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Computational Complexity Theory is the field that studies the inherent costs of algorithms
for solving mathematical problems. Its major goal is to identify the limits of what is efficiently
computable in natural computational models. Computational complexity ranges from quantum
computing to determining the minimum size of circuits that compute basic mathematical functions
to the foundations of cryptography and security.

Computational complexity emerged from the combination of logic, combinatorics, information
theory, and operations research. It coalesced around the central problem of ”P versus NP” (one of
the seven open problems of the Clay Institute). While this problem remains open, the field has grown
both in scope and sophistication. Currently, some of the most active research areas in computational
complexity are the following:

• the study of hardness of approximation of various optimization problems (using probabilisti-
cally checkable proofs), and the connections to coding theory,

• the study of the role of randomness in efficient computation, and explicit constructions of
”random-like” combinatorial objects,

• the study of the power of various proof systems of logic, and the connections with circuit
complexity and search heuristics,

• the study of the power of quantum computation.

Many new developments in these areas were presented by the participants of the workshop. These
new results will be described in the following sections of this report, grouped by topic. For each
topic, we give a brief summary of the presented results, followed by the abstracts of the talks.

1 Computational Randomness

Computational randomness, or pseudorandomness, is the area concerned with explicit constructions
of various “random-like” combinatorial objects. New constructions of one type of such objects,
randomness extractors, have been reported by Anup Rao, Ronen Shaltiel, and David Zuckerman.
The work by Shaltiel and his co-authors also yields a new explicit construction of a (bipartite)
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Ramsey graph with better parameters than those of the construction by Frankl and Wilson. Chris
Umans reported on a new construction of lossless condensers based on derandomized curve samplers.

Anup Rao, Extractors for a Constant Number of Polynomially Small Min-Entropy
Independent Sources

We consider the problem of randomness extraction from independent sources. We construct
an extractor that can extract from a constant number of independent sources of length n, each of
which have min-entropy nγ for an arbitrarily small constant γ > 0. Our extractor is obtained by
composing seeded extractors in simple ways. We introduce a new technique to condense independent
somewhere-random sources which looks like a useful way to manipulate independent sources. Our
techniques are different from those used in recent work [BIW04, BKS+05, Raz05, Bou05] for this
problem in the sense that they do not rely on any results from additive number theory.

Using Bourgain’s extractor [Bou05] as a black box, we obtain a new extractor for 2 independent
block-sources with few blocks, even when the min-entropy is as small as polylog(n). We also show
how to modify the 2 source disperser for linear min-entropy of Barak et al. [BKS+05] and the
3 source extractor of Raz [Raz05] to get dispersers/extractors with exponentially small error and
linear output length where previously both were constant.

In terms of Ramsey Hypergraphs, for every constant 1 > γ > 0 our construction gives a family of
explicit O(1/γ)-uniform hypergraphs on N vertices that avoid cliques and independent sets of size
2(log N)γ

.

Ronen Shaltiel, 2-Source Dispersers for no(1) Entropy, and Ramsey Graphs Beating
the Frankl-Wilson Construction (joint work with B. Barak, A. Rao, and A. Wigderson)

We present an explicit disperser for two independent sources on n bits, each of entropy k = no(1).
Put differently, setting N = 2n and K = 2k, we construct explicit N×N Boolean matrices for which
no K×K submatrix is monochromatic. Viewed as adjacency matrices of bipartite graphs, this gives
an explicit construction of K-Ramsey bipartite graphs of size N .

This greatly improves the previous the previous bound of k = o(n) of Barak, Kindler, Shaltiel,
Sudakov and Wigderson [BKS+05]. It also significantly improves the 25-year record of k = Õ(

√
n)

on the very special case of Ramsey graphs, due to Frankl and Wilson [FW81].
The construction uses (besides ”classical” extractor ideas) almost all of the machinery developed

in the last couple of years for extraction from independent sources, including:

• Bourgain’s extractor for 2 independent sources of some entropy rate < 1/2 [Bou05]

• Raz’ extractor for 2 independent sources, one of which has any entropy rate > 1/2 [Raz05]

• Rao’s extractor for 2 independent block-sources of entropy nΩ(1) [Rao06]

• The “Challenge-Response” mechanism for detecting “entropy concentration” of [BKS+05].

The main novelty comes in a bootstrap procedure which allows the Challenge-Response mech-
anism of [BKS+05] to be used with sources of less and less entropy, using recursive calls to itself.
Subtleties arise since the success of this mechanism depends on restricting the given sources, and so
recursion constantly changes the original sources. These are resolved via a new construct, in between
a disperser and an extractor, which behaves like an extractor on sufficiently large subsources of the
given ones.

David Zuckerman, Deterministic Extractors For Small Space Sources (joint work with
Jesse Kamp, Anup Rao, and Salil Vadhan)

We give explicit deterministic extractors for sources generated in small space, where we model
space s sources on {0, 1}n by width 2s branching programs. We give extractors which extract almost
all of the randomness from sources with constant entropy rate, when the space s is a small enough
constant times n. We can extract from smaller min-entropies assuming efficient algorithms to find
large primes. Previously, nothing was known for entropy rate less than 1/2, even for space 0.

Our results are obtained by a reduction to a new class of sources that we call independent symbol
sources, which generalize both the well-studied models of independent sources and symbol-fixing
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sources. These sources consist of a string of n independent symbols over a d symbol alphabet with
min-entropy k. We give deterministic extractors for such sources when k is as small as polylog(n),
for small enough d.

Chris Umans, Better lossless condensers through derandomized curve samplers (joint
work with Amnon Ta-Shma)

Lossless condensers are unbalanced expander graphs, with expansion close to optimal. Equiva-
lently, they may be viewed as functions that use a short random seed to map a source on n bits to a
source on many fewer bits while preserving all of the min-entropy. It is known how to build lossless
condensers when the graphs are slightly unbalanced [CRVW02]. The highly unbalanced case is also
important but the only known construction does not condense the source well. We give explicit
constructions of lossless condensers with condensing close to optimal, and using near-optimal seed
length.

Our main technical contribution is a randomness-efficient method for sampling FD (where F
is a field) with low-degree curves. This problem was addressed before [BSSVW03, MR06] but the
solutions apply only to degree one curves, i.e., lines. Our technique is new and elegant. We use sub-
sampling and obtain our curve samplers by composing a sequence of low-degree manifolds, starting
with high-dimension, low-degree manifolds and proceeding through lower and lower dimension man-
ifolds with (moderately) growing degrees, until we finish with dimension-one, low-degree manifolds,
i.e., curves. The technique may be of independent interest.

2 Cryptography and Quantum Communication Complexity

Cryptography aims to develop protocols that will hide sensitive information from any unauthorized
observer. One of the famous examples of such protocols is a “zero knowledge” protocol, which
allows one one to convince an untrusting party of the truth of some statement without revealing
any sensitive information about the statement. Salil Vadhan gave a survey and reported some new
exciting results on zero-knowledge proofs. Adi Akavia presented the results showing that (essentially)
one needs much more than P6=NP in order to build any cryptographic protocols. Scott Aaronson
explained how one might be able to copy-protect quantum-computer software. Paul Valiant talked
about a new notion of incrementally verifiable computation. Finally, Dmitry Gavinsky explained
some differences between classical shared random string and quantum shared entanglements in the
setting of communication complexity.

Salil Vadhan, The Complexity of Zero Knowledge
I will survey our efforts in the complexity-theoretic study of zero-knowledge proofs, where we

have characterized the classes of problems having various types of zero-knowledge proofs, established
general theorems about these classes, and minimized (indeed, often eliminated) complexity assump-
tions in the study of zero knowledge. In particular, I will discuss our most recent result, showing that
all of NP has ”statistical zero-knowledge arguments” under the (minimal) assumption that one-way
functions exist, which resolves an open problem posed by Naor, Ostrovsky, Venkatesan, and Yung
in 1992 [NOV+].

The talk covers joint works with Minh Nguyen, Shien Jin Ong, and others, focusing on the papers
[Vad04, NV06, NOV06].

Adi Akavia, On Basing One-Way Function on NP-Hardness (joint work with Oded
Goldreich, Shafi Goldwasser and Dana Moshkovitz)

One-way functions are the cornerstone of modern cryptography. Informally speaking, one-way
functions are functions that are easy to compute but are hard to invert (on the average case).
There are several candidate functions, such as RSA or discrete-log, that are believed to be one-way,
nonetheless, to date, no function was proved to be one-way. A puzzling question of fundamental
nature is what are the minimal assumptions required for proving that a function is one-way. A
necessary condition is that P does not equal NP (or more precisely, BPP does not equal NP, namely,
that there is a problem in NP that cannot be solved by any probabilistic polynomial time algorithm).
We ask whether this is also a sufficient condition. Namely, we ask whether there can be an efficient
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reduction from NP (that is, from the task of deciding an NP-complete language on the worst case)
to a one-way function (that is, to the task of inverting a one-way function on the average case).

We proved two results on the impossibility of reducing NP to a one-way function; both results hold
under the (widely believed) complexity assumption that coNP is not contained in AM. 1. There
cannot be a reduction (not even an adaptive reduction) from NP to a ”size verifiable” one-way
function; where we call f size-verifiable if, given y, the number of pre-image |f−1(y)| is efficiently
computable, or, more generally, efficiently verifiable via an AM protocol. 2. There cannot be a
non-adaptive reduction from NP to any one-way function (be it size-verifiable or not).

Our results improve on previously known negative results of [FF93, BT03] by (i) handling adap-
tive reductions (whereas previous works were essentially confined to non-adaptive reductions), and
by (ii) relying on a seemingly weaker complexity assumption.

In the course of proving the above results, we designed a new constant round interactive protocol
for proving upper bounds on the sizes of NP sets. We believe this protocol may be of independent
interest.

Scott Aaronson, Quantum Copy-Protection
In the classical world, copy-protecting software is trivially impossible (not that that’s stopped

numerous companies from trying). But what if your computer program were a quantum state? In
this talk, I’ll present evidence that there exist quantum states that (1) can be used to evaluate
some function f, but (2) can’t be used to efficiently prepare more states with which to evaluate f.
Indeed, in the black-box model, *any* function at all can be quantumly copy-protected, except in
the degenerate case that one can efficiently learn the function by querying it. The proof of this result
uses several new ideas that might be of interest on their own. These include an explicit construction
of ”d-wise independent quantum states,” and a common generalization of the No-Cloning Theorem
and the quantum search lower bound.

Paul Valiant, Incrementally Verifiable Computation
The probabilistically checkable proof (PCP) system enables proofs to be verified in time poly-

logarithmic in the length of a classical proof. Computationally sound proofs improve upon PCPs
by additionally shortening the length of the transmitted proof to be polylogarithmic in the length
of the classical proof. In this paper we explore the limits of such non-interactive proof systems.
We present a proof system that in addition to the above properties allows proofs to be constructed
in space polynomial in the space that it takes to classically accept the language, and time that is
essentially linear in the time to classically accept. Our proof system is also incremental, a new notion
that allows proofs of partial results to be composed together so that the length of the composition
is no more than that of each part. Our construction relies on the hypothesized existence of a proof
of knowledge system that reduces the length of classical proofs by a constant factor.

Dmitry Gavinsky, On the role of shared entanglement
Despite the apparent similarity between shared randomness and shared entanglement in the

context of Communication Complexity, our understanding of the latter is not as good as of the
former. In particular, there is no known ”entanglement analogue” for the famous theorem by New-
man [New91, NS96], saying that the number of shared random bits required for solving any com-
munication problem can be at most logarithmic in the input length (i.e., using more than O(log(n))
shared random bits would not reduce the complexity of an optimal solution).

We prove that the same is not true for entanglement. We establish a wide range of tight (up
to a logarithmic factor) entanglement vs. communication tradeoffs for relational problems. The
”low-end” is: for any t > 2, reducing shared entanglement from logt(n) to o(logt−1(n)) qubits can
increase the communication required for solving a problem almost exponentially, from O(logt(n)) to
ω(
√

n). The ”high-end” is: for any ε > 0, reducing shared entanglement from n1−ε log(n) to o(n1−ε)
can increase the required communication from O(n1−ε log(n)) to ω(n1−ε/2).



3 CIRCUIT COMPLEXITY 5

3 Circuit complexity

Classical complexity theory aims to understand the power and limitations of efficient computation.
One way to understand the limitations is to prove circuit lower bounds. While no strong circuit
lower bounds are known for the general circuit model, there are some results for weaker models
as well as there are some connections between circuit lower bounds and other areas of complexity,
e.g., pseudorandomness. Eric Allender reported on new connections among arithmetic circuit com-
plexity, real computation, and derandomization. Toni Pitassi described new constructions of small
monotone circuits for computing the Majority function. Pierre McKenzie discussed lower bounds
for a special case of branching programs. Dieter van Melkebeek presented results on time hierarchy
for probabilistic complexity classes. Rahul Santhanam showed a new circuit lower bound for the
“promise” version of complexity class MA. Amnon Ta-Shma discussed limitations of “black-box”
reductions. Finally, Josh Buresh-Oppenheim explained how one could construct computationally
hard Boolean functions via “hardness condensing”.

Eric Allender, Arithmetic Circuits, Real Numbers, and the Counting Hierarchy
Arithmetic circuit complexity is the object of intense study in three different subareas of theo-

retical computer science:

1. Derandomization. The problem of determining if two arithmetic circuits compute the same
function is known as ACIT (arithmetic circuit identity testing). ACIT is the canonical exam-
ple of a problem in BPP that is not known to have a deterministic polynomial-time algorithm.
Kabanets and Impagliazzo showed that the question of whether or not ACIT is in P very
tightly linked to the question of proving circuit size lower bounds [KI03].

2. Computation over the Reals. The Blum-Shub-Smale model of computation over the reals
is an algebraic model that has received wide attention [BCS+98].

3. Valiant’s Classes V P and V NP . Valiant characterized the complexity of the permanent
in two different ways. Viewed as a function mapping n-bit strings to binary encodings of
Natural numbers, the permanent is complete for the class CP [Val79b]. Viewed as an n-
variate polynomial, the permanent is complete for the class V NP [Val79a].

The general thrust of these three subareas has been in three different directions, and the questions
addressed seem quite different from those addressed by work in the numerical analysis community,
such as that surveyed by Demmel and Koev [DK03].

This talk will survey some recent work that ties all of these areas together in surprising ways.
Most of the results that will be discussed can be found in [ABK+05, Bur06], but I will also discuss
some more recent progress.

Toniann Pitassi, Monotone circuits for MAJORITY (joint work with Shlomo Hoory and
Avner Magen)

First I discuss what is currently known: the constructions by Ajtai, Komlos, and Szemeredy and
by Valiant. Then I give our new results. We get smaller monotone circuits for MAJORITY; the size
is roughly n2 (rather than Valiant’s n5.3), while the depth is still O(log n). The circuit construction
is also partially derandomized. The second phase which solves the promise problem uses belief
propagation algorithm, and is derandomized and optimal; the first phase is still randomized.

Pierre McKenzie, Incremental branching programs (joint work with Anna Gál and Michal
Koucký)

We propose a new model of restricted branching programs which we call incremental branch-
ing programs. We show that syntactic incremental branching programs capture previously studied
structured models of computation for the problem GEN, namely marking machines [Coo74] and
Poon’s extension [Poo93] of jumping automata on graphs [CR80]. We then prove exponential size
lower bounds for our syntactic incremental model, and for some other restricted branching program
models as well. We further show that nondeterministic syntactic incremental branching programs
are provably stronger than their deterministic counterpart when solving a natural NL-complete
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GEN subproblem. It remains open if syntactic incremental branching programs are as powerful as
unrestricted branching programs for GEN problems.

Dieter van Melkebeek, Time Hierarchies for Semantic Models of Computation (joint
work with Konstantin Pervyshev)

A basic question in computational complexity asks whether somewhat more time allows us to
solve strictly more decision problems on a given model of computation. Despite its fundamental
nature, the question remains unanswered for many models of interest. Essentially, time hierarchies
are known for every syntactic model of computation but open for everything else, where we call a
model syntactic if there exists a computable enumeration consisting exactly of the machines in the
model.

There has been significant progress in recent years, namely in establishing time hierarchies for
non-syntactic models with small advice. In this talk, we survey these results and present a generic
theorem that captures and strengthens all of them. We show that for virtually any semantic model
of computation and for any rationals 1 ≤ c ≤ d, there exists a language computable in time nd

with one bit of advice but not in time nc with one bit of advice, where we call a model semantic if
there exists a computable enumeration that contains all machines in the model but may also contain
others.

Our result implies the first such hierarchy theorem for randomized machines with zero-sided error,
quantum machines with one- or zero-sided error, unambiguous machines, symmetric alternation,
Arthur-Merlin games of any signature, etc. Our argument also yields considerably simpler proofs of
earlier hierarchy theorems with one bit of advice for randomized or quantum machines with two-sided
error.

Rahul Santhanam, Circuit Lower Bounds for Promise-MA
We show that for each k > 0, MA/1 doesn’t have circuits of size nk. This implies the first super-

linear circuit lower bounds for the promise versions of the classes MA, AM, ZPPNP
‖ and BPPpath.

We extend our lower bound to the average-case setting, i.e., we show that MA/1 is not approx-
imable by circuits of size nk. Earlier, it was not even known if there is a language computable in Σ2

with sublinear advice which is inapproximable by linear-size circuits.

Amnon Ta-Shma, New connections between derandomization, worst-case complexity
and average-case complexity (joint work with Dan Gutfreund)

There has been a long line of research trying to explain our failure in proving worst-case to
average-case reductions within NP [FF93, Vio03, BT03, AGGM06]. The bottom line of this research
is, essentially, that under plausible assumptions black-box techniques cannot prove such results. A
simple generalization of [BT03] shows:

Theorem 1 Suppose that there is a language L ∈ NP and a distribution D sampleable in time
nlog n such that there is a black-box and non-adaptive reduction from solving SAT on the worst-case
to solving L on the average with respect to D. Then every language in coNP can be computed by a
family of nondeterministic Boolean circuits of size npolylog(n).

In particular, assuming no unexpected collapse occurs for the polynomial time hierarchy, the
above worst-case to average-case reduction cannot be obtained via a black-box, non-adaptive reduc-
tion.

On the other hand, we show that the reduction of Gutfreund, Shaltiel and Ta-Shma [GSTS05]
breaks the above lower bound. Specifically,

Theorem 2 There exists a distribution D sampleable in time nlog n, such that there is a non-
adaptive reduction from solving SAT on the worst-case to solving SAT on the average with respect
to D.

In particular, the [GSTS05] reduction bypasses the black-box limitation imposed by Theorem 1
(if the above collapse does not happen), and indeed the [GSTS05] reduction is non black-box.

As it turns out, the [GSTS05] reduction is black-box in the reduction function (mapping an
algorithm good on average to a worst-case algorithm), and this reduction is simply the search to
decision reduction. However, it is not black-box in the proof. Instead, the proof of correctness only
shows that any efficient algorithm to the average-case problem, is mapped to an efficient algorithm
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for the worst-case problem. We call such reductions class black-box. We believe such reductions
are often as useful as black-box reductions, and yet, our work demonstrates that they can break
black-box limitations.

Finally, we are now in a position where there are no negative results to stop us. How far can
we go? Given the techniques of [GSTS05] a natural goal is to answer the following Open Question:
Does NP 6⊆ BPP imply the existence of a language in QNP = NTIME(nO(log n)) that is hard on
average for BPP?

Using the [IL90] reduction we show such a result, but only using some weak, unproven derandom-
ization assumption. Resolving this Open Question without any assumptions remains a challenge.

Joshua Buresh-Oppenheim, Making Hard Problems Harder (joint work with Rahul San-
thanam)

Proving circuit lower bounds for explicit Boolean functions is one of the most fundamental and
challenging questions in theoretical computer science. We consider an approach to this question
which aims to improve hardness rather than give a direct proof of hardness. We define “hardness
extractors,” which are procedures taking in a Boolean function as input together with a relatively
small advice string, and outputting a Boolean function on a smaller number number of bits which has
greater hardness when measured in terms of its input length. We show a construction of a hardness
extractor with linear advice extracting deterministic hardness from non-deterministic hardness. As
a consequence, we obtain a “gap” theorem for E with linear advice: if E with linear advice requires
exponential non-uniform space, then E with linear advice requires non-uniform space 2n/n.

We also define a natural class of “relativizing” hardness extractors and give lower bounds on
the advice required by such extractors. This indicates that hardness extraction without advice
and extraction of deterministic hardness from deterministic hardness in general will require novel
techniques. On the other hand, we show two special cases where we can extract from deterministic
hardness without advice: biased functions and functions that are hard on average.

4 Error-correcting codes and PCPs

Error-correcting codes play a major role in modern complexity theory. Many important results
in complexity (e.g., the famous PCP theorem) are best viewed as constructions of special error-
correcting codes. Once this connection between coding and complexity theory is realized, both areas
enjoy mutual benefits by using ideas and insights from the other area. Venkatesan Guruswami gave
an explicit construction of list-decodable codes with optimal rate. Ran Raz presented a construction
of a very efficient low-degree test (useful for PCPs). Ragesh Jaiswal talked about some error-
correcting codes directly inspired by complexity-theoretic questions. Eli Ben-Sasson discussed some
limitations of list-decoding. Finally, Oded Regev showed an improved hardness of approximation
result for the problem of finding a shortest vector in a lattice.

Venkatesan Guruswami, List Decoding with Optimal Rate: Folded Reed-Solomon
Codes (joint work with Atri Rudra)

Suppose you want to communicate a message of k packets on a noisy communication channel.
So you judiciously encode it as a redundant collection of n = ck packets and transmit these. What
is the fewest number of correct packets one needs to receive in order to have any hope of recovering
the message?

Well, clearly one needs at least k correct packets. In this talk, I will describe an encoding scheme
that attains this information-theoretic limit: for any desired ε > 0, it enables recovery of the message
as long as at least k(1 + ε) packets are received intact. The location of the correct packets and the
errors on the remaining packets can be picked adversarially by the channel.

This achieves the optimal trade-off (called ”capacity”) between redundancy and error-resilience
for a malicious noise model where the channel can corrupt the transmitted symbols arbitrarily
subject to a bound on the total number of errors. These results are obtained in an error-recovery
model called list decoding. The talk will introduce and motivate the problem of list decoding, and
then give a peek into the algebraic ideas and constructions that lead to the above result.
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Ran Raz, Sub-Constant Error Low Degree Test of Almost Linear Size (joint work with
Dana Moshkovitz)

Given a function f : Fm → F over a finite field F , a low degree tester tests its agreement with
an m-variate polynomial of total degree at most d over F . The tester is usually given access to an
oracle A providing the supposed restrictions of f to affine subspaces of constant dimension (e.g.,
lines, planes, etc.). The tester makes very few (probabilistic) queries to f and to A (say, one query
to f and one query to A), and decides whether to accept or reject based on the replies.

We wish to minimize two parameters of a tester: its error and its size. The error bounds the
probability that the tester accepts although the function is far from a low degree polynomial. The
size is the number of bits required to write the oracle replies on all possible tester’s queries.

Low degree testing is a central ingredient in most constructions of probabilistically checkable
proofs (PCP s) and locally testable codes (LTCs). The error of the low degree tester is related to
the soundness of the PCP and its size is related to the size of the PCP (or the length of the LTC).

We design and analyze new low degree testers that have both sub-constant error o(1) and almost-
linear size n1+o(1) (where n = |F |m). Previous constructions of sub-constant error testers had
polynomial size [AS03, RS97]. These testers enabled the construction of PCP s with sub-constant
soundness, but polynomial size [AS03, RS97, DFK+99]. Previous constructions of almost-linear
size testers obtained only constant error [GS02, BSSVW03]. These testers were used to construct
almost-linear size LTCs and almost-linear size PCP s with constant soundness [GS02, BSSVW03,
BSGH+04, BSS05, Din06].

Ragesh Jaiswal, Approximately list-decoding direct product codes and uniform
hardness amplification (joint work with Russell Impagliazzo and Valentine Kabanets)

We consider the problem of locally list-decoding direct product codes. For a parameter k, the
k-wise direct product encoding of an N -bit message msg is an Nk-length string over the alphabet
{0, 1}k indexed by k-tuples (i1, . . . , ik) ∈ {1, . . . , N}k so that the symbol at position (i1, . . . , ik) of the
codeword is msg(i1) . . .msg(ik). Such codes arise naturally in the context of hardness amplification
of Boolean functions via Yao’s Direct Product Lemma (and closely related Yao’s XOR Lemma),
where typically k � N (e.g., k = poly log N).

We describe an efficient randomized algorithm for approximate local list-decoding of direct prod-
uct codes. Given oracle access to a word which agrees with a k-wise direct product encoding of some
message msg in at least ε fraction of positions, our algorithm outputs a list of poly(1/ε) Boolean cir-
cuits computing N -bit strings (viewed as truth tables of log N -variable Boolean functions) such that
at least one of them agrees with msg in at least 1−δ fraction of positions, for δ = O( log(1/ε)

k +k−0.1),
provided that ε = Ω(poly(1/k)); the running time of the algorithm is polynomial in log N and 1/ε.
When ε > e−kα

for a certain constant α > 0, we get a randomized approximate list-decoding
algorithm that runs in time quasipolynomial in 1/ε (i.e., (1/ε)poly log 1/ε).

By concatenating the k-wise direct product codes with Hadamard codes, we obtain locally list-
decodable codes over the binary alphabet, which can be efficiently approximately list-decoded from
fewer than 1/2− ε fraction of corruptions as long as ε = Ω(poly(1/k)). As an immediate application,
we get uniform hardness amplification for PNP‖ , the class of languages reducible to NP through
one round of parallel oracle queries: If there is a language in PNP‖ that cannot be decided by any
BPP algorithm on more that 1−1/nΩ(1) fraction of inputs, then there is another language in PNP‖

that cannot be decided by any BPP algorithm on more that 1/2 + 1/nω(1) fraction of inputs.

Eli Ben-Sasson, Subspace Polynomials and List Decoding of Reed-Solomon Codes
(joint work with Swastik Kopparty and Jaikumar Radhakrishnan)

We show combinatorial limitations on efficient list decoding of Reed-Solomon codes beyond the
Johnson and Guruswami-Sudan bounds. In particular, we show that for arbitrarily large fields
FN , |FN | = N , for any δ ∈ (0, 1), and K = N δ:

• Existence: there exists a received word that agrees with a super-polynomial number of distinct
degree K polynomials on approximately N

√
δ points each;

• Explicit: there exists a polynomial time constructible received word that agrees with a super-
polynomial number of distinct degree K polynomials, on approximately 2

√
log NK points each.
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In both cases, our results improve upon the previous state of the art, which was about N δ/δ
for the existence case and about 2N δ for the explicit one. Furthermore, for δ close to 1 our bound
approaches the Guruswami-Sudan bound (which is

√
NK) and implies limitations on extending their

efficient RS list decoding algorithm to larger decoding radius.
Our proof method is surprisingly simple. We work with polynomials that vanish on subspaces

of an extension field viewed as a vector space over the base field. These subspace polynomials are
a subclass of linearized polynomials that were studied by Ore in the 1930s and by coding theorists.
For us their main attraction is their sparsity and abundance of roots, virtues that recently won them
pivotal roles in probabilistically checkable proofs of proximity and sub-linear proof verification.

Oded Regev, Tensor-based Hardness of the Shortest Vector Problem to within Al-
most Polynomial Factors (joint work with Ishay Haviv)

We show that unless NP ⊆ RTIME(2poly(log n)), the Shortest Vector Problem (SV P ) on n-
dimensional lattices in the `p norm (1 ≤ p < ∞) is hard to approximate in polynomial-time to
within a factor of 2(log n)1−ε

for any ε > 0. This improves the previous best factor of 2(log n)1/2−ε

under the same complexity assumption due to Khot [Kho05]. Under the stronger assumption NP 6⊆
RSUBEXP , we obtain a hardness factor of nc/ log log n for some c > 0. Our proof starts with
SV P instances from [Kho05] that are hard to approximate to within some constant. To boost the
hardness factor we simply apply the standard tensor product of lattices. The main novel part is in
the analysis, where we show that the lattices of [Kho05] behave nicely under tensorization. At the
heart of the analysis is a certain matrix inequality which was first used in the context of lattices by
de Shalit [deS06].

5 Computational Learning

The area of computational learning is concerned with the problems of learning a function, given
a number of samples drawn according to some distribution on the inputs to the function. Ryan
O’Donnell explained how to test, using very few samples, whether a given function is a Boolean
halfspace. Adam Klivans presented results on learning halfspaces. Finally, Scott Aaronson showed
how to learn quantum states.

Ryan O’Donnell, Testing Halfspaces (joint work with Kevin Matulef (MIT), Ronitt Rubin-
feld (MIT), and Rocco Servedio (Columbia))

In this talk we describe work showing that the class of Boolean halfspaces – -i.e., functions
f : {−1, 1}n → {−1, 1} representable as f(x) = sgn(c1x1 + · · ·+ cnxn− θ) — has a property testing
algorithm making only poly(1/ε) queries.

Adam Klivans, Agnostically Learning Halfspaces (joint work with A. Kalai, Y. Mansour,
and R. Servedio)

We give the first algorithm that efficiently learns halfspaces (under distributional assumptions)
in the notoriously difficult agnostic framework of Kearns, Schapire, and Sellie. In this model, a
learner is given arbitrarily labeled examples from a fixed distribution and must output a hypothesis
competitive with the optimal halfspace hypothesis.

Our algorithm constructs a hypothesis whose error rate on future examples is within an additive
ε of the optimal halfspace in time poly(n) for any constant ε > 0 under the uniform distribution
over {0, 1}n or the unit sphere in Rn, as well as under any log-concave distribution over Rn. It
also agnostically learns Boolean disjunctions in time 2Õ(

√
n) with respect to any distribution. The

new algorithm, essentially L1 polynomial regression, is a noise-tolerant arbitrary-distribution gen-
eralization of the “low-degree” Fourier algorithm of Linial, Mansour, and Nisan. Our Fourier-type
algorithm over the unit sphere makes use of approximation properties of various classes of orthogonal
polynomials.

Scott Aaronson, The Learnability of Quantum States
Traditional quantum state tomography requires a number of measurements that grows exponen-

tially with the number of qubits n. But using ideas from computational learning theory, we show
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that ”for most practical purposes” one can learn a state using a number of measurements that grows
only linearly with n. Besides possible implications for experimental physics, our learning theorem
has two applications to quantum computing: first, a new simulation of quantum one-way protocols,
and second, the use of trusted classical advice to verify untrusted quantum advice.

6 Research Emerging from Workshop

The goal of the workshop was to bring some of the best researchers in the area of computational
complexity to discuss the current state of the art in the area, and point out further directions of
research. The workshop has been very successful from the point of view of many fruitful interac-
tions among various groups of the workshop participants. Some ideas first discussed during the
workshop already found their way into research papers. One example is the following paper Extrac-
tors and Condensers from Univariate Polynomials by Venkatesan Guruswami, Chris Umans, and
Salil Vadhan, which was posted on Electronic Colloquium on Computational Complexity, October
2006 [GUV06]. Below is the description of this work provided by the authors.

Context and Genesis: There is a long body of work in theoretical computer science on construc-
tions of both randomness extractors — functions that extract almost-uniform bits from sources of
biased and correlated bits, and expander graphs — graphs that are sparse but highly connected.
These two kinds of objects are closely related, and both have a wide variety of applications in the-
oretical computer science. The paper [GUV06] resulting from the BIRS workshop presents new
constructions of both extractors and expanders (described as ‘lossless condensers’) that significantly
improve previous work, while also being simpler and more direct.

The work began with a conversation between the participants Guruswami, Umans, and Vadhan
in the Corbett Lounge after Guruswami had presented his new work [GR06] on capacity-achieving
error-correcting codes. Indeed, for a few years, it has been known that randomness extractors can be
viewed as a generalization of “list-decodable” error-correcting codes. Because of this connection and
similarities between the Guruswami–Rudra codes and a previous extractor construction of Shaltiel
and Umans [SU01], it seemed natural to explore whether the ideas underlying the Guruswami–Rudra
codes and their predecessors [PV05] could be applied to construct better extractors and expander
graphs. The participants pursued this idea via email after the workshop, and within a few weeks,
the new results had emerged.

Abstract: We give new constructions of randomness extractors and lossless condensers that are
optimal to within constant factors in both the seed length and the output length. For extractors, this
matches the parameters of the current best known construction [LRV+03]; for lossless condensers,
the previous best constructions achieved optimality to within a constant factor in one parameter
only at the expense of a polynomial loss in the other.

Our constructions are based on the Parvaresh-Vardy codes [PV05], and our proof technique is
inspired by the list-decoding algorithm for those codes. The main object we construct is a condenser
that loses only the entropy of its seed plus one bit, while condensing to entropy rate 1 − α for any
desired constant α > 0. This construction is simple to describe, and has a short and completely self-
contained analysis. Our other results only require, in addition, standard uses of randomness-efficient
hash functions (to obtain a lossless condenser) or expander walks (to obtain an extractor).

Our techniques also show for the first time that a natural construction based on univariate
polynomials (i.e., Reed-Solomon codes) yields a condenser that retains a 1−α fraction of the source
min-entropy, for any desired constant α > 0, while condensing to constant entropy rate and using a
seed length that is optimal to within constant factors.
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