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1 Overview of the Field
Systems of Conservation Laws result from the balance law of continuum physics and govern a broad spec-
trum of physical phenomena in compressible fluid dynamics, nonlinear materials science, particle physics,
semiconductors, combustion, multi-phase flows, astrophysics, relativity, and other applied areas. Typical ex-
amples of “nonlinear conservation laws” are the Euler equations, MHD equations, Navier Stokes equations,
Boltzmann equation, Einstein equation, and other important models arising in Elasticity, Fluid Dynamics,
Combustion, Kinetic Theory, and Relativity.

The Euler equations for inviscid compressible fluid flow are a core system that is fundamental and impor-
tant to many applications, yet the multidimensional theory is difficult and challenging.

In recent years, major progress has been made in both the theoretical and numerical aspects of the field.
Motivated by recent results that are bound to revolutionize the field and by major open problems with great
relevance to applications, we organized a 5-day workshop at Banff bringing together experts in the theoretical
and numerical aspects of hyperbolic conservation laws and related models with focus on applications.

2 Recent Developments and Open Problems
The theme of the workshop covered several aspects of the theory of weak solutions for hyperbolic systems,
the mathematical theory of transport equations that arise in the kinetic theory of gases, and the investigation
of the multidimensional Euler, relativistic Euler, Euler-Poisson, and Navier-Stokes equations.

In the area of multidimensional hyperbolic systems, we discussed topics of research in three basic areas,
all unified by their showed common dependence on mixed hyperbolic-elliptic equations and geometry:

• Unsteady transonic flow and shock reflection;

• Steady transonic flow and differential geometry;

• Mixed systems arising in blood flow modeling.
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This research is related to problems in two or more space dimensions. We feel that the subject of conser-
vation laws in one space dimension is relatively well developed. It is the multidimensional area, especially
for the nonlinear conservation laws of mixed hyperbolic-elliptic type, where major effort is needed.

In the area of Navier-Stokes equations in several space dimensions, existing results and major open prob-
lems were discussed on questions of existence and regularity of solutions. Further presentations on models
of compressible fluids were given with focus on applications.

3 Presentation Highlights
In this section we present a description of the keynote lectures of the meeting. The main themes of the keynote
lectures are:

• “Navier-Stokes equations for compressible fluids: Existence Results” by David Hoff;

• “ Vanishing viscosity method for transonic flow” by Marshall Slemrod;

• “Existence and regularity of solutions to shock reflection problems” by Mikhail Feldman;

• “Thin film equation for the flow of a thin layer of fluid down an inclined plane – Overcompressible
waves” by Michael Shearer.

More details for the keynote lectures are the following:

3.1 A Survey of Existence Results for the Navier-Stokes Equations of Compressible
Fluid Flow

We give a survey of results on the existence of solutions of the Navier-Stokes equations of multidimensional,
compressible fluid flow. These equations model the conservation of mass and the balance of momentum and
energy in terms of density, velocity, and temperature, which are the unknown functions of space and time.
See Batchelor [1] for a derivation of these equations and for a discussion of the underlying physics.

We describe three categories of solutions. In the first group are the small-smooth solutions of Matsumura–
Nishida in [12, 13]. These solutions are obtained by linearizing the equations, absorbing the linearization
errors in Duhamel integrals, and iterating. By applying asymptotic decay rates associated to the linearized
solution operator, one can then obtain convergence of the iterates in global time under the assumption that
the initial data is small in a norm which dominates derivatives. The difficult part of the analysis is obtaining
the decay rates, because there is no parabolic dissipation in the mass equation. This approach of Matsumura
and Nishida has been optimized by Danchin [2, 3] for the constant coefficient case, who replaces the Sobolev
space H3 occurring in the Matsumura-Nishida theory with certain Besov spaces of continuous functions.
These spaces have more appropriate scaling properties, and, remarkably, are nearly algebras. Small-smooth
solutions by their very nature do not exhibit nonlinear effects, however, and tell us rather little about fluid
flow.

At the opposite end of the spectrum are the very general weak solutions introduced by Lions, which are
proved to exist for large, energy-class initial data (data with finite initial energy and nonnegative density) for
the barotropic case in which the pressure is a power of density strictly greater than one (ideal gases are there-
fore excluded). Lions’s results have been extended recently by Feireisl to the full nonbarotropic system with
nonconstant viscosity and heat-conduction coefficients. See the treatises of Lions [11] and Feireisl [4], the
references therein, and the currently most complete result in Feireisl [5]. The key breakthrough here is a quite
deep analysis showing that sequences of approximate solutions, for which the only uniform estimates are the
(physical) energy and entropy estimates, have strongly converging subsequences. The underlying analysis
here is truly impressive and the class of initial data is surely close to optimal. On the other hand, solutions
in this large-weak class possess so little regularity that analysis of their detailed qualitative properties seems
very difficult. Moreover, these solutions are not unique, do not depend continuously on initial data, and in
many cases are unphysical. Additionally, it is unknown whether these solutions obey the correct energy con-
servation principle, and in the nonbarotropic case the energy equation holds only in a very weak sense (again,
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see [5]). Finally, the functions of state and the viscosity and heat-conduction coefficients are quite restricted:
ideal fluids are excluded in the nonbarotropic case, ideal isothermal flow is excluded in the barotropic case,
and the coefficient functions predicted by Maxwell-Boltzmann theory cannot be accommodated. It is unclear
right now how any of the qualitative properties of these large-weak solutions, or even their existence, should
be interpreted physically.

The third category of solutions are in an intermediate regularity class, introduced in Hoff [6, 7, 8] for
the case of constant viscosity and heat-conduction coefficients, in which the initial data is small in fairly
weak norms, but not smooth: initial densities are in L∞ and initial densities and velocities are in L2; the L2

norms must be small but not the L∞ norm. These solutions can be discontinuous across hypersurfaces of
Rn, for example. Linearization is not valid in this class and solutions exhibit truly nonlinear and physically
interesting effects, including the propagation of singularities and fronts. On the other hand, they exhibit
just enough structure and regularity that their important features can be studied in a mathematically rigorous
way. For example, there is a reasonable uniqueness and continuous dependence theory in Hoff [9], and
piecewise smooth solutions are shown in Hoff–Santos [10] to satisfy the Rankine-Hugoniot conditions in a
strict pointwise sense with strengths of jumps tracked quite explicitly in time.

Current research focuses on understanding better the physical, qualitative properties of solutions in the
latter two classes so that the corresponding theories may eventually merge into a well-posedness theory for
initial data in the correct regime of validity of the model, which so far has not been clearly established.

3.2 Vanishing Viscosity Method for Transonic Flow

We discuss some recent results and developments on subsonic-sonic and transonic flows past an obstacle via
approximation methods.

In two significant papers written a decade apart, Morawetz [117, 119] presented a program for proving
the existence of weak solutions to the equations governing two-dimensional steady irrotational inviscid com-
pressible flow in a channel or exterior to an airfoil. As is well known, the classical results of Shiffman [127]
and Bers [21, 22] apply when the upstream speed is sufficiently small, for which the flow remains subsonic
and the governing equations are elliptic. However, beyond a certain speed at infinity (determined by the flow
geometry), the flow becomes transonic which, coupled with nonlinearity, yields shock formation. Morawetz’s
program in [117, 119] was to imbed the problem within an assumed viscous framework for which the com-
pensated compactness framework would be satisfied. Under this assumption, Morawetz proved that solutions
of the as yet unidentified viscous problem have a convergent subsequence whose limit is a solution of the
transonic flow problem.

In this talk, we present such a viscous formulation, hence completing part but not all of Morawetz’s
program. Specifically, a vanishing viscosity method is formulated for two-dimensional transonic steady irro-
tational compressible fluid flows with adiabatic constant γ ∈ [1, 3) to ensure a family of invariant regions for
the corresponding viscous problem, which implies an upper bound uniformly away from cavitation for the vis-
cous approximate velocity fields. Mathematical entropy pairs are constructed through the Loewner-Morawetz
relation via entropy generators governed by a generalized Tricomi equation of mixed elliptic-hyperbolic type,
and the corresponding entropy dissipation measures are analyzed so that the viscous approximate solutions
satisfy the compensated compactness framework. Then the method of compensated compactness is applied
to show that a sequence of solutions to the viscous problem, staying uniformly away from stagnation with
uniformly bounded velocity angles, converges to an entropy solution of the inviscid transonic flow problem.
In this way, we can handle the case of cavitation points which had also challenged Morawetz, although the
hypothesis of Morawetz about no stagnation points still remains in force.

For more details, see Chen-Dafermos-Slemrod-Wang [39] and Chen-Slemord-Wang [47].

3.3 Existence and Regularity of Solutions to Shock Reflection Problems

When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-
similar reflected shock moves outward as the original shock moves forward in time. Experimental, compu-
tational, and asymptotic analysis has shown that various patterns of shock reflection may occur, including
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regular and Mach reflection. However, most of the fundamental issues for shock reflection have not been
understood yet, including the global structure, stability, and transition of the different patterns of shock re-
flection. Therefore, it is essential to establish the global existence and structural stability of solutions of
shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there
has been no rigorous mathematical result on the global existence and structural stability of shock reflection,
including the case of potential flow which is widely used in aerodynamics. Such problems involve several
challenging difficulties in the analysis of nonlinear partial differential equations including mixed equations
of elliptic-hyperbolic type, free boundary problems, and corner singularity where an elliptic degenerate curve
meets a free boundary.

In Chen-Feldman [43, 44], we have developed a rigorous mathematical approach to overcome these diffi-
culties involved and established a global theory of existence and stability for shock reflection by large-angle
wedges for potential flow. We have also studied optimal regularity of global regular reflection solutions by
wedges. The techniques and ideas developed here will be useful to other nonlinear problems involving similar
difficulties.

3.4 Thin Film Equation – Overcompressible Waves

Coating flows and their applications in physics, engineering, and biology have been the subject of decades of
research. The mathematical study of these flows, i.e., of thin liquid films on solid substrates, begins with the
lubrication approximation of the Stokes equations. The resulting partial differential equation, known as a thin
film equation, is a nonlinear fourth-order equation for the height h of the free surface. Surface tension and
gravity provide forces that generate flow in a variety of contexts, including spreading of droplets and layers
of fluid on solid surfaces.

We consider the flow of a thin layer of fluid down an inclined plane, modified by the presence of surfac-
tant. In this presentation, we consider only insoluble surfactant, whose transport and diffusion is restricted
to the free surface, adding a partial differential equation for the surfactant concentration Γ. The equations in
nondimensional form are
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This system has three small parameters, the coefficient κ of surface tension, the surfactant diffusivity δ, and
the coefficient β of the gravity-driven diffusive spreading of the fluid. When all three parameters are zero,
the nonlinear system of partial differential equations is hyperbolic/degenerate-parabolic. Then there is a one-
parameter family of traveling waves in which h is piecewise constant, and Γ is continuous, piecewise linear,
and zero outside a bounded interval. This family is overcompressive in the sense that small perturbations
ahead of or behind the wave propagate towards the wave. The corresponding family of solutions with non-
zero values of the physical parameters is investigated using perturbation theory. Details of the thin film
equations, and the study reported in the presentation at Banff, may be found in the references [14, 15, 16, 17].

4 Scientific Progress Made
The related results from panel discussion can be summarized and grouped under a number of topics as fol-
lows.

Subsonic-Sonic and Transonic Flows past an Obstacle: The panel focused on recent results presented
in various articles (we refer the reader to the articles by Chen-Dafermos-Slemrod-Wang in [39], Chen-
Slemrod-Wang [47], and the references therein), where the equations of planar compressible gas dynamics
for steady irrotational isentropic (or isothermal) flow around an obstacle were considered. It is well known
from the classic work of Shiffman and later Bers in the 1950’s that, for fluid speed q∞ at infinity less than
some critical speed q∗ the steady equations admit smooth solutions. When q∞ reaches q∗, at some place the
flow is going from subsonic (elliptic) to sonic-subsonic (degenerate elliptic). In [39], a simple and elegant
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resolution of this problem was presented via the method of compensated compactness. The main idea is to
realize that the equations for conservation of linear momentum yield the crucial entropy-entropy flux pairs
that make compensated compactness work. The question remains what happens when q∞ exceeds q*. In
this case, the flow will become completely transonic giving rise to a mixed hyperbolic-elliptic initial value
problem. Morawetz had shown that if there exists a suitable viscous regularization to the steady gas dynamics
equations which provides good uniform bounds on the solution of the viscous problem, then passage to an
inviscid limit could be accomplished via the method of compensated compactness. But up to now Morawetz’s
program remained blocked by the lack of such a good viscous system. In [47], a good viscous formulation
to the steady gas dynamics equations was given which assisted deriving the desired bounds and estimates for
the adiabatic constant γ ∈ [1, 3). The case of cavitation points, which had also challenged Morawetz, has
been handled although the hypothesis of Morawetz about no stagnation points still remains in force.

Shock Reflection: Shock reflection is one of the most important open problems in mathematical fluid
mechanics. The regular reflection problem has been studied extensively for some simplified models of the
Euler equations and real breakthroughs have been made. In particular, the global existence and stability of
solutions to regular shock reflection were established for potential flow when the wedge has a large angle
in Chen-Feldman [43, 44]. Also see Canic et al. [27, 28, 93] for the unsteady transonic small disturbance
equation (UTSD) and a nonlinear wave system, and Zheng [155] for the pressure-gradient system for related
results. These studies have provided important ideas and techniques for solving the shock reflection problem
for the full Euler equations. Hunter et al. [89, 90, 139] found numerical evidence of a new phenomenon in
shock reflection (Guderley reflection).

Transonic Shocks and Supersonic Flow: In Chen-Feldman [40, 41, 42, 45], the existence and stability
of steady multidimensional transonic shocks for potential flow was proved under a steady perturbation of
the upstream uniform supersonic flow; and the existence and stability of multi-dimensional transonic flows
through an infinite nozzle of arbitrary cross section was established. In Liu et al. [65, 66], it is shown, for
the potential flow equation, that a self-similar solution does not develop a sonic/supersonic bubble with a
region of subsonic flow; and that when a wedge of not too large angle accelerates from zero to the supersonic
speed, it is the weak shock that appear in the time-asymptotic state. This answers the Prandtl conjecture on
supersonic flow passing a wedge.

Other Results: In [49], the global structure of solutions with triple shocks to the generalized Riemann
problems of two-dimensional simplified compressible Euler equations are obtained. Computations of certain
two-dimensional flows in special setups were performed in Shu-Wang et al. [54] and Shu-Zheng et al. [130]
to help understand certain specific features of the flow with the objective of helping the analysis. In [155], a
derivation of the pressure-gradient system was presented by Hunter-Zheng. In Wang-Zheng [144], a Goursat
problem for two-dimensional wave interactions of Riemann solutions is studied. Additional related results
were obtained in [24, 29, 31, 32, 33, 50, ?, 61, 62, 64, 69, 70, 86, 94, 102, 103, 129, 132, 134, 143, 154] and
so on, and surveyed by Slemrod in SIAM News: 39 (5), June 2006, page 3.

5 Outcome of the Meeting

Here are some remarks. First we came to realize the key role of mixed hyperbolic-elliptic systems of partial
differential equations. This was no surprise since these problems arise naturally in both shock reflection and
transonic flow in fluid mechanics and in isometric embedding problems in differential geometry. Hence we
plan to create a research program emphasizing mixed problems both in their classical role in compressible
fluid flow and in their applications in bio-mechanics and differential geometry. We think that this is an
area ripe for breakthroughs on questions that had often been left in research monographs in the category of
“unsolved open problems” (e.g., Bers [22], page 135; Courant-Friedrichs [57], page 317; Lax [99], page 427;
Morawetz [120], page 24; Yau [149], page 355). The physical geometry of our fluid problems seems to be
playing a major role in our analysis. For example, special small scale effects of airfoil shape seem to be
playing a crucial role.
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6 Workshop Program

October 29, Sunday
9:00-10:00: Survey Talk: Tai-Ping Liu
10:05-10:45: Mikhail Feldman

Break

11:00-11:30: Michael Westdickenberg
11:35-12:05: Cleopatra Christoforou

Lunch and Discussion

3:00-3:40: Yuxi Zheng
3:45-4:15: Tao Luo

Break

4:30-5:00: Kris Jenssen
5:05-5:35: Volker Elling

October 30, Monday
8:30-9:30: Survey Talk: David Hoff
9:35-10:15: Suncica Canic

Break

10:40-11:20: Helge Holden
11:25-12:05: Athanasios Tzavaras

Lunch and Discussion

2:00-2:40: Dietmar Kroener
2:45-3:15: Monica Torres

Break

3:40-4:20: Pierre-Emmanuel Jabin
4:25-4:55: Dianwen Zhu
5:00-5:30: Razvan Fetecau

October 31, Tuesday
8:30-9:30: Survey Talk: Marshall Slemrod
9:35-10:15: Yongqian Zhang

Break

10:30-11:40: Robert McCann
11:15-11:45: Ronghua Pan
11:50-12:20: Laura Spinolo

Lunch and Discussion

Free Discussion

8:00-9:30pm: Panel Discussion
Chair: Constantine Dafermos and Barbara Keyfitz

November 1, Wednesday
8:30-9:30: Survey Talk: Michael Shearer
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9:35-10:15: Christian Klingenberg

Break

10:45-11:25: Dehua Wang
11:30-12:10: Tong Li

Lunch and Discussion

2:30-3:30: Survey Talk: Walter Craig
3:15-3:55: Hermano Frid

Break

4:10-4:50: Michel Rascle
4:55-5:35: Fabio Ancona

November 2, Thursday
9-11:30: Free Discussion

11:30: End of Workshop
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