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1 Introduction and overview of the Field

Reaction-diffusion equations, semilinear diffusion equations and free-boundary problems form an important
domain of the theory of partial differential equations thatis both very rich and challenging mathematically
and is intricately related to numerous applications in physical, chemical and biological sciences.

The purpose of this conference was to bring together researchers in various areas of this field as well
as applied mathematicians to highlight the recent developments and discuss the open problems that are of
interest both from the mathematical perspective and from the point of view of applications. Due to the
enormous activity of the field, it was impossible to cover every topic in reaction-diffusion equations. We
have, chosen to lay the emphasis on the following items, thatwe considered as particularly interesting in
view of their mathematical richness, and potential applications. The following subject have particularly been
focused upon:

• Singular perturbations, free boundary problems and reaction-diffusion equations.This topic is a clas-
sical one in reaction-diffusion equations - see for instance Fife [15], but has undergone very important
developments in the last years, such as the recent progress in the proof of the de Giorgi conjecture, the
description of the Ginzburg-Landau vortices dynamics, theregularity theory of free boundary problems
and the dynamics of reaction-diffusion systems.

• Complex propagation phenomena in reaction-diffusion equations. Although some mathematical mile-
stones in the theory of reaction-diffusion equations date back to the 1930’s, they were mainly concerned
with homogeneous situations. More realistic heterogeneous reaction-diffusion equations or systems
have been handled only relatively recently. Over the recentyears, mathematical results have consid-
erably enriched our understanding of these models and theirbiological applications. A very partial
list of examples of areas where considerable recent progress has been made include the propagation
phenomena related to the existence and the dynamical properties of travelling fronts in heterogeneous
environments.

• Homogenization, stochastics and dynamics of reaction-diffusion equations. Homogenization of reaction-
diffusion and Hamilton-Jacobi problems in a periodic medium is by now well understood. However,
only recently progress has been made in similar issues for random media. Reaction-diffusion equations
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are closely connected to the large deviation problems for diffusion processes and weak stochastic per-
turbations of dynamical systems. Recently much progress has been made in asymptotic theories in this
area, including the situations when the underlying dynamical system is itself random.

2 Recent Developments and Open Problems

2.1 Singular perturbations, free boundary problems and reaction-diffusion systems

2.1.1 Phase transitions, geometric methods in elliptic equations, and the de Giorgi conjecture

The equilibrium state of a binary alloy may be described by the celebrated Allen-Cahn equation: ifu(x) ∈
(−1, 1) denotes the local proportion of each component, we have

−∆u =
1

ε2
W ′(u), x ∈ R

N (1)

whereW is an even potential, having global minima at±1. Whenε is - at least formally - sent to 0, the
limiting solutionu of (1) takes the values 1 or−1, the interface between the regions{u = 1} and{u = −1}
being separated by a surfaceΓ with zero mean curvature. The interface equation is not so hard to derive in a
formal fashion: assuming thatΓ is smooth, and lettingφ0(x) be the unique solution of

−φ′′
0 = W ′(φ0), φ0(±∞) = ±1, φ0(0) = 0,

a plausible ansatz for the solutionuε of (1) is

uε(x) ∼ φ0(
d(x)

ε
), with d(x) = dist(x, Γ) (signed distance)

which yields:∆d = 0 onΓ. This precisely says that the mean curvature ofΓ is zero. A mathematically rig-
orous derivation of that fact is, of course, much more difficult. Modica and Mortola [31] prove the following
version of this fact: a sequence of minimizers(uε)ε of the functional

u 7→

∫

(
1

2
|∇u|2 −

1

ε
W (u)) dx

converges to a difference of characteristic functions of the formχE − χΩ\E ; moreover the set∂E ∩ Ω is a
minimal hypersurface.

The de Giorgi conjecture states the following:
(i) (Nonexistence part) Given a potentialW as above, analytic in its argument, letu(x) satisfy

−∆u = W ′(u), x ∈ R
N ;

∂u

∂xN

≥ 0. (2)

Then the level sets ofu are hyperplanes, at least ifN ≤ 8.
(ii) (Existence part) ForN ≥ 9, there are truly multi-dimensional solutions of (2).
This conjecture was motivated by:
- a theorem of J. Simons [38], asserting that any minimal graph, defined over the whole spaceR

N−1, has
to be an affine function,

- a theorem of Bombieri, de Giorgi, Giusti [8] asserting that, for N − 1 = 2m ≥ 8, the Simons cone

{

m
∑

i=1

x2
i =

2m
∑

i=m+1

x2
i } is minimal.

The de Giorgi conjecture is also deeply related to the study of the level sets of converging sequences of
solutions of (1): the nonexistence part says that these level sets are uniformly Lipschitz - and that an internal
layer expansion is justified.

The nonexistence part of the conjecture was recently proved, in full generality, by Savin [34]. Earlier
results were proved by Ghoussoub-Gui [21] (N = 2), Ambrosio-Cabŕe [1] (N = 3), Ghoussoub-Gui [22]
(particular cases of the dimensions 4 and 5).
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2.1.2 Free boundaries in reaction-diffusion equations, and their qualitative properties

A typical instance of the free boundary problems on which theconference focused is the following class of
parabolic equations

Tt − ∆T =
1

ε2
(1 − T ) exp(

T − 1

ε
) := (1 − T )fε(T ), x ∈ R

N . (3)

Such an equation is a - fairly good, and still widely employedfor qualitative predictions - model for the
propagation of a flame in a combustible mixture; the functionT (t, x) represents the temperature of the
mixture and the right-hand side accounts for the rate at which the chemical reaction proceeds. The parameter
ε is the inverse of the - fortunately large - reduced activation energy. As one may realize, the reaction term
fε(T ) is concentrated at the valueT = 1, which is here the normalized burnt gas temperature. Whenε is sent
to 0, the problem can be shown - at least in a formal fashion - totend to the more singular one:

Tt − ∆T = δT=1. (4)

The space is here separated into two regions:{T < 1} and{T = 1}, and the normal derivative of the
temperature - provided it exists! - undergoes a jump of size 1at the boundary∂{T = 1}. Deriving (4)
formally is not so difficult: it is a classical internal layeranalysis; doing it in a mathematically rigorous
fashion is once again a hard problem.

Important progress has been made in the treatment of free boundary problems by Caffarelli and his col-
laborators, especially in the understanding of their regularity. The methods range from potential theory and
harmonic analysis to geometric measure theory; see for instance the series [9] - regularity of elliptic FBP’s,
[2] - regularity for the Stefan problem, [10] - monotonicityformulae implying uniform estimates for problems
of the type (3); see also [11] where a lot of these ideas are exposed. This wide body of methods and ideas
have been applied - to many other types of problems, such as homogenization of free boundary problems,
singular perturbations - the proof of the de Giorgi conjecture by Savin is inspired by the ideas of Caffarelliet
al. -, fully nonlinear reaction-diffusion equations...

2.1.3 The dynamics of reaction-diffusion systems

Reaction-diffusion systems may exhibit complex dynamics,and important hints in their description are pro-
vided by singular perturbations. Examples of complex dynamics may already be found by the following slight
generalization of equation (3): assume that the chemical reaction follows the single-step schemeA → B,
and assume that the reactantA does not diffuse in the same fashion as the temperature: a newparameter -
the Lewis number, denoted byLe - enters into play. LetY (t, x) denote the mass fraction of the reactant;
equation (3) becomes

{

Tt − ∆T = Y fε(T )

Yt −
∆Y

Le
= −Y fε(T )

(5)

This system has 1D travelling wave solutions, see [7]. A famous computation of Sivashinsky [39] indicates
that, asLe getsε-far from 1, the wave destabilizes into multi-dimensional patterns (Le < 1) or into pulsating
waves(Le > 1); this was proved in a rigorous way in [23]. Of interest if the behavior of the flame front -
here, the set{T − 1 ∼ ε} near the critical parameter; if the front is described by a graph{y = Φ(t, x)},
an evolution equation is once again provided by Sivashinsky[39] in the form of the celebrated Kuramoto-
Sivashinsky equation:

Φt + ∆2Φ + ∆Φ +
1

2
|∇Φ|2 = 0. (6)

A lot has already been said on (6); due to its universal character - it arises in a lot of interface problems -
the subject is still extremely active. Its rigorous derivation from (5) seems to be a challenging open problem.
Depending on the geometry considered and the values of the Lewis number, the flame front may satisfy
extremely diverse types of evolution equations; see for instance [27] for a version of (5) withLe < 1.

A singular perturbation may also occur in a reaction-diffusion system under the form of a small diffusion;
a generic presentation for the system would be

{

ut − ∆u = f(u, v)
vt − ε∆v = g(u, v)

(7)



4

Singular perturbation results for ordinary differential equations date back to the early 60’s; however a seminal
work of C. Jones, unifying all these results in the frameworkof geometric theory of dynamical systems, has
fostered a large body of works investigating complex wave patterns for (7). Stability of travelling waves is an
important topic that has been addressed to in the workshop; some important problems of the moment include

• Complex flame models - such as flames in two-phase flows;

• biological models - such as the Gray-Scott or Gierer-Meinhardt model; see the talk of A. Doelman
below;

• detonation models. This last topic is particularly challenging: such models include the whole set of gas
dynamics equations, plus an equation for the chemistry. Thestability of detonation waves is a complex
problem, and the introduction of a reduced model for fast waves in porous media, by Gordon-Kagan-
Sivashinsky [24] seems to be quite promising.

2.2 Complex propagation phenomena in reaction-diffusion equations

Reaction-diffusion equations appear in many different areas of physics and of the life sciences. They are
commonly used to describe phase transitions in various contexts in physics and in chemistry. In combustion
theory, for instance, these equations arise in models of flame propagation. Equations of this kind play a
central role in modeling biological invasions in various situations (population dynamics, physiology, wound
healing, tumor growth, etc, see the classical books of Murray [32] and Shigesada and Kawasaki [37]).

The existence of traveling wave like solutions is an essential feature of this class of equations that is rele-
vant for all the models mentioned above. It is strongly related to propagation phenomena that are particularly
important and again a common feature in these areas.

As a mathematical subject, the study of reaction-diffusionequations, traveling waves and propagation
properties is very active now. Even though, it was first introduced in the homogeneous framework in the late
1930s (see [16, 26]), there has been a profusion of works since the 1970s with results that have profoundly
enriched our understanding of these equations. It is only relatively recently that researchers have been able
to address propagation and traveling fronts in heterogeneous environments and to take into account other
phenomena, such as transport, interaction with environment, singular behavior etc. The recent years have
indeed seen much progress on these questions.

H. Berestycki (EHESS) gave two lectures on recent advances in this area. He first reported on several pa-
pers with F. Hamel and N. Nadirashvili [3, 4, 5] on existence and qualitative properties of pulsating traveling
fronts in periodic media, for reaction-diffusion-advection equations of the type

ut − div(A∇u) + q · ∇u = f(x, u), x ∈ Ω, (8)

when A(x), q(x) and f(x, u) have the same periodicity in thex-variables as the domainΩ itself. The
influence of different phenomena involved – such as transport, diffusion, reaction, geometry of the domain –
on the speeds of propagation were discussed. For instance, several well-known facts can be proved rigorously:
the perforations slow down the propagation, whereas stirring always speeds up the fronts.

Another key notion involved here is the asymptotic speed of spreading in domains which have no period-
icity. The spreading speed in a given direction is defined as the speed of the leading edge of the solution of
the Cauchy problem at large times. For the solutions of the equation

ut = ∆u + f(u) (9)

in general domainsΩ with sub-linear nonlinearitiesf of the Fisher-KPP type (0 < f(s) ≤ f ′(0)s for
s ∈ (0, 1) with f(0) = f(1) = 0), the spreading speeds may depend in general on the domain and on the
initial condition, even if the solution is initially compactly supported. Even for this homogeneous equation,
very interesting new phenomena appear, due to the complex geometry of the domain. For instance, in very
narrow domains, the spreading speed may be infinite.

More complex dynamical behaviors may also occur. Roughly speaking, even for simple models (9) and
even in dimension1, when the nonlinearityf is of the combustion type (f = 0 on [0, θ], f > 0 on (θ, 1) and
f(1) = 0 with 0 < θ < 1) or of the bistable type (f < 0 on(0, θ), f > 0 on(θ, 1) andf(0) = f(θ) = f(1) =
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0), then propagation may occur or fail according to the size ofthe initial condition. For instance, for bistable
nonlinearities with positive mass over[0, 1], A. Zlatos [40] recently proved that, when the initial condition
at time 0 is the characteristic function of an interval, then there isa critical positive interval size below
which the solution will eventually converge to0 uniformly in x ∈ R, and above which it will converge to1
locally, and actually develop into two expanding fronts. For the critical interval size, the solution eventually
converges to the unstable non-trivial ground state. Even ifthe results are not as precise when the equation
involves heterogeneous coefficients and in particular a non-constant flow, propagation/quenching issues were
addressed recently and special attention has been put on therole played by the profile of the underlying flow
(see P. Constantin, A. Kiselev, L. Ryzhik, A. Zlatos [12, 25]).

Further generalizations of the notion of traveling front orwave in general heterogeneous frameworks were
recently introduced for general systems of partial differential equations. These new definitions are based on
uniform limits far away, with respect to the geodesic distance inside the domain, from some hypersurfaces.
These notions extend the previous known cases of periodic oralmost-periodic environments. General situa-
tions like the propagation in curved tubes, exterior domains, etc can now be considered. The determination
of the shape of the leading edge of the fronts and the stability of these new fronts are some of the main goals
of future work.

The question of propagation in media which are locally perturbed is an open problem which is one of
the most important cases for the applications. Indeed, the same issues of propagation can be asked when the
medium is homogeneous (or even periodic) outside a localized zone and the definition of generalized waves
is also adapted to this situation. The archetype is the equation (8), where the coefficientsA, q andf , or the
domainΩ, are homogeneous or periodic outside a compact set. This is the case of a tube which has a local
stricture. What are the necessary and sufficient conditionsto have propagation ?

Another very interesting open problem is to describe the propagation of generalized fronts in media for
which some diffusion or reaction coefficients are monotone in the direction of propagation, or more generally
when the characteristics of the medium are different far ahead and far behind the front. These questions
may depend strongly on the nonlinearity, propagation may fail for bistable nonlinearities whereas, everything
else being unchanged, propagation may occur for monostableequations. These problems have concrete
applications in combustion or in biological models for instance.

Biological invasions are indeed one of the most common examples of propagation phenomena and it
seems fair to say that these are the most widely used equations in ecological and biological modeling (epi-
demics, epizootics and tumor growths can also be modelled byreaction-diffusion equations). Much progress
has been made in the recent years about the mathematical analysis of such models. It helps to have a better
understanding of the concrete applications and to be able tomake reasonable predictions. For instance, for
ecological models of the type

ut = div(A(x)∇u) + (µ(x) − ν(x)u)u (10)

in periodic fragmented environments, light was recently shed on how a spatially diverse environment affects
biological invasions or species survival in this context. Aless fragmented medium, which means that the
favourable and unfavourable regions are more aggregated, is better for species persistence (see [6]).

More complex models can also be used in the applications. As an example, aggregation phenomena
for bacteria can be modelled by systems of equations which involve chemotactic terms, meaning that some
species tend to diffuse in the direction of positive concentration gradient of a chemical agent (see [32]).
In other contexts, nonlocal models can be used to model long-range dispersion and new versions of the
maximum principle, which is one of the most powerful tools inreaction-diffusion equations, were recently
established.

In mathematical terms, from a dynamical point of view, frontpropagation can be thought of as the invasion
of a more unstable or less stable state by a more stable or lessunstable state. Even if most models do not have
a variational structure and no Lyapounov functional is available in general, the study of the spectral properties
of the linearized equations around the limiting states is crucial. Another important point is to determine the
set of all possible limiting states. For instance, for equations as simple as (10), the existence of a stationary
positive state is not obvious. Indeed, since the equations are set in unbounded domains, to allow propagation,
the lack of compactness creates additional complications.Recent progress was made on these questions, for
equations more general than (10), and new qualitative and Liouville classification results were obtained.
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2.3 Homogenization, stochastics and dynamics of the reaction-diffusion equations

2.3.1 Reaction-advection-diffusion equations and weak perturbations of dynamical systems

The question of the interplay of a strong advection and weak diffusion is very natural and physically relevant,
and the subject has a long history. The passive scalar model

φt + u · ∇φ = ε∆φ,

is probably one of the most studied PDEs in both mathematicaland physical literature. One important direc-
tion of research focused on homogenization, where in a certain limit (typically small diffusion) the solution
of a passive advection-diffusion equation converges to a solution of an effective diffusion equation. We refer
to [29] for more details and references. The corresponding reaction-diffusion models

φt + u · ∇φ = ε∆φ +
1

ε
f(φ),

and

φt +
1

ε
u · ∇φ = ∆φ + f(φ),

have been also extensively studied. Usually, the existenceof such a limit requires additional assumptions on
the scaling ofu (see e.g. [30] for further references). The Freidlin-Wentzell theory [17, 18, 19, 20] studies
such problems inR2 and, for a class of flows, proves the convergence of solutionsas the flow strength tends to
infinity to solutions of an effective diffusion equation on the Reeb graph of the stream-function. The graph,
essentially, is obtained by identifying all points on any streamline. The conditions on the flows for which
the procedure can be carried out are given in terms of certainnon-degeneracy and growth assumptions on the
stream function. Recently this theory has been extended to aclass of three-dimensional flows, where the limit
problem is formulated on an “open book” rather on a graph. Thedynamics is once again described in terms
of the slow variables with the fast variations averaged out.Another direction has been taken in [13] – instead
of trying to identify a limit problem, the question is what flows are most effective in mixing the solutions as
their strength tends to infinity. It turns out that with an appropriate and natural definition of mixing one can
provide a sharp classification of such “relaxation-enhancing” flows.

2.3.2 Homogenization of Hamilton-Jacobi and reaction-diffusion equations

Homogenization of the Hamilton-Jacobi equations in a periodic medium has been well understood since
the unpublished preprint by Lions, Papanicolaou and Varadhan from the late 1980’s. The problem is to
homogenize the (possibly second-order) equation

∂uε

∂t
−

ε

2
∆uε + H (t/ε, x/ε,∇uε, ω) = 0,

and find an effective Hamilton-Jacobi problem

∂u

∂t
+ H̄(∇u) = 0.

HereH is a random Hamiltonian and̄H is the deterministic Hamiltonian for the homogenized problem.
This problem (as well as a class of related homogenization questions) has been recently studied in a series
of papers by P.-L. Lions and P. Souganidis, and independently by E. Kosygina, F. Rezakhanlou and S.R.S.
Varadhan. A very interesting and challenging open problem is obtain non-trivial bounds for the homogenized
Hamiltonian – this problem remains open even in the periodiccase.

3 Presentation Highlights

3.1 Geometric methods for semilinear reaction-diffusion equations

X. Cabŕe, during his two-hour lecture, presented recent developments on solutions of reaction-diffusion el-
liptic equations that are related to some classical resultsin the theory of minimal surfaces. Three results in
minimal surfaces theory and their semilinear analogues.
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• Regularity of solutions of elliptic equations in low dimensions. Inspired by related results for harmonic
maps, Cabŕe discussed semilinear analogues, particularly recent results by Capella and himself on
radial solutions of reaction-diffusion equations, including the well-known Gel’fand equation

−∆u = eu.

In low space dimensions, they lead to the boundedness or regularity of radial solutions in a ball, and to
the instability of radial solutions in the whole space.

• Flatness of minimal graphs in low dimensions.This item is related to the de Giorgi conjecture. Cabré
explained how bounded solutions in the whole space which aremonotone in one variable are always
local minimizers of the energy

E(u) =

∫

BR

(
1

2
|∇u|2 − W (u)) dx.

This implies that, in low space dimensions, they are necessarily functions of only one Euclidean vari-
able.

• Saddle solutions.Guided by this variational approach, Cabré discussed the following generalisation
of an earlier result by Schatzman [35]: inIR2m, equation (2) has a solution whose symmetries are the
same as those of the Simons cone; this solution, which is unique up to translations, is called the saddle
solution of the Allen-Cahn equation; moreover, ifm = 1, this solution is unstable. Cabré explained his
results results in this direction: instability of the saddle solutions in dimensions2m = 4 and 6, relying
on a delicate estimate of Modica: ifu satisfies−∆u = W ′(u), W satisfying the standard assumptions,
then

1

2
|∇u|2 ≤ W (u).

Would these solutions be stable in higher dimensions - as is suggested by the Bombieri-de Giorgi-Giusti
analysis, this would lead to a counterexample de Giorgi Conjecture.

O. Savin- who put an end to the non-existence part of the de Giorgi conjecture - discussed viscosity
solutions of fully nonlinear elliptic equations

F (D2u, Du, u, x) = 0

for which u ≡ 0 is a solution. IfF is smooth and uniformly elliptic only in a neighborhood of the points
(0, 0, 0, x), thenu is smooth in the interior if‖u‖L∞ is sufficiently small. This result - which uses difficult
Caffarelli-type estimates on second order derivatives - has applications to the study of the regularity of free
boundary problems; in particular it can help to prove regularity when Lipschitz continuity and nondegeneracy
of the free boundary are known.

3.2 Free boundary problems and applications

A. Melletdiscussed delicate effects in the homogenization of free boundary problems in two cases. First, he
considered the scalar thermo-diffusive model for flame propagation

Tt − ∆T =
1

ε2
(1 − T )f(

x

δ
,
T − 1

ε
);

the parameterδ accounting for possible heterogeneities in the medium. Hysteresis phenomena occur: passing
to the limit inε → 0, thenδ → 0 do not yield the same result as taking the limits in the reverse order. Second,
he presented a model for the equilibrium of a sticky drop on a rough surface; this amounts to minimising a -
nonsmooth - functional of the characteristic function of the drop, with highly oscillating coefficients. There
is a homogenisation limit to this problem, namely the drop isalmost spherically spherical, and the limiting
radius may be computed from data.

J.-S. Guoreported on a two-point free boundary problem for a quasilinear parabolic equation, mainly
arising in the study of the motion of interface moving with curvature. Global and non-global existence of
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solutions, was discussed; non-global existence may occur only through a finite-time extinction process - in
the case of the mean curvature motion, this amounts to a complete curve shortening. The asymptotic profile
at extinction, as well as convergence to a self-simlar profile, were discussed.

The talk ofN. Ghoussoubconcerned the nonlinear elliptic problem

−∆u =
λf(x)

(1 + u)2

on a bounded domainΩ of R
N with Dirichlet boundary conditions. This equation models asimple electro-

static Micro-Electromechanical System (MEMS) device consisting of a thin dielectric elastic membrane with
boundary supported at0 above a rigid ground plate located at−1. When a voltage –represented here byλ–
is applied, the membrane deflects towards the ground plate and a snap-through may occur when it exceeds a
certain critical valueλ∗ (pull-in voltage). This creates an instability which greatly affects the design of many
devices. The challenge is to estimateλ∗ in terms of material properties of the membrane, which can befabri-
cated with a spatially varying dielectric permittivity profile f . Whenλ < λ∗ (and whenλ = λ∗ in dimension
N ≤ 7), there is at least one steady state, while none is possible for λ > λ∗. More refined properties of
steady states –such as regularity, stability, uniqueness,multiplicity, energy estimates and comparison results–
are shown to depend on the dimension of the ambient space and on the permittivity profile.

3.3 Asymptotic models of reaction-diffusion systems; application to flame propaga-
tion models

Three talks were devoted to various aspects of existence andqualitative properties of waves in reaction-
diffusion systems. The talk ofK. Domelevoreported some results on premixed flames models, where the
reactant (i.e. gas fuel) is provided through the vaporisation of liquid fuel droplets. The corresponding simplest
mathematical model consists in the usual thermo-diffusivesystem coupled to the equation for the vaporisation
of the droplets. Travelling wave profile exist, and asymptotics with respect to the activation energy reveal
new features: if the initial droplet radius is below some explicit threshold, the model is totally similar to the
classical thermo-diffusive model. Above the threshold, the combustion is driven by the droplet evaporation.
The main result in the talk ofP. Gordonwas a singular perturbation approach to a detonation model in
porous media, derived by Sivashinsky; he presented uniqueness results for the speed and wave profile when
the thermal diffusion coefficient goes to 0.M. Haragusreported on holes in reaction-diffusion systems,
i.e.: almost planar interfaces for which the angles of the interface at each point, relative to a fixed planar
interface, tend to zero at infinity. She applied dynamical systems ideas - popularised under the name of
’spatial dynamics’, to convey the idea that one spatial variable is treated as a time - and showed that, in
isotropic reaction-diffusion systems, holes bifurcate from stable planar pulsating fronts.

C.-M. Braunerpresented a model of flame front dynamics introduced by Frankel, Gordon and Sivashin-
sky, more tractable than the classical thermo-diffusive model, and which can yield - by the same process as
in the thermo-diffusive model - a single integro-differential equation (Q–S). If the flame front, supposed to
evolve in the spaceIR2, is a curve with equationy = Φ(t, x), then

Φt +
Φ2

x

2
− Φxx + α(I − ∂xx)−1Φxx = 0.

This asymptotic equation has the same qualitative featuresas the Kuramoto-Sivashinsky (K–S) one; in par-
ticular, it can generate chaotic cellular dynamics. The numerical simulations turn out to be quite convincing.

The modelling of spikes was addressed to in two talks. The talk by A. Doelmanfocussed on how to
derive, in a rigorous fashion, an ODE modelling the interaction law between to repelling two-pulse, slowly
varying solutions of the a regularized Gierer-Meinhardt system. This system is a heuristic model arising in
the description of chemical reactors and biological systems; one of its versions writes

ε2Ut = Uxx − ε2U + f(U)V 2

Vt = ε2Vxx − V + g(U)V 2

wherex ∈ R, t > 0, 0 < ε � 1 is a small parameter, and functionsf andg are smooth positive functions.
The method employed, based on normalisation group ideas, should be applicable to many other situations.
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M. Warddiscussed an optimization problem for the fundamental eigenvalueλ0 of the Laplacian in a planar
simply-connected domain that containsN small identically-shaped holes, each of radiusε � 1. A Neumann
boundary condition is imposed on the outer boundary of the domain and a Dirichlet condition is imposed on
the boundary of each of the holes. He presented an asymptoticexpansion forλ0 in terms of certain properties
of the Neumann Green’s function for the Laplacian. This eigenvalue optimization problem is shown to
be closely related to the problem of determining equilibrium vortex configurations in the Ginzburg-Landau
theory of superconductivity, and also closely related to the problem of determining equilibrium locations of
spikes, to multi-dimensional reaction-diffusion systems.

3.4 Complex propagation phenomena in reaction-diffusion equations

H. Berestycki(EHESS, France) reported first on some results with F. Hamel and N. Nadirashvili on pulsat-
ing travelling fronts for reaction-diffusion-advection equations in general periodic framework. The qualitative
and quantitative role of the diffusion, advection and reaction terms was explained. Nonlinear propagation phe-
nomena in general unbounded domains ofR

N , for reaction-diffusion equations with Kolmogorov-Petrovsky-
Piskunov (KPP) type nonlinearities, were then discussed. General domains were considered and various
definitions of the spreading speeds at large times for solutions with compactly supported initial data were
given. The dependency of the spreading speeds on the geometry of the domain was explained. Some a priori
bounds can be obtained for large classes of domains. The caseof exterior domains was also explained in
detail. H. Berestycki finally reported on very recent works with F. Hamel about further generalizations of the
usual notions of waves, fronts and propagation speed in a very general setting. These new notions involve
uniform limits, with respect to the geodesic distance, to a family of hypersurfaces which are parametrized by
time.

J. Coville(CMM-Universidad de Chile, Chile) presented some work devoted to the maximum principles
holding for some nonlocal diffusion operators and its applications to obtain qualitative behaviors of solutions
of some nonlinear problems with sliding methods. As in the classical case, it can be shown that the nonlocal
diffusion satisfies a weak and a strong maximum principle. Uniqueness and monotonicity of solutions of non-
linear equations are therefore expected as in the classicalcase. J. Coville also presented a optimal condition
to have a strong maximum for operatorMu := J ? u − u.

S. Luckhaus(University of Leipzig, Germany) reported on joint work with L. Triolo [28], and with
A. De Masi and E. Presutti [14], about a hierarchy of scalingsin a population model for tumor growth.
Interacting particle systems modeling the competition of healthy and malignant cells were considered and
lateral contact inhibition and difference of mobility weretaken into account in a lattice model. A two scale
hydrodynamic limit was derived. On longer time scales the solutions are expected to converge to the tumor
growth governed by the eikonal equation. This last step in the scaling hierarchy has not yet been shown
starting from the original stochastic process.

H. Matano(University of Tokyo, Japan) reported on recent advances inquenching vs. propagation phe-
nomena for bistable-type equations in heterogeneous media. In some domains with non-periodic perforations,
propagation may be blocked by stationary solutions.

K.-I. Nakamura(University of Electro-Communications, Japan) talked about front propagation phenom-
ena for a bistable reaction-diffusion equation in an infinite cylinder with periodic boundaries. By using the
first 3 terms of asymptotic expansions of the profile and the speed of front solution, he constructed suitable
supersolutions and subsolutions to obtain upper and lower bounds for the front speed when the diameter of
the cylinder is very small. These bounds enabled him to show that spatial periodicity always slows down the
front propagation in bistable diffusive media.

P. Polacik(University of Minnesota, USA) presented a new result on asymptotic symmetry of positive
solutions of parabolic equations on nonsmooth bounded domains. A key ingredient in the proof of this result
is a theorem on asymptotic positivity of solutions of linearequations with bounded measurable coefficients.
Some perspectives on this technical tool were given.

L. Rossi(Universita Roma I, Italy and EHESS, France) discussed on generalized principal eigenavlue
of elliptic operators inRN and on some applications. He introduced two different generalizations of the
principal eigenvalue for linear elliptic operators in the whole space. He discussed how their signs determine
the existence and uniqueness of bounded solutions for an associated class of semilinear equations. The two
notions do not coincide in general and some inequalities between these eigenvalues in the case of self-adjoint,
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one-dimensional and limit-periodic operators were derived.
A. Stevens(Max Planck Institute, Leipzig, Germany) discussed on transport equations for cellular align-

ment and aggregation and their parabolic limits. A widespread phenomenon in moving microorganisms and
cells is their ability to orient themselves with respect to each other and in dependence of chemical signals.
Kinetic models for this kind of movement were discussed, which take into account a variety of evaluations of
the external chemical field and of the neigboring cells. In case of chemotaxis parabolic limit equations can
be derived, which relate the microscopic parameters to the macroscopic ones, e.g. the so-called chemotactic
sensitivity.

A. Zlatos(University of Wisconsin, Madison, USA) discussed on spreading of reaction in the presence of
strong cellular flows with gaps. He considered a reaction-diffusion-advection equation with an ignition-type
reaction term and a cellular flow with a periodic array of gaps. He showed that if the initial flame is large
enough, it cannot be quenched by such flows, regardless of their strength.

3.5 Homogenization, stochastics and dynamics of the reaction-diffusion equations

M. Freidlin (University of Maryland) presented two lectures on asymptotic problems for stochastic processes
and RDE’s which covered material from the introductory level to the state of the art of the field. He presented
some old and new results concerning averaging and large deviations for stochastic processes. These results
allow, in particular, to describe motion of wavefronts for aclass of reaction-advection-diffusion equations
and systems, as well as to consider some homogenization problems for reaction in incompressible fluid.

A. Kiselev(University of Wisconsin) presented a talk on diffusion andmixing in fluid flow. Enhancement
of diffusion by advection is a classical subject that has been extensively studied by both physists and mathe-
maticians. In this work, the authors considered enhancement of diffusive mixing on a compact Riemannian
manifold by a fast incompressible flow. The main result is a sharp description of the class of flows that make
the deviation of the solution from its average arbitrarily small in an arbitrarily short time, provided that the
flow amplitude is large enough. The necessary and sufficient condition on such flows is expressed naturally
in terms of the spectral properties of the dynamical system associated with the flow. In particular, they find
that weakly mixing flows always enhance the relaxation speedin this sense. The proofs are based on a new
general criterion for the decay of the semigroup generated by a dissipative operator of certain form. They
employ ideas from quantum dynamics, in particular the RAGE theorem describing evolution of a quantum
state belonging to the continuous spectral subspace of the hamiltonian (and related to a theorem of Wiener
on Fourier transforms of measures).

E. Kosygina(CUNY) presented her work on homogenization of Hamilton-Jacobi-Bellman equations with
respect to time-space shifts in a stationary ergodic medium. Consider a family{uε(t, x, ω)}, ε > 0, of
solutions of the final value problem

∂uε

∂t
+

ε

2
∆uε + H (t/ε, x/ε,∇uε, ω) = 0, uε(T, x, ω) = U(x),

where the time-space dependence of the HamiltonianH(t, x, p, ω) is realized through the shifts in a stationary
ergodic random medium. For Hamiltonians, which are convex in p and satisfy certain growth and regularity
conditions, she shows the almost sure locally uniform in time and space convergence ofuε(t, x, ω) asε → 0
to the solutionu(t, x) of a deterministic “effective” equation

∂u

∂t
+ H̄(∇u) = 0, u(T, x) = U(x).

The averaged Hamiltonian̄H(p) is given by a minimax formula. This is a joint work with S.R.S.Varadhan.
J. Nolen(University of Texas, Austin) discussed reaction diffusion fronts in temporally inhomogeneous

flows. He considered the propagation of fronts that arise from scalar, reaction-advection-diffusion models
with the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. For temporally random flows with a shear
structure, he established an extension of the well-known variational representation for the front speed, a
nonrandom constant. Also, he used this variational representation to analytically bound and numerically
compute the speed. The analysis makes use of large deviations estimates for the related diffusion process.
The variational principle is expressed in terms of the principal Lyapunov exponent of an auxiliary evolution
problem. This is a joint work with J. Xin [33].
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A. Novikov(Pennsylvania State University) considered a homogenization approach to large-eddy sim-
ulation of incompressible fluids. In the development of large-eddy simulation one makes two primary as-
sumptions. The first is that a turbulent flow can be categorized by a hierarchy of lengthscales. The second
assumption states that the small scales have universal properties, characterized by, e.g. a spectral power
law. This motivated a number of physical models that attemptto account for the presence of small scales
by suitably modifying the corresponding partial differential equations (PDE), the Navier-Stokes equations.
Homogenization theory addresses rigorously the issue of modification of PDE in the presence of small scales.
The goal of this talk was to apply homogenization methods to LES modeling of fluid flows.

H. Owhadi (Caltech) talked about homogenization of parabolic equations with a continuum of space
and time scales. He addressed the issue of homogenization oflinear divergence form parabolic operators in
situations where no ergodicity and no scale separation in time or space are available. Namely, he considered
divergence form linear parabolic operators inΩ ⊂ R

n with L∞(Ω × (0, T ))-coefficients. It appears that
the inverse operator maps the unit ball ofL2(Ω × (0, T )) into a space of functions which at small (time and
space) scales are close inH1-norm to a functional space of dimensionn. It follows that once one has solved
these equations at leastn-times it is possible to homogenize them both in space and in time, reducing the
number of operations counts necessary to obtain further solutions. In practice they show that under a Cordes
type condition that the first order time derivatives and second order space derivatives of the solution of these
operators with respect to harmonic coordinates are inL2 (instead ofH−1 with Euclidean coordinates). If the
medium is time independent then it is sufficient to solven times the associated elliptic equation in order to
homogenize the parabolic equation. (This is a joint work with Lei Zhang.)

J. Quastel(University of Toronto) discussed the effect of noise on KPPtraveling fronts. He and co-authors
study the effect of small additive Fisher-Wright noise on the speed of traveling fronts in the KPP equation. It
had been observed by physicists in the late 90’s that the effect is unusually large and Brunet and Derrida have
made some very precise conjectures. Quastel described the proofs of some of these. This is joint work with
Carl Mueller (Rochester) and Leonid Mytnik (Technion).

M. Soner(Koc University) talked about backward stochastic differential equations and fully nonlinear
PDE’s. In the early 90’s Peng and Pardoux discovered a striking connection between semilinear parabolic
PDE’s and backward stochastic differential equations (BSDE in short). This connection and the BSDE’s have
been extensively studied in the last decade and a deep theoryof BSDEs have been developed. However, the
PDE’s that are linked to BSDE’s are necessarily semilinear.In joint work with Patrick Cheredito (Princeton)
Nizar Touzi (CREST, Paris), Nic Victoir (Oxford), Soner extended the theory of BSDE’s by adding an equa-
tion for the second order term, which we call 2BSDE in short. Through this extension they are able to show
that all fully nonlinear, parabolic equations can be represented via 2BSDE’s. He described this theory and
possible numerical implications for the fully nonlinear PDE’s.

P. Souganidis(University of Texas) presented two lectures on homogenization in random environments
and applications to front propagation. In particular, he described recent developments in the theory of ho-
mogenization for fully nonlinear first- and second-order pde in stationary ergodic media in his works with
L. Caffarelli and P.-L. Lions. He also considered applications to the theory of front propagation in random
environments.

3.6 Gizburg-Landau vortices

A. Aftalion(Universite Paris VI) presented her work on vortex latticesin fast rotating Bose Einstein conden-
sates. She described experiments on fast rotating Bose Einstein condensates which display vortex lattices: the
lattice is almost triangular with a slight distortion on theedges. The mathematical description can be made
with a complex valued wave function minimizing an energy restricted to the lowest Landau level or Fock-
Bargmann space. Using some structures associated with thisspace, she studies the distribution of zeroes of
the minimizer.

S. Serfaty(NYU University) gave two lectures on her work on the dynamics of the Ginzburg-Landau
vortices. She described the known results on vortex collisions and presented her recent work [36] in this area,
extending vortex dynamics past the blow-up time.
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4 Outcome of the Meeting

The meeting provded an opportunity for researchers in various sub-areas of the whole domain of elliptic and
parabolic partial differential equations to interact witheach other. The talks have been devoted to problems
ranging from purely mathematical questions such as De Giorgi conjecture to probabilitistic questions, such as
stochastic homogenization, and to applied areas includingcombustion and biology. Nevertheless, the group
had a strong core of common interests which held the meeting very coherent and of a high quality. Numerous
frutiful discussions have taken place, across the traditional area boundaries. Overall, we believe that the
participants found the conference to be very successful andstimulative for their research.
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