘integrating’ this Lie algebroid is a symplectic groupoid, i.e., a
groupoid

S ⇒ M,

where S carries a symplectic structure such that both groupoid maps are Poisson maps,
and such that the symplectic form is compatible with the groupoid multiplication. Not
all Poisson manifolds admit such a symplectic realization. The precise obstructions were
found a few years ago by Fernandes-Crainic [10]. In his BIRS lecture, Fernandes ex-
plained how this theory extends to the presence of Poisson group actions. He showed
that if M admits a symplectic realization S, then the induced action on S is Hamiltonian
with a canonical moment map. (This moment map satisfies a cocycle condition, and is a
coboundary if and only if the action on M admits a moment map.) Finally, Fernandez
explained in which sense ’symplectic realization’ commutes with ’reduction’.

Anton Alekseev (University of Geneva) (joint work with Meinrenken [3]). A
Poisson Lie group is a Lie group K with a Poisson structure for which the product map
is Poisson. This condition defines a Lie bracket on the dual of the Lie algebra k∗, which
integrates to the so-called dual Poisson Lie group K ∗. If K carries the zero Poisson



structure, then the dual Poisson Lie group is k∗ with the Kirillov Poisson structure. A
construction of Lu-Weinstein [23] shows that any compact Lie group K admits a canonical
Poisson Lie group structure. Later, Ginzburg-Weinstein [14] proved that, in this case,
the dual Poisson Lie group K∗ is Poisson diffeomorphic to k∗. However, no explicit form
of such a diffeomorphism was known. Alekseev explained that for the group K = U(n),
there is a distinguished and very concrete Ginzburg-Weinstein diffeomorphism

u(n)∗ → U(n)∗.

The proof of this result (which verifies a conjecture of Flaschka-Ratiu [13]) is based on
a study of Gelfand-Zeitlin systems on u(n)∗ and U(n)∗, respectively. As a corollary, one
obtains the following interesting result: There is a canonical diffeomorphism

γ : Herm(n) → Herm+(n)

from hermitian matrices to positive definite Hermitian matrices, with the property that
the eigenvalues of the kth principal submatrix of γ(A) are the exponentials of those of
the kth principal submatrix of A.

Groupoids and generalized moment maps

Markus Pflaum (Goethe Universität, Germany) Differentiable groupoids can
be interpreted as an interpolation between the notion of a manifold and the notion of a
Lie group. In this survey talk, Markus Pflaum gave a general introduction to the theory
of Lie groupoids (cf. [12]), and explained two major applications of this theory in sym-
plectic geometry. The first application deals with the integrability of Poisson manifolds
by symplectic groupoids (cf. Fernandes’ lecture). The second application is Moerdijk’s
approach [24] to orbifolds via proper étale Lie groupoids, which is an important ingredi-
ant in the work by Pflaum–Posthuma–Tang on the deformation quantization and index
theory for orbifolds.

Henrique Bursztyn (University of Toronto) presented a survey lecture on gen-
eralized moment maps (cf. [9]). He explained how, quite generally, any Poisson map
between Poisson manifolds defines an infinitesimal ’Lie algebroid’ action, and hence may
be viewed as a moment map. This includes ordinary k∗-valued moment maps, but also
Lu’s [22] non-linear moment maps taking values in a dual Poisson Lie group K ∗. To
include more exotic types of moment maps, one has to go beyond Poisson structures
to so-called twisted Dirac structures. In particular, any compact Lie group carries a
natural twisted Dirac structure, and the associated moment map theory defines the q-
hamiltonian spaces of Alekseev-Malkin-Meinrenken [2]. Among the advantages of this
approach is that the somewhat mysterious ’minimal degeneracy conditions’ become very
natural. Furthermore, the techniques work well also for non-compact Lie groups, as well
as for complex Lie groups.

Topology of symplectic quotients

Let (M,ω) be a symplectic manifold, equipped with a Hamiltonian action of a Lie
group K, with moment map Φ. A standard result of Marsden-Weinstein asserts that



under suitable assumptions, the symplectic quotient

M//G = Φ−1(0)/G

inherits a symplectic structure from the 2-form on M . It is a fundamental problem in
symplectic geometry to understand the geometry and topology of M//G in terms of the
equivariant geometry of the original space M .

Greg Landweber (University of Oregon) (joint work with Harada [18]). In this
survey lecture, Landweber gave a general overview of equivariant K-theory (the gener-
alized cohomology theory given as the Grothendieck ring of equivariant vector bundles)
in the context of Hamiltonian group actions. He explained the K-theory analog of the
Atiyah-Bott Lemma, which says that the K-theory analogue of the equivariant Euler
class is not a zero divisor. As a result, one obtains a K-theoretic analogue of the Kirwan
surjectivity theorem. As Landweber remarks, the torsion in K-theory is better behaved
than that in cohomology with integer coefficients. Essentially, K-theory eliminates just
enough torsion for Atiyah and Bott’s arguments to work.

Liviu Mare (University of Regina) (joint with Harada, Holm and Jeffrey [17]).
Classical results of Atiyah [6], Guillemin-Sternberg [15] and Kirwan [19] say that for any
compact torus T , and any Hamiltonian T -space with proper moment map, the image of
the moment map is a convex polyhedron, and the fibers of the moment map are con-
nected. Atiyah-Pressley [8] proved a similar convexity result for the maximal torus T̃ in
the standard extension of the based loop group ΩG for a compact, simply connected Lie
group. The main result presented in this lecture says that also in this case, the fibers of
the moment map are connected.

Nick Proudfoot (UT Austin) ([25]) Suppose G is a reductive algebraic group,
acting on a variety Q. Then the cotangent bundle T ∗Q has an algebraic symplectic
form, and the lifted G-action is Hamiltonian with an algebraic moment map. In his talk,
Proudfoot discussed the relation between the symplectic quotient of T ∗Q, with various
GIT (geometric invariant theory) quotients of Q.

Kähler geometry and special metrics

A Kähler manifold is a manifold with compatible complex and symplectic reduction.
The presence of a complex structure leads to stronger versions of some of the results of
moment map geometry.

Reyer Sjamaar (Cornell University) (joint work with V. Guillemin [16]). For
Hamiltonian torus actions on Kähler manifolds, Atiyah [6] had proved an important re-
finement of the convexity theorem: Not only is the image of the moment map a convex
polytope, but in fact the moment map image of any orbit closure is convex. (Note that
orbit closures need not be smooth submanifolds.) Brion generalized the result to actions
of a complex reductive group. The results presented in this lecture generalize this result
even further, to actions of a maximal solvable subgroup. Two interesting examples of
Borel-invariant subvarieties of a Hamiltonian Kähler G-manifold are: (1) Generalized



Schubert varieties (introduced by Bia lnicky-Birula, and (2) the co-called facial varieties.
That is, for each face of the moment polytope there is a certain variety whose moment
map image is the given face. (In general, there is no G-invariant subvariety with this
property.)

Vestislav Apostolov (UQAM) (joint work with Calderbank, Gauduchon, and Ton-
nesen-Friedman [5]). In recent work, Apostolov and his coauthors introduced the notion
of Hamiltonian 2-forms on Kähler manifolds. These are closed differential forms of bi-
degree (1, 1), defined as solutions of a certain linear differential equation on the Kähler
manifold. Hamiltonian 2-forms arise, for example, in the theory of Bochner-flat or con-
formally Einstein Kähler manifolds. Apostolov’s lecture was concerned with the local and
global classification of Hamiltonian 2-forms. As applications, he obtained new examples
of so-called orthotoric Kähler-Einstein manifolds.

Hyper-Kähler geometry

Hiroshi Konno (University of Tokyo) gave a survey lecture on the geometry and
topolgy of hyper-Kähler quotients. Examples for such quotients include: toric hyper-
Kähler manifolds, hyper-Kähler polygon spaces, the moduli space of torsion free sheaves
on C

2, and Nakajima quiver varieties.

Tamas Hausel (UT Austin) explained techniques for the computation of coho-
mology groups of hyper-Kähler manifolds, such as moduli space of instantons, quiver
varieties, representation varieties, and moduli of Higgs bundles. The techniques are: (i)
global analysis to determine the space of L2-harmonic forms (this approach is motivated
by Sen’s conjecture); (ii) circle-equivariant cohomology techniques (motivated by ideas
of Nekrasov-Shatashvili-Moore) and (iii) calculation of zeta functions by arithmetic har-
monic analysis (motivated by mirror symmetry).

Graeme Wilkin (Brown University) (joint work with Daskalopoulos and Went-
worth). In their 1982 paper, Atiyah and Bott [7] used Morse theory of the Yang-Mills
functional to study the topology of the moduli space of semistable vector bundles over
a Riemann surface. Wilkin described a similar technique for the moduli space of rank
2 semi-stable Higgs bundles. A complication in this example is that the moduli spaces
are singular, and hence the method has to refined to take the singularities into account.
A main result of this approach is a proof of Kirwan hyper-Kähler surjectivity for some
rank-2 Higgs bundles.

Moment maps and path integrals

Jonathan Weitsman (Santa Cruz). Quantum field theory is a source for many
exciting predictions in mathematics, mostly based however on non-rigorous ’functional
integral teachniques’. A prototype is Witten’s formulas [28] for intersection pairings,
based on path integral calculations for the Yang-Mills functional (norm square of the
moment map). In his talk, Weitsman indicated that in some case, these path integral
arguments can in fact be made rigorous. The main techique is a new construction of



measures on Banach manifolds associated to supersymmetric quantum field theories. As
examples, he discussed the Wess-Zumino-Novikov-Witten model for maps of Riemann
surfaces into compact Lie groups, as well as 3-dimensional gauge theory.

4. Open problems

In addition to the traditional lectures, we ran two problem sessions during our week
at Banff. These sessions were meant to foster discussion and to identify open problems
relevant to the workshop. Each session had a moderator who solicited the open problems
from the audience and transcribed them onto the board. We used a format very similar
to the problem sessions run at the workshops at the American Institute of Mathematics
[4]. We present here the record of the problems discussed at these sessions.

4.1. Compactification of cotangent bundles.

Problem 4.1 (N. Kitchloo). Let X be a compact manifold. Does the symplectic manifold
(T ∗X,ω) have a “natural” compactification (Y, ω̃) so that ω̃|T ∗X = ω?

Several commented that this question is a bit misleading, since T ∗X has infinite vol-
ume. We may modify it to ask about the disc bundle in T ∗X.

Nick Proudfoot pointed out that this is equivalent to asking whether or not X is a
Lagrangian submanifold of some compact symplectic manifold.

Eugene Lerman noted that this is true for X = S3, and is true more generally if X
is a Riemannian manifold with a periodic geodesic flow: then we may “cut” T ∗X with
respect to the energy functional. For example, we may do this when X = S3 or when
X is a Zoll surface. Of course, if not all periods are the same, one may end up with an
orbifold.

If X is a complex manifold, there is a natural S1 action on the fibres; however, this
action is not symplectic.

Allen Knutson commented about the case when X is a real algebraic variety. Then X
is the real locus of X(C), a complex algebraic variety. Let Y be a desingularization of
the closure of X(C) in projective space. Note that the singularities are all far from X.
Then X still sits inside as a Lagrangian submanifold.

Eugene Lerman pointed out that we may take Y to be Thom space of T ∗X or the one-
point compactification. If we view this as a symplectic stratified space, X is a Lagrangian
submanifold. This may not be “natural”.

Markus Pflaum mentioned that a similar question was addressed in [21].

4.2. Circle actions and the Hard Lefschetz Property. Let (M,ω) be a 2n-dimensional
compact symplectic manifold. Consider the map

L : H i(M) → H i+2(M)

c 7→ [ω] ∪ c.

We say that M satisfies the Hard Lefschetz property if

Lk : Hn−k(M) → Hn+k(M)

is an isomorphism for each 0 ≤ k ≤ n.



Participants note: All compact Kähler manifolds satisfy Hard Lefschetz. Specifically, if
M is a projective variety, then ω is the restriction of the Fubini-Study form on projective
space, so the Kähler class is the Poincaré dual of a hyperplane section. So L is the
intersection with this hyperplane section, and Hard Lefschetz holds.

Problem 4.2 (Y. Karshon). Suppose that (M,ω) admits a Hamiltonian S1 action with
isolated fixed points. Does (M,ω) satisfy the Hard Lefschetz property?

This problem has been around for at least 13-14 years; Yael isn’t sure of its origin.
Reyer Sjamaar comments that his student Yi Lin has worked on a related question.

Symplectic quotients often inherit nice properties from the original manifold: if the
original manifold is Kähler, so is its symlectic quotient. Yi Lin has shown that symplectic
quotients do not inherit the Hard Lefschetz property.

Nick Proudfoot asked why having an action should say anything about Hard Lefschetz.
Yael Karshon replied that having a Hamiltonian action with isolated fixed points is a very
strong assumption.

Reyer Sjamaar pointed out that, by a result of Susan Tolman and Jonathan Weitsman,
if the S1 action is in addition semi-free, then H∗(M) is isomorphic as a ring to H∗((P 1)k).
Under the isomorphism, [ω] maps to the class that is the product of Fubini-Study 2-forms
and takes the first Chern class to the first Chern class. Thus the Hard Lefschetz property
holds for these examples.

Nitu Kitchloo asked if it makes any difference if ω is integral. Then we may classify
ω by a map to CP∞. This gives a principle S1 bundle P over M , and Hard Lefschetz
is equivalent to H∗(P ) being a “very small” cohomology ring. This follows from the
Leray-Serre spectral sequence for the cohomology of the total space.

Sue Tolman points out that an easier version of this problem is as follows.

Problem 4.3 (S. Tolman). Are the Betti numbers of M unimodal? That is, do they
satisfy

β1 ≤ β3 ≤ · · · ≤ βhalf

and

β2 ≤ β4 ≤ · · · ≤ βhalf ?

4.3. Z2-graded (“super”) symplectic manifolds and reduction. Let M be a Z2-
graded symplectic manifold (for a reference, see [20]). That is, M is locally a manifold,
and over each open set U , we have a trivial bundle E = V × U . The “functions” on U
are C∞(U) ⊗ Λ∗(V ). The “odd” variables live in “flat” directions corresponding to V
(“ectoplasm has no topology!”). This is one way to define a super manifold. Extend this
to global structure by patching. A symplectic form in this setting is anti-symmetric
on the even (standard) directions and symmetric on the odd (V ) directions.

Consider the case where the space of odd variable seems NOT flat. Take M = pt.
Then we have only an odd vector space V and the “symplectic form” is a Euclidean
metric (inner product). For G ⊆ SO(V ) acting, we can define a moment map. It seems
that the “symplectic quotient” will not necessarily be a Z2-graded symplectic manifold
in the above sense.



Now consider the “quantization,” which is the space of functions on the manifold.
This is the spinor representation S(V ) of the Clifford algebra of V. Now restrict to the
G-invariant part to “reduce” the “quantization.”

Problem 4.4 (S. Wu). What is the classical analogue of “reduction” so that quantiza-
tion commutes with reduction? How may we generalize the concept of graded symplectic
manifolds to include such examples?

Problem 4.5 (S. Wu). Give examples of mixed odd/even cases.

A partial answer to this second question was given by Greg Landweber: coadjoint
orbits of Lie supergroups fall into this situation.

4.4. Symplectic reduction and GIT quotients. Let M be a Kähler manifold and
G a connected complex non-reductive affine algebraic group acting on M . Let K be the
maximal compact, but note that G 6= KC. K acts on M by isometries.

For example, G could be the group of n × n invertible upper triangular matrices, and
then we have K the compact torus (U(1))n.

Problem 4.6 (A. Knutson). Is there a notion of K-equivariant moment map

Φ : M → G/K

so that the symplectic quotient of M by K is homeomorphic to the GIT quotient of M
by G, when the GIT quotient makes sense?

Jonathan Weitsman commented that a reference might be M. Leingang’s thesis, which
contains a generalization of [2] to moment maps with values in symmetric spaces. How-
ever, this may be restricted to the case when G is reductive.

Allen Knutson continued that Problem 4.6 is perhaps most interesting when G is
unipotent, and in this case, K = 1. So in this case, can we view the GIT quotient of
M by G as a real symplectic submanifold of M? Topologically, the stable set is a G-
bundle, which topologically has a continuous section. In this case, topologically, the GIT
quotient is a submanifold. Here the GIT quotient is a quotient M s → M s/G, and since
G is contractible, this fibration has a continuous section.

Reyer Sjamaar pointed out that if G is the maximal unipotent of a reductive group G̃
which also acts on M , then this GIT quotient M//G exists, and there is a nice choice of
such a section M s → M s/G. Namely, take the inverse image φ−1(C), where C is a Weyl

chamber for G̃, and φ is a moment map for a compact real form of G̃.
In a later discussion, Allen Knutson and Gideon Maschler found a natural answer at

least to the question, “Is there a moment map?” The issue of existence of a quotient
needs further exploration.

4.5. Ricci curvature and proper moment maps. Let M be a complete Kähler man-
ifold equipped with a Hamiltonian isometric action of compact Lie group with compact
fixed point set and moment map bounded in some direction. Generally the moment map
is not proper.

Problem 4.7 (R. Bielawski). If we assume that Ricci curvature is non-negative (or even
zero), then is the moment map proper?



Example: (Nick Proudfoot) The circle S1 acting on C
2 = C(1) ⊕ C(−1) is a counterex-

ample to the problem without the assumption that the moment map is bounded in some
direction.
Example: The circle S1 acting on C

2 = C(1) ⊕C(0) is a counterexample to the problem
without the assumption that the fixed point set is compact.

Example: (Roger Bielawski) The statement fails without the Ricci curvature hypothesis:

Figure 1. S1-invariant complete Kähler metric on C with bounded mo-
ment map.

Symplectically, this is a disc. Since the volume of the manifold is finite, the moment is
map bounded and so not proper as a map to R. This can be done while making the
metric complete.

Some partial results: the answer is yes (even without the curvature assumption), if
the injectivity radius of M has a positive lower bound. The answer is also yes for circle
actions such that the fixed point set F is connected and the cohomology class of the
Kähler form restricted to F is a multiple of the first Chern class of F .

The motivation for this problem is the following. Given a real analytic compact Kähler
manifold M , there exists a unique hyper-Kähler metric on a neighborhood of the manifold
M in its cotangent bundle T ∗M (due to Feix and independently to Kaledin). This
extends the given metric, and the standard G = S1-action (on the fibres) is isometric
and Hamiltonian. The holomorphic symplectic form on T ∗M comes from the standard
symplectic form on M . The fixed point set of this action is M , the moment map is
bounded below, and the Ricci curvature is zero. In general, we know very little about
completeness of these metrics.

If the moment map is proper, then M must have NEF tangent bundle. Up to the
Campana-Peternell conjecture in algebraic geometry, this implies that if M is projective,
then M fibers over its Albanese variety with rational homogeneous fibers.

Proving the above statement would provide a necessary condition for completeness of
the metric on T ∗M .

4.6. Topology of the symplectomorphism group. Suppose (M,ω) is a compact
symplectic manifold, and that the Chern class c1(M) ∈ H2(M ; Z) is a negative (or non-
positive) multiple of [ω] ∈ H2(M ; R).

According to Sue Tolman, this implies that there are no Hamiltonian S1 actions on M.
The idea of the proof is to look at the maximum and minimum of the R-valued moment
map. The S1 equivariant cohomology of a point consists of weights, so it makes sesnse



to describe them as positive and negative. The restriction of the equivariant first Chern
class c1 to the maximum fixed point set must be negative, and at the minimum the
restriction is positive. This restriction of c1 is the sum of the isotropy weights.

Problem 4.8 (M. Abreu). When c1 is a non-positive multiple of the class of the sym-
plectic form, is the group of Hamiltonian diffeomorphisms, Ham(M), contractible?

Problem 4.9 (M. Abreu). When c1 is a negative multiple of the class of the symplectic
form, is the identity component of the group of symplectic diffeomorphisms, Symp0(M),
contractible?

The motivation here is that, under these hypotheses and according to the above ar-
gument of Sue Tolman, Ham(M) has no compact subgroups. One would believe that
any topology of Ham(M) is related to some compact subgroup. The torus T 2n, with
curvature c1 = 0, motivates the two different statements for the problem.

Note that for surfaces Σ, we have the following cases:

• When Σ = S2, c1 > 0 and Ham(M) is not contractible, in fact it is homotopy
equivalent to SO(3);

• When Σ = T 2, c1 = 0 and Ham(Σ) is contractible; and
• When Σ = Σg has genus g > 1, then c1 < 0 and Symp0(Σ) is contractible.

Thus, for surfaces, the statements hold.
A related problem is the following.

Problem 4.10 (M. Abreu). Is the group of compactly supported symplectomorphisms of
R

2n contractible?

Smale answered this question in the affirmative for n = 1, and Gromov proved the
result for n = 2.

4.7. Sasaki-Einstein metrics. Recently the physicists, Gauntlett, Martelli, Sparks,
and Waldram have constructed explicit Sasakian-Einstein metrics on S2 × S3. These
even include irregular Sasakian-Einstein metrics, where the flow of the Reeb vector field
has non-closed orbits. They are the first examples of such metrics and actually give
counterexamples to a conjecture of Cheeger and Tian. The metrics are related to local
Kähler-Einstein metrics found in the late 1980’s by Page and Pope, and generalize to
higher dimensions. It was then shown by Martelli and Sparks that these Sasakian-
Einstein metrics are related to toric contact geometry. It turns out that for a certain
choice of contact form, the characteristic foliation is regular and the base space is a
Hirzebruch surface, and for another choice of contact 1-form one gets the Sasakian-
Einstein metrics.

Problem 4.11 (C. Boyer). Is it possible to develop a general theory of these structures?

Boyer believes that such Sasakian-Einstein metrics should exist on the k-fold con-
nected sums of S2 ×S3, but currently there is little hope of getting explicit metrics. One
must prove existence theorems. This is the hard part as there are some real subtleties.
First the regular contact structure over Hirzebruch surfaces does not give positive Ricci
curvature, because generally Hirzebruch surfaces are not Fano. For quasi-regular con-
tact structures, this can be overcome using certain branch divisors to shift the orbifold



canonical divisor to be Fano. Boyer does not yet understand how this works in the ir-
regular case though. Given this, the techniques that we have been using to prove the
existence of Sasakian-Einstein metrics do not work here. The singularities of the pair
(variety, orbifold anticanoncal divisor) are not Kawamata log terminal.

Apostolov mentioned a recent paper [26] where Wang and Zhu prove that Kähler-
Einstein metrics exist on toric Fano manifolds if and only if the Futaki invariant vanishes.
Thus, the program is to generalize the Futaki type invariants to the Sasakian setting.
Hopefully one can describe these Sasakian Futaki invariants as functions of the weight
vector one gets by writing an arbitrary Reeb vector as a linear combination of a basis for
the Lie algebra of the torus.
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