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1 A brief historical introduction

The origins of the theory of algebraic groups can be traced back to the work of the great French mathematician
E. Picard in the mid-19th century. Picard assigned a “Galoisgroup” to an ordinary differential equation of
the form

dnf

dzn
+ p1(z)

dn−1f

dzn−1
+ . . .+ pn(z)f(z) = 0 ,

wherep1, . . . , pn are polynomials. This group naturally acts on then-dimensional complex vector spaceV of
holomorphic (in the entire complex plane) solutions to thisequation and is, in modern language, an algebraic
subgroup ofGL(V ).

This construction was developed into a theory (now known under the name of “differential Galois theory”)
by J. F. Ritt and E. R. Kolchin in the 1930s and 40s. Their work was a precursor to the modern theory
of algebraic groups, founded by A. Borel, C. Chevalley and T.A. Springer, starting in the 1950s. From
the modern point of view algebraic groups are algebraic varieties, with group operations given by algebraic
morphisms. Linear algebraic groups can be embedded inGLn for somen, but such an embedding is no longer
a part of their intrinsic structure. Borel, Chevalley and Springer used algebraic geometry to establish basic
structural results in the theory of algebraic groups, such as conjugacy of maximal tori and Borel subgroups,
and the classification of simple linear algebraic groups over an algebraically closed field. (The latter used the
classification of simple Lie algebras, developed earlier byLie, Cartan, Killing and Weyl.) A more detailed
historical account of these developments can be found in [19].

The main focus of the workshop was on linear algebraic groupsover fields that are not necessarily alge-
braically closed. In this context the theory of linear algebraic groups turned out to be closely related to several
areas in algebra which previously had an independent existence. Among these areas are Galois theory, the
theory of central simple algebras (including Brauer groupsand Brauer-Severi varieties), the algebraic theory
of quadratic forms, and non-associative algebra. Informally speaking, these connections may be viewed as
another manifestation of the idea, championed by F. Klein atthe turn of the 20th century. Klein believed
many mathematical objects (in particular, in geometry) arebest understood and described in terms of their
symmetry groups. A crucial role in implementing this idea inthe algebraic context (where the objects to be
studied are central simple algebras, quadratic forms, octonion algebras, etc.) is played by the theory of Galois
cohomology pioneered by J.-P. Serre and J. Tate in the 1950s and 60s.
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This approach has been particularly successful within the algebraic theory of quadratic forms. In the
context of number theory the study of quadratic forms goes back to Gauss (and probably earlier). The
algebraic theory of quadratic forms began with a seminal paper of Witt in 1937, in which what are now called
”Witt’s Theorem” and the ”Witt ring” first appeared. But it was not until a remarkable series of papers by
Pfister in 1965 - 1967 that the theory was transformed into a significant field in its own right. In these papers,
Pfister generalized the well-known two, four, and eight square identities of Euler and Cayley, determined the
minimum number of squares representing -1 in an arbitrary field, and developed the finer ring structure of
the Witt ring of quadratic forms. This phase of the subject iswell documented in the books of Lam [12] and
Scharlau [17]. The connection with the theory of algebraic groups was introduced into he subject by T. A.
Springer who, in 1959, recasted some of the classical invariants of quadratic forms in terms of the Galois
cohomology of the orthogonal group.

2 Recent Developments and Open Problems

In the past 25 years there has been rapid progress in the theory of quadratic forms (and more generally, in the
theory of algebraic groups) due to the introduction of powerful new methods from algebraic geometry and
algebraic topology. This new phase began in 1981 with the first use of sophisticated techniques from algebraic
geometry and K-theory by A. Merkurjev and A. Suslin who established a deep relationship between Milnor’s
K-groups and Brauer groups. The Merkurjev-Suslin theorem was a starting point of the theory of motivic
cohomology constructed by V. Voevodsky. Voevodsky developed a homotopy theory in algebraic geometry
similar to that in algebraic topology. He defined a (stable) motivic homotopy category and used it to define
new cohomology theories such as motivic cohomology, K-theory and algebraic cobordism. Voevodsky’s use
of these techniques resulted in the solution of the Milnor conjecture (for which he was awarded a Fields
Medal in 2002) and more recently of the Bloch-Kato conjecture (a detailed proof of the latter is yet to appear
in print). For a discussion of the history of the Milnor conjecture and some applications, see [15].

These developments have, in turn, led to a virtual revolution in the theory of quadratic forms. Using
motivic methods and Steenrod operations (defined by Voevodsky in motivic cohomology and independently
by P. Brosnan on Chow groups), Merkurjev, Karpenko, Izhboldin, Rost and Vishik, and others have made
dramatic progress on a number of long-standing open problems in the field. In particular, the possible values
of theu-invariant of a field have been shown to include all positive even numbers (by A. Merkurjev, disproving
a conjecture of Kaplansky),9 by O. Izhboldin, and every number of the form2n + 1 by A. Vishik. (Vishik’s
result is new; it was first announced at the workshop.) Another break-through was achieved by Karpenko,
who described the possible dimensions of anisotropic formsin thenth power of the fundamental idealIn in
the Witt ring, extending the classical theorem of Arason andPfister.

An unrelated important development in the theory of centralsimple algebras is the recent proof, by A.
J. de Jong, of the long standing period-index conjecture; see [8]. This conjecture asserts that the index of
a central simple algebra defined over the function field of a complex surface coincides with its exponent.
Previously this was only known in the case where the index of had the form2n · 3m (this earlier result is
due to M. Artin and J. Tate). In a subsequent paper de Jong and J. Starr found a new striking solution of the
period-index problem by constructing rational points on families of Grassmannians. Yet another geometric
approach for index-period problem was developed by M. Lieblich. Lieblich’s approach is based on construct-
ing compactified moduli stacks of Azumaya algebras and studying their properties. These methods and their
refinements are likely to play an important role in future research on currently open problems in the theory
of algebraic groups; in particular, on Serre’s Conjecture II, Albert’s conjecture on cyclicity of central simple
algebras of prime degree and Bogomolov’s conjecture on the Galois group of a maximal pro-normal closure.

Many fundamental questions in algebra and number theory arerelated to the problem of classifying G-
torsors and in particular of computing the Galois cohomology setH1(k,G) of an algebraic group defined
over an arbitrary fieldk. In general the Galois cohomology setH1(k,G) does not have a group structure.
For this reason it is often convenient to have a well-defined functorial map from this set to an abelian group.
Such maps, called cohomological invariants have been introduced and studied by J-P. Serre, M. Rost and A.
Merkurjev. Among them, the Rost invariant plays a particularly important role. This invariant has been used
by researchers in the field for over a decade but the details ofits definition and basic properties have not
appeared in print until the recent publication of the book [10] by S. Garibaldi, A. Merkurjev and J-P. Serre.
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This book is expected to give further impetus to this line of research.
The presentations at the workshop were loosely grouped intothe following general categories:

• Galois theory

• K-theory

• Algebraic stacks

• Homogeneous spaces

• Arithmetic groups

• Brauer groups

• Quadratic forms in characteristic6= 2

• Quadratic forms in characteristic2

We will now briefly report on the contents of these presentations.

3 Galois theory

Lecture by Florian Pop. Let K be an arbitrary field containing an algebraically closed subfield. Let p
be a prime number,p 6= charF . SetGK,p to be a Sylowp subgroup of the absolute Galois group ofK.
Bogomolov’s freeness conjecture asserts that the commutator group[GK,p, GK,p] of GK,p is a free pro-p
group; or equivalently, it has cohomological dimension one.

This conjecture was motivated by considerations about the cohomology ringH∗(K) of K, with coeffi-
cients in, say,µp, and in particular by the Merkurjev-Suslin theorem. The evidence before Pop’s work relied
on generalizations of Tsen’s theorem which asserts that ifk is algebraically closed and the transcendence
degreeK/k is 1 then the cohomological dimension of the absolute Galois group is 1. Also if K satisfies
Bogomolov’s conjecture, then so do its fields of formal powerseriesK((t)) in t overK.

This type of question was also investigated by Chernousov–Gille–Reichstein [9], who ask whether the
maximal abelian extensionKab of a field as above has cohomological dimension one; more concretely,
whether the maximal abelian extension of the rational field in two variablesC(t, u)ab over the complex
numbers has cohomological dimension one. If so, then this would have applications to tackling Serre’s
Conjecture II.

One could say that the power seriesK((t)) are “local” objects overK, thus one should rather speak here
about an “obvious evidence” for the above conjectures. The work of Pop aims at giving less obvious evidence
for the above two conjectures. In fact, the examples presented by Pop given evidence for an even stronger
conjecture, namely that in the cases of interest (i.e., if one considers function fieldsK|k over some base fields
k which contain all the roots of unity)Kab has afree profinite absolute Galois group.

The evidence given by Pop is the following:
1) Suppose thatk is an algebraic extension of a local field such thatk contains all roots of unity. IfK|k

is a function field in one variable overk, then the absolute Galois group ofKab is profinite free.
2) A more global version of (1): Letp be a prime number. SetK = F̄p(t, u), whereF̄p is an algebraic

closure of a field of orderp andt, u are algebraically independent variables overFp. Let k0 be a rational
function field of one variable overFp in K and letk̃0 be a maximal algebraic extension ofk0 in Ksep which
is unramified overk0 outside the infinite place. (Ksep is a separable closure ofK.) Finally setKab to be a
maximal abelian extension ofK. Then the compositumKabk̃0 has a free profinite Galois group.

This work is a promising step towards settling Bogomolov’s conjecture for fields likēFp(t, u),C(t, u), . . .

The use of the field̃k0 in Pop’s construction is rather interesting. The advantageof using the field extension
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k̃0|k0 is that it has a well understood arithmetic description. Suppose thatk0 = Fp(X). Then the roots of
Artin-Schreier equationsyp − y = f(X) (wherep does not dividedeg f(X)) are ink̃0. Moreover by Ab-
hyankar’s conjecture (see [11] or [16]) it is known that all finite groups which are generated byp-subgroups
(finite quasip-groups) are quotients ofGal(k̃0/k0). More precise information about the solution of Galois
embedding problems insidẽk0/k0 may be obtained from [16]. Hencẽk0 is a rather large extension ofk0.

Lecture by John Swallow. Absolute Galois groups of fields are mysterious. Thereforeone would like to
identify quotients of Galois groups which are non-trivial,and yet possible to completely classify.

A pro-p groupA is called aT -group if there exists some maximal closed abelian subgroupB ofA (This
means in particular that[A : B] = p) such that the exponent ofB dividesp.

Let Γ be a pro-p group and let∆ be a closed subgroup of indexp in Γ. Set alsoΦ(∆) to be a Frattini
subgroup of∆. (This meansΦ(∆) = ∆p[∆,∆], the closed subgroup of∆ generated bypth-powers and
commutators.) Then we defineT (Γ/∆) := Γ/Φ(∆) to be theT -group associated with the pairΓ,∆. If Γ
is an absolute group of a fieldF and∆ fixes a cyclic extensionE/F , then we say thatT := T (Γ/∆) =
T (E/F ) is theT -group associated with the extensionE/F . (In [BeLMS], all such groups are classified.)
In fact, one does not need to require that the absolute Galoisgroup ofF is a pro-p group; we restrict our
attention to this case to simplify the exposition.

EachT (E/F ) as above is aT -group. In order to classify allT (E/F ) amongT -groups one defines
certain invariants ofT -groups. First recall that the central seriesT(i) of a groupT is defined recursively as
follows

T(1) = T, T(i+1) = [T, T(i)], i = 1, 2, . . . .

Further,Z(T ) is the center ofT andZ(T )[p] is the subgroup of elements ofZ(T ) of order dividingp.
Swallow defined invariantst1, t2, . . . , tp andu of T by

t1 = dimFp
H1

(

Z(T )[p]
Z(T )∩T(2)

,Fp

)

,

ti = dimFp
H1

(

Z(T )∩T(i)

Z(T )∩T(i+1)
,Fp

)

, 2 ≤ i ≤ p,

u = max {i : 1 ≤ i ≤ p, T p ⊂ T(i)}.

and gave a complete description of which values oft1, . . . , tp can occur forT -groups. For an odd prime
p he also explained for which values oft1, . . . , tp there exists a field extensionE/F as above such that
T ∼= T (E/F ).

Thus if p is an odd prime, the possible quotientsT (E/F ) of the absolute groupsΓF are substantially
restricted. These restrictions imply further restrictions on the presentation ofΓF via generators and relations;
for details see [5] and [6]. In contrast, ifp = 2, there is no restriction onT (E/F ), and all pro-2 T -groups
occur for suitable quadratic extensionsE/F .

Swallow also describedFp[Gal(E/F )] module structure ofHn(ΓE,Fp), whereF/F is a cyclic exten-
sion of degreep, F contains a primitivepth-root of1, andΓE ⊂ ΓF are absolute Galois groups ofE andF
respectively. For details see [13]

In recent joint work with F. Chemotti and J. Mináč, Swallow described theFp[Gal(E/F )]-module struc-
ture ofH1(ΓE ,F2) in the case whereGal(E/F ) is C2 × C2. An interesting byproduct of this description
is that although the Klein-4 group has infinitely many indecomposable modules overF2, only finitely many
of these modules can occur as a summand ofH1(ΓE,F2). This fact points out the possibility of obtain-
ing the full structure of Galois modules for other Galois groups, even in cases where the classification of
indecomposable modules is a hopeless task.

Lecture by Eva Bayer-Fluckiger. Let F be a field of characteristic different from two andG be a finite
group. AG-form is a pair(M,ϕ) with M anF [G] module of finiteF -dimension andϕ a quadratic form
such thatϕ(gx, gy) = ϕ(x, y) for all x, y ∈M and for allg ∈ G. The problem is to determine when are two
G-formsϕ := (M,ϕ) andψ := (M,ψ), i.e., areG-isomorphic. This problem is a natural generalization of
the classical problem of determining when(M,ϕ) admits a self-dual basis, i.e., when(M,ϕ) ∼= (F [G], q).
Hereq(σ, τ ) = δστ for eachσ, τ ∈ G andδστ = 1 or 0 depending upon whetherσ = τ or σ 6= τ . The
problem of the existence of a self-dual basis is especially interesting when the moduleF [G] is a Galois field
extensionL of F , G = Gal(L/F ) and formq is a trace formqL : L × L → F, (x, y) → TrL/F (xy). In
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[1] it was proved that any Galois algebra has a self-dual basis. The situation is more complicated when| G |
is even; the paper [4] treated the cases where the2-Sylow subgroupG2 of the Galois groupG is elementary
abelian (i.e.,G2 ≃ C2 × . . .× C2) or a quaternion group of order8 (G2 ≃ Q8).

LetW (F ) be the Witt ring of non-degenerate quadratic forms overF andI(F ) its fundamental ideal of
even dimensional forms andIn(F ) its nth power. Suppose thatcd2F , the cohomological2-dimension ofF ,
is finite and equal tod. This means that the absolute Galois groupΓF of F has cohomological dimension
d. Let L andL′ be twoG-Galois algebras and letϕ andψ be their corresponding trace forms. Then in
[7] it was proved thatρ ⊗ ϕ ∼=G ρ ⊗ ψ for any ρ ∈ Id(F ). Now let L be any Galois algebra overF
with Galois groupG. Let Γ be an absolute group ofF . ThenL can be viewed as an element ofH1(Γ, G),
where the action ofΓ onG is trivial. In particular there is a corresponding1-cocycleϕ : Γ → G, which
is just a continuous homomorphism associated toL. Consider any homomorphismx ∈ H1(G,F2). Set
xL = x0ϕ ∈ H1(Γ,F2). Keeping our assumption thatL andL′ are two Galois extensions ofF having
Galois groupG, assume now thatρ ∈ Id−1(F ). Then Bayer-Fluckiger showed thatρ ⊗ ϕ ∼=G ρ ⊗ ψ if
and only ifed−1(ρ) ∪ xL = ed−1(ρ) ∪ xL′ for all x ∈ H1(G,Z/2Z). Hereei are the isomorphisms given
by the Milnor conjectureIi(F ) → Hi(ΓF ,Z/2Z). An analogous result holds for (finite) ordered systems
of quadratic forms (or hermitian forms)Σ := (ϕ1, . . . , ϕm), with the obvious notion of isomorphism. IfΣ
andΣ′ are two such ordered systems of quadratic forms (respectively hermitian forms) of sizem such that
they become isomorphic over the separable closure ofF thenρΣ ∼= ρΣ′ for all ρ ∈ Id(F ) (respectively,
ρ ∈ Id−1(F )).

At the end of the lecture Bayer-Fluckiger showed that similar results hold if the fieldF is replaced by
(D,σ), whereD is anF -division algebra with involutionσ. One can also look at ordered systems of such
hermitian forms; for details see [2, 3]

4 K-theory

Lecture by Stefan Gille. LetX be noetherian scheme andX(i) the set of points inX of codimensioni. If
x ∈ X(i) letF (x) be the residue field. We have a Gersten complex

(∗) 0 → K ′
n(X) → ⊕X(0)K ′

n(F (x)) → ⊕X(1)K ′
n(F (x)) → · · ·

in coherentK-theory. The sequence(∗) is exact (Gersten Conjecture) forX = SpecR if R is a regular semi-
local ring by work of Quillen and Panin. One wants a similar result for Hermitian Witt groups. LetMc(X) be
the category of coherentOX -modules. We have a filtration by Serre subcategoriesMc(X) = M0 ⊃ M1 ⊃
· · · with Mi := {F ∈ Mc(X) | codim suppF ≥ i}. If dimX is finite, we get a spectral sequenceEp,q

1 :=
Kp−q(M

p/Mp+1) ⇒ cohomologicalK-theory ofX andKp−q(M
p/Mp+1) = ⊕X(p)K−p−q(F (x)) by

Gabriel’s thesis and devissage. IfA is an Azumaya algebra overX, we can look atMc(A) the category
of coherent (left)A-modules and filter it byMp

A := Mc(A) ∩ Mp. We get another spectral sequence and
can ask if the Gersten conjecture is true for it. ReplacingX by A andF (x) by A ⊗ F (x) in (∗), we get
a complex introduced by Colliot Thélène and Ojanguran and showed to be exact by them and Panin-Suslin.
Gille studies this problem ifA has an involution which consists of an automorphismσ ofX of order two and
anOX -linear mapτ : A → σ∗A satisfyingσ∗(τ ) ◦ τ = 1A andτ (ab) = τ (b)τ (a). The mapτ is of the first
kind of σ = 1 and the second kind otherwise. Assume thatτ is of the first kind. Gille shows that if(A, τ ) is
an Azumaya algebra over a regular schemeX of finite dimension withτ of the first kind then there exist two
complexes, thehermitianandskew hermitian Gersten-Wittcomplexes

(∗) 0 →W±(A, τ ) → ⊕X(0)W±(A⊗ F (x), τ ⊗ F (x)) → · · ·

and this complex is exact ifX is the spectrum of a semi-local ring of a smooth variety. Sucha result could not
be true ifτ is of the second kind as, in general, it would not induce automorphisms of the residue fields. Gille
then constructed these Gersten-Witt groups. To show exactness, one follows Quillen’s proof but modifying
Quillen’s last argument on the additivity of functors to Gille’s result that given a Gorenstein ringR of finite
Krull dimension, an Asumaya algebraA overR with an involutionτ of the first kind, andt ∈ R an element
satisfyingπ : R → R/R/Rt has a flat splitting then the transferπ∗ : W i(A/tA, τ/tτ ) → W i+1(A, τ ) is
zero.
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Lecture by Alexander Nenashev. Balmer-Witt theory does not have Chern classes as it is not oriented
and the Projective Bundle Theorem fails. Nenashev showed how to construct a twisted Thom isomorphism
and deformation to the normal cone in the theory and used it toshow the existence of a pushforwardf∗ :
Wn(Y, f∗L ⊗ ωY/X) → Wn+c(X,L) for any projective morphismf : Y → X of pure codimensionc
whereL is a line bundle onX andωY/X is the relative dualizing sheaf. The difficult point is to show if
j : Z → Y andi : Y → X are closed imbeddings then the pushforwards(ij)∗ = j∗i∗ which uses the theory
of “double” deformation spaces.

Lecture by Marco Schlichting. Balmer-Witt groups of a regular schemeX have long exact Mayer-Vietoris
sequences. In general, this is no longer true if the scheme issingular. Schlichting lectured on a way to deal
with this by defining new Witt groups calledstabilized Witt groupsgeneralizing certainL-groups defined by
Ranichi and Witt rings with involution defined by Karoubi. Although this theory is not known to hold for
triangulated categories with involution, it does hold for categories of rings with involution, exact categories
with involution, dg categories, and exact categories with isomorphisms weak equivalences. In particular,
in these cases, one can generalize the notion of suspensionsand cones. Thes stabilized Witt groups have
periodicity 4 and satisfy Mayer-Vietoris and homotopy invariance. They coincide with Witt-Balmer Witt
rings ifKnX = 0 for all negativen, e.g., ifX is regular. The case when the characteristic of the underlying
field is zero was also discussed and the relationship with blowups, reflecting work done jointly with G.
Cortinas, C. Haesemeyer, and C. Weibel.

5 Algebraic stacks

Lecture by Patrick Brosnan. Let F : fields/F → sets be a functor. Merkurjev, generalizing the idea of
Buhler-Reichstein defined the essential dimension of a seta to be eda := min{tr degF K | L/K/F with a ∈
im(F(K) → F(L))} and the essential dimension ofF to be edF := {eda | a ∈ F(L), L/F}. If G is
a group let edG := edH1(−, G). Generalizing the definition of essential dimension to include stacks,
Brosnan discussed his joint work with Z. Reichstein. An Artin stack can be viewed as a functor from rings to
categories (usually groupoids) satisfying various properties. An interesting example ofχ is the moduli stack
of smooth curves of genusg; there are many other interesting examples, related, e.g.,to various other families
algebro-geometric objects, such as curves, hypersurfaces, abelian varieties, etc., possibly with additional
structures, such as marked points. Ifχ is a stack then edχ is defined as the essential dimension of the functor
L −→ {isomorphism classes of objects inχL}. Assuming that an Artin stack has a filtration of closed stacks
χ = χn ⊃ χn−1 ⊃ · · · ⊃ χ0 = ∅ with χi \χi−1 = [Yi/Gi], the stack associated to theGi-torsors of scheme
Yi whereGi is a linear algebraic group, then they show edχ is finite. Brosnan also discussed his theorem that
the essential dimension of a complex abelian varietyA (i.e., of the Galois cohomology functorH1(−, A)) is
2 dim(A).

Lecture by Angelo Vistoli. Vistoli lectured on the use of stacks to investigate the theory of hyperelliptic
curves. (Cf. the summary of Brosnan’s lecture for definitions.) If X is a scheme andG a group acting on
X, let [X/G] be the stack associated toG-torsors ofX. For example, the stack of moduli spaces of genus
g is [X/PGLN ]. Define the homology of a stackF → schemes/F by H∗(F ,Z) := H∗

G(X,Z). Then
Pic([X/G]) = PicG(X), wherePicG(X) is theG-equivariant Picard group. The stack of elliptic curves is
[U/Gm] whereU := {(a, b) ∈ A

2 | −4a3 − 27b2 6= 0} for elliptic curves (given in Weierstrass form):
y2 = x3 + ax + b. This difficult theorem shows that the stack of elliptic curves is a quotient stack. The
problem is to generalize this to findXg so that the stack of curves of genusg is [Xg/GLg]. For g = 2, it
an be shown thatX2 is a subspace ofA7. This generalizes to the stack of hyperelliptic curves of genusg, a
closed substack of the stack of curves of genusg if g ≥ 2. Together with A. Arsie, this stack was identified as
[X/G] withX = {f | f a homogeneous form of degree2g+2 with distinct zeros} an open subset ofA2g+3

andG = GL2 if g is even andG = Gm × PGL2 if g is odd (with specified action). Moreover the Picard
group of this stack isZ/(2g + 1)) if g is even andZ/(4(2g + 1))) if g is odd. The case of trigonal curves
was also discussed.
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6 Homogeneous spaces

Lecture by Prakash Belkale. Let G be a simply connected simple algebraic group andP a maximal
parabolic subgroup. Belkale lectured on his joint study with S. Kumar on the ring structure ofH∗(G/P,C)
in terms of structure constants for multiplication of the Schubert basis. By introducing a new twisted product
on this basis, they are able to apply to give additional information to the eigenvalue problems and its rela-
tion to the Horn Conjecture and the Klyachko, Knutson-Tao theorem on the sum of eigenvalues of hermitian
matrices.

Lecture by Kirill Zainoulline. LetG be a linear algebraic group overF andX a projective homogeneous
G-variety. One wishes to decompose the Chow motiveM(X) of X into a sum of motives of varietiesY
having “trivial splitting patterns”. This has been done forsome cases, e.g., ifG is split, if X has a rational
point (by V. Chernousov, S. Gille and A. Merkurjev), or ifG is isotropic (by P. Brosnan). So assume thatG
is anisotropic. IfX is an Pfister form then Rost showed thatM = ⊕R(i) with R(i) indecomposable,RF̄ =
Z⊕Z(2n−1 − 1). ButR(i) is not the motive of a variety. N. Karpenko showed that the motive of the Severi-
Brauer variety of a division algebra is indecomposable A. Vishik decomposed the motive of an anisotropic
quadric. Zainoulline discussed other cases. A projective smooth variety overF is calledgenerically splitif
M(XF (X)) ∼= ⊕∗Z(∗) andL/F is called asplitting field for X if XL is generically split. Fix a primep.
Let Ā = CH(XL)/p whereL is a splitting field ofX andĀrat := im(CH(X)/p → CH(XL)/p) (cf. the
generically discrete invariant of Vishik). Ifp is prime and there exists aρ ∈ Ār satisfyingĀs = Ās

rat for all
s < r, Ār = 〈ρ, Ār

rat〉 and there exists finite subsetB of Ārat such thatB×{ρi}i=0,p−1 is a basis forĀ then
M(X) ⊗ Z/p = ⊕∗R(∗) with R indecomposable if and only ifR has no0-cycles of degree1. If X andY
both satisfy the conditions of this result for the samer, X splits overF (Y ), andY splits overF (X) then
RX

∼= RY . This applies to the case ofG split with G = ξG, ξ ∈ H1(ΓF , G) (an inner form) withΓF the
absolute Galois group ofF andX = ξ(G/P ),P a parabolic subgroup, This applies whenX = SB(M(D)),
whereD is anF -division algebra of degreep, ann-fold Pfister form withp = 2, ξ(F4/P1) with p = 2 or 3,
andξ(E8/P8) with p = 5.

7 Arithmetic groups

Lecture by Philippe Gille. Let ΓF be the absolute Galois group of a number fieldF . If v is a place ofF ,
we will denote the completion ofF at v by Fv and the algebraic closure ofFv by Fv. We will also denote
a finite set of primes byS, the ring of integers inF by A, the ring ofS-integers byAS , and the ring of
integerst inFv by Av. The Borel-Serre Theorem states that for a linear algebraicgroupG overF , the map
W ′

S(F,G) := ker(H1(ΓF , G) →
∏

v/∈S H
1(ΓFv

, G)) is proper, i.e., has finite fibers. Gille discussed his
joint work with L. Moret-Bailly on the integral version of this theorem.

Let X be variety overF having an action of a linear algebraic groupG on it andZ0 ⊂ X a flat closed
AS-subscheme. LetW ′

s(x0) := G(F )\{x ∈ X(F ) | x ∈ G(Fv)x0 for all v /∈ S}. This is a finite
set. Suppose thatG/AS is a flat affine group scheme andX/AS is a flat scheme with an algebraic action
G ×AS

X → X given byg · x 7→ ρ(g) · x. ThenG(AS)\loc(Z0) is finite, whereloc(Z0) := {Z ⊂ X |
Z a flat closedAS-subscheme withρ(gv) : Z ×AS

Av−̃→Z ×Av
Av for somegv ∈ G(Av) for all v /∈ S}.

An example of this isG = GLm/Z acting onG by conjugation. Suppose this is the case. Fixg0 ∈ G. Then
there are only finitely manyg ∈ GLnZ satisfyingg = gpg0g

−1
p for gp ∈ GLmZp for all p. The theorem

follows from a more general one, viz., ifG/AS is an affine group scheme (but not necessarily flat) then the
cohomology setH1

fppg(AS , G) is finite wherefppf is the faithfully flat of finite presentation topology. To
prove this one makes various reductions. First one reduces to a flat group scheme overAS . This can be done
because over a number field as the normalization ofG is still a group scheme. One shows that the result holds
for a flat affine group scheme. Reducing to the case thatG is also connected, the result for suchG is proven.

Lecture by Uzi Vishne. Vishne discussed his joint work with M. Katz and M. Schaps ontraces in congruence
subgroupsΓ(I) of finite index in an arithmetic latticeΓ. LetK be a totally real number field lying inR via
one of the real embeddings soK ⊗ R = R × R

d−1. Let OK be the ring of integers inK andD/K a
quaternion algebra withD ⊗ R = M2(R) but D ⊗σ R a division algebra at the(d − 1) non-inclusion
real embeddings. LetQ be an order inD. The latticeΓ is taken to beQ1, the elements of norm one. Let
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X := Γ\H whereH is the upper half plane andXI := Γ(I)\H whereI is an ideal inOK . ThenXI → X is
a cover of Riemannian manifolds. Letg(X) be the genus ofX. The length of the shortest non-trivial closed
loop inπ1(X) is called thegirth of X. Vishne and his collaborators showed that for any metric Riemannian
surfaceY of genusg, one has(girth(Y ))2/area(Y ) ≤ (log g)2/πg and forZ = X, or X(I) above that
(girth(Z))2/area(Z) ≥ 4(log g(Z))2/9πg(Z). So (girth(XI) ≥ (2 · 2/1 · 3)(log(g(XI) − c) for some
constantc = c(Γ). All the integers in the coefficient are constants that can beexplained except for the second
2. For example, the first2 is the trace of1. More generally, if±1 6= x ∈ Γ(I) := ker(Q1 → (Q/IQ)1

then|tr x| ≥ (N(I)2/2dN(2OK + γI)) − 2 whereQ ⊂ (1/γ)Q0 with Q0 the standard orderOK [i, j] in
Q andγ minimal. Computation shows that there exists a constantλD,Q satisfying[Γ : Γ(I)] ≤ λD,QN(I).
This is used to show girth(XI) ≥ 4/3(log(g(XI)) − log 23d−5vol(X)λD,Q/π. For a Hurwitz surface, i.e.,
a compact Riemann surfaceX the order of whose automorphism group achieves the maximum possible size
84(g − 1), this gives girth(X) ≥ (4/3) log(X).

8 Brauer Groups

Lecture by Daniel Krashen. Krashen discussed joint work with M. Lieblich. LetF be a perfect field,D a
centralF -division algebra, andC a curve overF of genus1. Krashen discussed the problem of determining
the index ofDF (C). They show that the index indDK(C) := min{[E : F (C)] | DE splits} is in fact equal
to min{[L : F ] | DL(C) splits}. This solves the problem ifF is a local field, viz., indDK(C) = min{[L;F ] |
indD/gcd(indD, [L : F ]) divides indCL} where ind(C) := min{[E : F ] | C(E) 6= ∅}. Krashen then
discussed the theory of twisted sheaves and its relation to the index. LetX be a nice scheme overF , i.e.,
integral, noetherian, ... . Letα ∈ H2(X,Gm) (the cohomological Brauer group). Anα-twisted sheafonX
is a collection ofOUi

-modulesMi where{Ui} is an (́etale) open cover ofX with (glueing) isomorphisms
ϕij : Mi|Ui∩Uj

→ Mj |Ui∩Uj
satisfyingϕijα̃ = ϕjkϕij with α̃ a (Cech) cocycle in the class ofα. (This

can be shown to be independent of choices.) There exists anα-twisted locally free sheaf of rankr onX if
and only if there exists an Azumaya algebraA onX of degreer such that the class ofA is α, i.e.,α lies
in the Brauer group ofX. Going to the generic point, this implies that there exists an α-twisted coherent
sheaf of rankr onX if and only if indαF (X) | r. Next Krashen discussed how this relates to the problem of
determining when an elementl ∈ PicC comes fromL ∈ PicC(F ), i.e., l = [L]; equivalentlyl arises from
a line bundleL onCF̄ , whereF̄ is the algebraic closure ofF . Choosing isomorphismsϕσ,τ : σL → τL for
σ, τ in the absolute Galois group ofF may not be compatible glueing data but does give a2-cocycleασ,τ,γ

in Gm hence leads to anαC -twisted line bundle defined overF hence in the Brauer group ofF . If C is
an elliptic curve andV anαC -locally free sheaf of rankn then indαF (C) = n implies there existsE/F of
degreen such thatαCE

splits.

9 Quadratic forms in characteristic 6= 2

Lecture by Alexandr Vishik. The u-invariant of a fieldF is defined to be the maximal dimension of
anisotropic quadratic forms defined overF . For fields of characteristic different from two, it known that
u cannot be3, 5, or 7. Merkurjev showed that any even integer could be theu-invariant of a field and
Izhboldin showed the value of9 was achievable. Vishik lectured on his construction of fields havingu-
invariant2n + 1 for anyn ≥ 3. Let G(Q, i) be the Grassmannian ofi-dimensional projective planes in a
smoothD-dimensional quadricQ overF for 0 ≤ i ≤ d := [D/2]. Thegeneric discrete invariantGDI(Q)
is defined to be the image ofCh∗(G(Q, i) → Ch∗(G(Q, i)/F̄ ) whereCh∗(X) is the Chow group ofX mod
2 andF̄ is the algebraic closure ofF . If Fl(Q, 0, i) is the flag variety ofQ, there exists a correspondence
f : Q −→ G(Q, i). Letzj(i−d) = f∗(lD−i−j) forD−d−i ≤ j ≤ D−iwherel0, l1, . . . , ld in CHi(Q/F̄ ),
≤ i ≤ d, are the classes of projective subspaces ofQF̄ of dimensioni (choose one ifd is even). Theith
elementary discrete invariantEDI(Q, i) of Q is set{j | zj(i− j) is defined overF mod2. To eachQ one
can draw ad× d square with the lattice point(x, y) colored ifzx(y− d) is defined overF . Vishik proved the
if the characteristic ofF is zero andD = 2r − 1 with r ≥ 3 and the square forQ has only the(d, d) point
possibly colored then for all quadricsQ′ of dimension> D the invariantEDI(Q′

F (Q)) will have the same
property. In particular,Q′

F (Q) is anisotropic. Using this result one can construct a field having u-invariant
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2r + 1 for anyr ≥ 3 in the usual way. The proof of the theorem utilizes a more general result that Vishik
proved, viz., if the characteristic ofF is zero andy ∈ Chm(Y/k̄) with Y a smooth quasi-projective variety
overF andQ as above then for anym ≤ [(1+D)/2], the elementy is defined overF if and only if y|F (Q) is
defined. The proofs use symmetric operations in cobordism theory. Because of interest in the result, Vishik
gave a second lecture with more details of the proofs.

10 Quadratic forms in characteristic 2

Lecture by Ricardo Baeza. Let F be a field of characteristic two. LetW (F ) denote the Witt ring of non-
singular symmetric bilinear forms andI(F ) the fundamental ideal of even dimensional forms. LetIn(F ) be
thenth power ofI(F ). (Cf. the summary of Hoffman’s lecture for definitions and notation.) LetWq(F ) be
the Witt group of (even dimensional) non-singular quadratic forms overF ; it is aW (F )-module. Ifa, b ∈ F
let [a, b] be the binary quadratic formax2 + xy + by2. Every non-singular quadratic form is an orthogonal
sum of such binary forms. The submoduleIn+1

q (F ) := In(F )Wq(F ) is generated by(n+ 1)-fold quadratic
Pfister formsϕ ⊗ [1, a] with ϕ a bilinearn-fold Pfister form. J. Arason and R. Elman found a presentation
for In(K) when the fieldK was of characteristic different from two. Baeza with J. Arason found analogous
presentations forIn(F ) andIn+1

q (F ) for all n. ForIn(F ) the generators are isometry classes[b] of bilinear
n-fold Pfister formsb with generating relations given by

1. [b] = 0 if b is metabolic.

2. [〈1, a〉 ⊗ c] + [〈1, b〉 ⊗ c] = [〈1, a+ b〉 ⊗ c] + [〈1, ab(a+ b)〉 ⊗ c] with c an(n− 1)-fold Pfister form
anda+ b 6= 0.

3. [〈1, ab〉 ⊗ 〈1, c〉 ⊗ d] − [〈1, a〉 ⊗ 〈1, c〉 ⊗ d] = [〈1, ac〉 ⊗ 〈1, b〉 ⊗ d] − [〈1, a〉 ⊗ 〈1, b〉 ⊗ d] with d an
(n− 2)-fold Pfister form.

where the second relation is only needed ifn = 1 and for In
q (F ) the generators are isometry classes of

quadraticn-fold Pfister forms[ϕ] with generating relations given by

1. [c ⊗ [1, d1 + d2]] − [c ⊗ [1, d1]] + [c ⊗ [1, d2]] with d1, d2 ∈ F andc a (bilinear)(n− 1)-fold Pfister
form.

2. [〈1, a〉 ⊗ ϕ] + [〈1, b〉 ⊗ ϕ] = [〈1, a + b〉 ⊗ ϕ] + [〈1, ab(a + b)〉 ⊗ ϕ] with ϕ a quadratic(n − 1)-fold
Pfister form anda+ b 6= 0.

where the second relation is only needed forn = 1 The proof uses the ideas to prove this result if the field is of
characteristic different from two together with a result about forms[[a1, . . . , an]] defined to be⊗n

i=1〈1, ai〉⊗
[1, a1 · · · an+1] if a1, . . . an ∈ F× otherwise to be zero. These generateIn+1(F ) with generating relations

1. [[a1, . . . , an+1]] = 0 if someai = 1.

2. [[a1, . . . , r
2ai, . . . aj , . . . , an+1]] = [[a1, . . . , ai, . . . r

2aj , . . . , an+1]].

3. [[a1, . . . , an+1]] = 0 if somea1, . . . , an+1 ∈ ℘(F ).

Lecture by Detlev Hoffman. Let F be a field of characteristic two andb be a non-degenerate symmetric
bilinear form overF . The formb decomposes as an orthogonal sum of an anisotropic part, unique up to
isometry, and a metabolic part and each metabolic form is a sum of binary metabolic forms isometric to
(

a 1
1 0

)

. The formb is diagonalizable if it represents a non-zero element. In particular, the similar-

ity classes of non-degenerate symmetric bilinear form the Witt ring W (F ). The even dimensional forms
constitute the fundamental idealI(F ) of this ring. We have the usual filtration by the powersIn(F ) of
I(F ) andIn(F ) are generated byn-fold Pfister forms⊗n

i=1〈1, ai〉 for some non-degenerate diagonal binary
forms 〈1, ai〉. Let I

n
(F ) := In(F )/In+1(F ). The Arason-Pfister Hauptsatz holds, i.e., the non-metabolic

forms inIn(F ) have dimension at least2n. To eachb, we can associate the corresponding quadratic form
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ϕb, v 7→ b(v, v). This form is totally singular, i.e., its polar form is trivial. Let F (b) := F (ϕb) be the
function field of the projective quadric determined byϕb. Laghribi showed thatbF (b) is metabolic if and
only if b is a scalar multiple of a Pfister form just as in the case that the field is of characteristic not two.
Moreover, we can construct a splitting tower by inductivelydefiningF0 = F andFi = F (bi) wherebi to
be the anisotropic part ofbF (bi−1). If h is the smallest integer such thatdimbh ≤ 1 thenbh−1 is a scalar
multiple of ann-fold Pfister form for somen called the degree ofb. Let Jn(F ) := {bi | deg b ≥ n} (with
the zero form having infinite degree). Then Laghribi showedJn(F ) = In(F ). If ϕ is a quadratic form over
F then it is an orthogonal sum of a non-degenerate (non-singular) partϕns and a totally singular part. Ifϕ
is a quadratic form overF let I

n
(F (ϕ)/F ) := ker(In(F ) → I

n
(F (ϕ). Hoffman showed that the following

(which proves the second Laghribi result): Letϕ be a quadratic form overF . If the non-degenerate part ofϕ
is of dimension at least two thenI

n
(F (ϕ)/F ) = 0 for all n ≥ 0 and ifϕ := 〈1, a1, . . . al〉, so totally singular,

and2m = [F 2(a1, . . . al) : F 2] thenI
n
(F (ϕ)/F ) = 0 form > n andI

n
(F (ϕ)/F ) is generated by the forms

ψ⊗(⊗m
i=1〈1, bi〉)+In+1(F ) with ψ ∈ In−m(F ) andb1, . . . , bm satisfyingF 2(b1, . . . bm) = F 2(a1, . . . al).

This uses the analogue of the Milnor conjecture for quadratic forms in characteristic not two proven by Kato
using differential forms.

Lecture by A. Laghribi. LetF be a field of characteristic two. We use the notation and definitions in the talks
by R. Baeza and D. Hoffmann. IfK/F is a field extension, letiK : W (F ) → W (K) andjK : Wq(F ) →
Wq(K) be the maps induced by the inclusionF ⊂ K. In the case of fields of characteristic not two, kernels of
these maps for various field extensions were studied by R. Elman, A. Wadsworth, T.-Y-. Lam, J.-P. Tignol, and
R. Fitzgerald. In characteristic two, the multiquadratic case was studied by D. Hoffmann and Laghribi. Letp
be an irreducible monic polynomial in the polynomial ringF [T ] := F [t1, . . . , tn] (monic relative to a fixed
lexicographic ordering) andF (p) the quotient field ofF [T ]/(p). M. Knebusch proved the Norm Theorem: If
b is an anisotropic symmetric bilinear form thenbF (p) is metabolic if and only ifbF [T ]

∼= pbF [T ] (without a
characteristic assumption) using the theory of specializations and induction, where the casen = 1 is handled
by the Milnor exact sequence forW (F (t)). Aravire-Jacob used the analogue of this sequence forWq(F )
if F is perfect and another ifF is not perfect to prove the analogue of the Norm Theorem for non-singular
quadratic forms with hyperbolic replacing metabolic. Letϕ be a quadratic form thenϕ ∼= ϕns ⊥ ϕts with
ϕns non-singular andϕts totally singular. (The formϕns is not unique butϕts is.). Call a formsemi-singular
if neither summand is trivial. We can study three cases: the form is non-singular, totally singular, or semi-
singular. The Norm Theorem for totally singular forms was proven by Hoffmann-Laghribi. This leaves the
case of semi-singular quadratic forms. We can also writeϕ ∼= ϕH ⊥ ϕ0 ⊥ ϕan whereϕH is hyperbolic,ϕ0

is the trivial form of some dimension, andϕan is the anisotropic part. LetiW (ϕ) = (1/2) dimϕH, theWitt
indexof ϕ andjd(ϕ) := dimϕ0, thedefect indexof ϕ. Call it(ϕ) = iW ((ϕ)+jd(ϕ) thetotal indexof ϕ. The
formϕ is calledquasi-hyperbolicif dimϕ is even andit(ϕ) ≥ dimϕ/2. The Norm Theorem holds for semi-
singular quadratic forms. Its proof depends on this notion of quasi-hyperbolicity replacing hyperbolicity (as it
does in the totally singular case). Laghribi-Mammone provethe following Norm Theorem: Ifϕ is anisotropic
semi-singular thenϕL = pϕL implies thatp is inseparable andϕF (p) is quasi-hyperbolic and ifp is a totally
singular quadratic form representing1 then the converse is true. They also prove a Subform Theorem:If
ϕ is even dimensional and anisotropic andp is a quadratic form such thatϕF (p) is quasi-hyperbolic thenp
is totally singular and for all valuesa of ϕns, non-zero valuesb of ϕts, and non-zero valuesc of p , there
exists a non-singular formψ such thatϕ ∼= ψ ⊥ ϕts with abp a subform ofψ andacp a subform ofabϕts.
The proof also uses there theorem that ifp− t2

m

1 + d (with m ≥ 1) andiw(ϕF (p)) = dimϕns/2 then there
exists a non-singularψ overF such thatψF (p) is hyperbolic andϕ ∼= ψ ⊥ varphits. This also leads to the
generalization of when a quadratic form splits over its function field.
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