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1 Introduction

In the analysis of data collected in Particle Physics experiments, the use of
the best statistical techniques can produce a better quality result. Given
that statistical computations are not expensive while accelerators and detec-
tors are, it is clearly worthwhile to invest some effort on the former. The
PHYSTAT series of Conferences and Workshops has been devoted to just
this topic. It started at CERN in January 2000 with a Workshop on Confi-
dence Limits - what one can say about the maximum possible strength of a
hypothesised signal when no effect is seen in the data. The latest Workshop
was held at Banff in the Canadian Rockies in July this year. This was also
the culmination of the Workshop which had taken place earlier in the year
at SAMSI (Statistical and Applied Mathematical Sciences Institute) in the
North Carolina Research Triangle Park.

The Workshop was attended by 33 people, of whom 13 were statisti-
cians, the remainder being mostly experimental Particle Physicists, with As-
trophysicists making up the total. There were 3 graduate students. The
Workshop concentrated on 3 specific topics: a) Upper Limits, in situations
where there are systematic effects (”nuisance parameters”). b) Assessing the
significance of possible interesting effects, in the presence of nuisance param-
eters. The subject of significance will hopefully be relevant for experiments
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at the Large Hadron Collider (LHC) at CERN, where the exciting discov-
eries that may be made include the Higgs boson, supersymmetric particles,
leptoquarks, pentaquarks, free quarks or magnetic monopoles, extra spatial
dimensions, technicolour, the substructure of quarks and/or leptons, mini-
black holes, etc. In all cases it will be necessary to distinguish among peaks
which are merely statistical fluctuations, goofs and genuine signals of new
Physics. c) The separation of events which are interesting signal from those
due to boring background. This classification process is required in almost
every statistical analysis performed in High Energy Physics. For each of
these topics there was a Physics Co-ordinator and a Statistics one.

Of course, the 3 topics do interact with each other. Searches for new
physics will result in an upper limit when no or little effect is seen, but will
need a significance calculation when a discovery is claimed. The multivari-
ate techniques are generally used to provide the enriched subsample of data
on which these searches are performed. Just as for limits or significance,
nuisance parameters can be important in multivariate separation methods
too.

As this was a Workshop, participants were encouraged to be active in the
weeks before the meeting. Reading material was circulated as well as some
simulated data, on which participants could run computer programmes incor-
porating their favourite algorithms. This enabled all participants to become
familiar with the basic issues before the start of the meeting. The Work-
shop started with two introductory talks (on “Brief Introduction to Particle
Physics and typical statistical analyses” and “Monte Carlo Experiments in
High Energy Physics”). These were primarily to describe for Statisticians
the terminology used, the sort of physics issues that experimentalists try
to investigate, what our statistical problems are and how we currently cope
with them, etc. Jim Linnemann took the opportunity to publicise a new web
site, www.phystat.org, which provides a repository for software useful in
statistical calculations for physics. Everyone was encouraged to contribute
suitable software, which can range from packages suitable from general use,
to the code specifically used in preparing a physics publication.

2 General Summary

This section gives a brief summary of the main ideas touched on in the
subsequent talks and discussion meetings. Summaries of individual talks
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are provided in the Appendices, and for most talks there is a link on the
conference web page to the slides or a relevant paper.

The discussion about limits ranged from a variety of Bayesian techniques,
via profile likelihood to pure frequentist methods. An interesting suggestion
from statisticians was that hierarchical Bayes might be a good approach for a
search for new physics in several related physics channels. There was a lively
discussion about the relative merits of the possible approaches, and even
of what were the relevant criteria for the comparison. After a late evening
session, it was decided that data would be made available by the limits
convenor Joel Heinrich, for participants to try out their favourite methods;
and Heinrich would compare the results. This work is expected to continue
until November.

The significance issue was discussed in the context of Particle Physics and
several Astrophysics ones too. Indeed it arises in a wide range of subjects
where anomalous effects are sought. The Banff Physics convenor on signifi-
cance, Luc Demortier, detailed 8 separate ways in which nuisance parameters
can be incorporated in these calculations, and discussed their performance.
This is going to be a crucial issue for new particle searches at the LHC, where
some of the backgrounds will be known only approximately. Demortier also
addressed the issues of whether it is possible to assess the significance of an
interesting effect, which is obtained by physicists adjusting selection proce-
dures while looking at the data; and why Particle Physics usually demands
the equivalent of a 5 standard deviation fluctuation of the background before
claiming a new discovery (The probability of obtaining such a large fluctua-
tion by chance is below 1 part in a million).

The multivariate signal- background separation sessions resulted in very
positive discussions between physicists and statisticians. Byron Roe ex-
plained the various techniques used for separating signal from background.
For the MiniBooNE experiment, Monte Carlo studies showed that the ’boosted
decision trees’ approach yielded good separation, and was capable of coping
with over 100 input variables. An important issue was assessing the effect on
the physical result, in this case neutrino oscillation parameters, of possible
systematic effects. One of the conventional methods for doing this is to vary
each possible systematic effect by one standard deviation, and to see how
much this affects the result; and then the different sources are combined.
Roe pointed out that there is much to recommend an alternative procedure
where the effect on the result is investigated of varying all possible systematic
sources at random simultaneously.
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This was a theme that was taken up in more detail by Toronto statistician
Radford Neal, who also emphasised the need for any statistical procedure
to be robust against possible uncertainties on its input assumptions. One
of Neal’s favourite methods uses Bayesian Neural Nets. He also described
graphical methods for showing which of the input variables were most useful
in providing the separation of signal and background.

Ilya Narsky gave a survey of the various packages that existed for per-
forming signal-background separation. These included R, WEKA, MAT-
LAB, SAS, S+ and his own StatPatternRecognition. Narsky suggested that
the criteria for judging the usefulness of such packages should include their
versatility, ease of implementation, documentation, speed, size and graphics
capabilities. Berkeley Statistician Nicolai Meinshausen gave a useful demon-
stration of the statistical possiblities within R.

The general discussion in this sub-group covered topics such as the iden-
tification of variables that were not too useful, and whether to remove them
by hand or in the programme; the optimal approach when there are sev-
eral different sources of background; the treatment of categorical variables;
and how to compare the different techniques. This last issue was addressed
by a small group of participants working one evening using several different
classifiers on a common simulated data set. Clearly there was not the time
to optimise the adjustable parameters for each classification method, but it
was illuminating to see how quickly it was possible to be able to use a new
approach, and also to produce comparative performance figures. The results
were presented by Reinhart Schweinhorst.

3 Conclusion

As far as the Workshop as a whole was concerned, it was widely agreed that it
was extremely useful having Statisticians present to discuss new techniques,
to explain old ones, and to point out where improvements could be made
in analyses. It was noted, however, that while Astrophysics has been suc-
cessful in involving statisticians in their analyses to the extent where their
names appear on experimental papers, this is usually not the case in particle
physics. Several reasons have been put forward to explain this. One is that
statisticians like analysing real data, with all its interesting problems. But
particle physics experimental collaborations tend to be very jealous about
their data, and are unwilling to share it with anyone outside the collabora-
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tion until it is too old to be interesting. This results in particle physicists
asking statisticians only very general questions, which the statisticians regard
as unchallenging and boring. If we really do want better help from statisti-
cans, we have to be prepared to be far more generous in what we are ready
to share with them. A second issue might be that in other fields scientists
are prepared to provide financial support to a statistics post-doc, to devote
his/her time and special skills to helping with the analysis of the data. In
particle physics this is at present very unusual.

There was unanimous agreement among those there that the Banff meet-
ing had been both stimulating and useful. The inspiring location and envi-
ronment undoubtedly contributed to the dynamic interaction of participants.
Not only were the sessions the scene of vigorous and enlightening discussion,
but the work continued late into the evenings, with many participants learn-
ing new techniques, which they would be taking back with them to their
analyses. There was real progress in understanding practical issues involved
in the three topics discussed, and everyone agreed that it would be very useful
and enjoyable to return to Banff for another Workshop in the future.
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4 Appendix: Summaries of individual talks

4.1 Plenary Introductory Talks

Louis Lyons: Brief Introduction to Particle Physics and typical
statistical Analyses

In this talk I gave an overview of the workshop organization and goals, and
a brief introduction for statisticians of some of the main HEP experiments
of interest, including the Tevatron, LHC and K2K experiments. I described
three typical analyses; the first emphasizing estimation of unknown parame-
ters, the second looking for an interesting signal, which of course must include
a discussion of how to separate ‘real peaks’ from statistical fluctuations, and
the third concerning the use of event variables and training data to determine
how to separate background events from events of interest.
Jim Linnemann: Monte Carlo Experiments in High Energy Physics

My talk was an introduction to the use of Monte Carlo by particle physi-
cists and a couple of other pieces of terminology. Monte Carlo simulations
are used by particle physicists to estimate backgrounds and to calculate effi-
ciencies for proposed new physics processes. The simulations consist of event
generators with specific input physics and detector simulators describing how
particles are observed in the apparatus.

The latter are often particularly slow, up to a minute per event. Both
event generators and detector simulators have settings whose uncertainties
generate systematic errors in the simulation results. I explained that cross
sections are proportional to interaction probabilities, gave simple examples of
kinematic quantities we cut on, and gave examples of cuts. Cuts are typically
used to reduce data samples to a more manageable size, or remove regions
which are difficult to simulate so as to reduce systematic errors. Physi-
cists also use Monte Carlo methods for measuring performance of statistical
methods, as do statisticians. Finally, the site phystat.org is now available
for contributions to its code repository, and will link to the Banff workshop
permanent web site.
Byron Roe: Setting the scene for multivariate signal/background
separation

A number of modern multivariate classification are briefly described, with
some emphasis on boosted decision trees and related methods. It is difficult
to make comparisons in general. For limited tests with MiniBooNE Monte
Carlo data, boosted decision trees performed as well or better than an other
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method tested. It is noted that some hundreds of feature variables can be
handled by the methods. Methods of reducing the number of variables are
described. The use of simulations to estimate systematic errors varying pa-
rameters one at a time, or all together, is briefly noted. For some experi-
ments, it is possible to estimate systematic errors while doing a fit for physics
parameters. However, this method can have a problem if there are more sys-
tematic errors than data bins. A problem is noted in evaluating errors when
doing log-likelihood fits in a region in which the usual analogy to chi-squared
cannot be used.
Radford Neal: Statistian’s view of the above

My talk tried to focus in on a series of questions, with some tentative
thoughts on potential answers. First, it is helpful to be as specific as possible
about the questions:

• What is the problem?

• What data is available?

• How can the data answer the questions?

Since Monte Carlo simulations play a large role, we need to consider
several important issues related to this, including:

• How do we do inference with this?

• What form does the result of this take?

• How do we create PID variables?

• How can we detect and handle flaws in the models?

• How to run the MC simulation?

My view is that inference would normally be based on the likelihood
function, and that a plot of the likelihood function is a very useful summary.
I showed how to convert the original likelihood for a classification problem
into something that depends only on the properties of the classifier, not on
extraneous parameters. This explains why multivariate classifiers seem to be
the right thing to do.

Now can we multiply these together to form an likelihood for N events.
Is this wise? Possibly not, because our trained classifier is not perfect. A
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robustness problem may enter at this point. It is also possible that this is
less robust to problems in the original formulation. This motivates a kind
of thresholding; which leads then to the simplified version of the problem of
Poisson background and Poisson signal events.

Note that although this is not a statistical classification problemstatisti-
cally motivated classifiers may be very useful here; boosting is an example
of this.
Joel Heinrich Setting the scene for limits and nuisance parameters

In this talk I sketched out what is needed in order to compare various
proposed methods for computing limits, described some proposed methods
for computing limits, and set out some parameter values that seem reasonable
for initiating a systematic comparison. During the workshop this developed
into a project for a definitive comparison of limits that will continue through
the fall of 2006.
Luc Demortier: Setting the scene for p-values, including nuisance
parameters

This talk gave an overview of the methods proposed for accommodat-
ing nuisance parameters the calculation of p-values. An introduction to the
statistical theory of p-values was provided, and a summarization of their
properties and their role as a measure of evidence. A large number of meth-
ods are available in the literature for incorporating the effects of nuisance
parameters, and these were reviewed.
David van Dyk: Statistician’s view of the above

I outlined the definition and interpretation of confidence intervals, and
gave illustrations where the summary of the experiment by a confidence limit
was not very informative. In many cases it is preferable to plot the likelihood
function or the posterior distribution. I described in some detail my work
with colleagues in high-energy astro-statistics.
Xiaoli Meng: Dealing with Nuisances: Principled and Ad Hoc
Methods

My talk had three parts, all on dealing with nuisance parameters in hy-
pothesis testing, particularly in testing the existence of emission lines in high
energy astrophysics. The first part was a quick review of the posterior pre-
dictive approach, and the second part about how to create a useful pivotal
quantity by introducing a ”working” alternative model. The third part was
on the idea of using moment methods, instead of maximization, to construct
an approximation to profiled likelihood, a method that could be potentially
useful when the usual approach of maximizing a likelihood provides unstable
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results.

4.2 Parallel Session Specialized Talks

4.2.1 Limits and Significance

Roger Barlow: Significance and Likelihood ratio and confidence
limits

I discussed whether Delta chi squared could be used as a measure of
significance when comparing models with data, specifically for adding bumps
to histograms. The conclusion is that you can’t. Luc talked about this too
the next day. Turns out there are papers in Biometrika that made all this
clear long ago. I also asked whether my procedure to rank multichannel
results for p-value purposes was sensible. There was no direct response, but
the multichannel part of Joel’s challenge will show the answer.
Anthony Davison: p-value functions

I was asked to talk briefly about significance functions. The starting-
point is the observation that if Y is a continuous scalar random variable
whose distribution function F (y; θ) depends upon a scalar parameter θ, then
U = F (Y ; θ) has the U(0, 1) distribution and is therefore a pivot: a function
that depends on both data and parameter and whose distribution is known
and does not depend on the parameter value. Confidence limits for θ based
on an observed value y of Y may therefore be read off as the solutions in θ
to the equations F (y; θ) = α, 1− α; the resulting 1− 2α confidence interval
has limits (θ−, θ+). There are obvious changes for upper and lower 1 − α
intervals.

In practice we need to deal with three issues: we must replace Y with
some general function of a data set; we must deal with nuisance parameters;
and the data may be discrete. I discuss these in turn.

When Y represents a set of continuous data with log likelihood `(θ) and
maximum likelihood estimator θ̂, then under mild regularity conditions on
the underlying distribution we find that the likelihood root r(θ) = sign(θ̂ −
θ)

[
2

{
`(θ̂)− `(θ)

}]1/2
has an approximate standard normal distribution, at

least to first order; this means that if θ is the true parameter value, then

{r(θ) ≤ z} = Φ(z) +O(n−1/2), z ∈ Reals,

where n is an index of sample size, and Φ is the N(0, 1) distribution function.
This implies that r(θ) is an approximate pivot, and that Φ{r(θ)} may be

9



treated as a significance function from which confidence limits for θ may
be obtained as solutions to Φ r(θ) = α, 1 − α, as above. The resulting
two-sided confidence interval typically has error of order 1/n, while the one-
sided intervals have error of order 1/

√
n; an asymmetry term cancels from the

expansions when the two-sided interval is used. Typically such intervals have
better properties than those based on the score or Wald statistics. A third-
order correct interval is obtained by replacing r(θ) in the above discussion
with the modified likelihood root

r∗(θ) = r(θ) + r(θ)−1 log

{
q(θ)

r(θ)

}
,

where q(θ) depends on the problem; often it is either a score or a Wald
statistic, but a fairly simple general form is available from work by Fraser
and Reid. In this case the error for one-sided intervals drops to O(n−3/2), and
in many cases where exact computations are available or where simulations
have been performed the error seems in fact to be numerically negligible.

When θ = (ψ, λ), where ψ is a scalar interest parameter and λ a possi-
bly vector nuisance parameter, the log likelihood in the computation of the
likelihood root is replaced by the profile log likelihood

`p(ψ) = max
λ

`(ψ, λ),

giving

r(ψ) = sign(ψ̂ − ψ)
[
2

{
`p(ψ̂)− `p(ψ)

}]1/2
,

where ψ̂ is the overall maximum likelihood estimator of ψ. Likewise q(θ) is
replaced by a similar quantity q(ψ) readily computed in many cases. Con-
fidence intervals based on the resulting modified likelihood root r∗(ψ) have
again been found to be extremely close to exact ones, where these are avail-
able.

If the underlying data are discrete, then the discussion above applies with
small modifications: Davison, Fraser, and Reid (2006, Journal of the Royal
Statistical Society, series B) show that the error committed in taking the
appropriate r∗(ψ) will be of order 1/n rather than the 1/n3/2 seen in the
continuous case, but that the numerical error is typically very small.

The overall implication is thus that excellent frequentist confidence limits
can be obtained by using Φ{r∗(ψ)} as a significance function in both contin-
uous and discrete cases. It turns out also that minor modifications produce
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also Bayesian confidence intervals. More details and numerous examples
are given in Brazzale, Davison and Reid (2006, Applied Asymptotics: Case
Studies in Small-Sample Statistics, to be published by Cambridge University
Press). Other accounts of this theory can be found in the books by Barndorff-
Nielsen and Cox (1994, Inference and Asymptotics, Chapman & Hall), and
Severini (2000, Likelihood Methods in Statistics, Oxford University Press).
Joel Heinrich: Stopping times and likelihood, a query

In certain situations, a physicist may be induced by observing events
to publish right away, rather than wait for a pre-specified time. This is a
definite change in procedure, the physicist’s behavior is different than in the
usual case. This leads to an altered frequentist ensemble, where the observed
quantity is the waiting time t to the nth event, where n is a pre-specified con-
stant. The parameter of interest s then becomes a scale parameter for the
continuous (gamma) distribution of t. This is an easier problem from the
frequentist perspective, and (in the b=0 case) there is an exact probability
matching prior 1/s which yields perfect agreement between frequentist cov-
erage and Bayesian credibility. From the subjective Bayesian point of view,
however, the likelihood remains the same despite the change in the stopping
rule, so nothing needs to be modified. More work will be done to fully explore
the implications.
Tom Junk: Hypothesis Testing in HEP with Uncertain Nuisance
Parameters, and an observation on Odd p-value Behavior

The multi-channel problem of testing for the presence or absence of a new
particle is discussed. Typically searches produce histograms of data passing
some optimized selection requirements, arranged in bins of some variable
for which the signal to background ratio varies from bin to bin of the his-
togram. Sophisticated discriminant variables are often used, and there are
many sources of uncertainty in the rates and shapes of these histograms.
Often the bins of the histogram where little signal is expected serve as a
calibration of one or more uncertain backgrounds. If the signal distribution
shape is similar enough to the background shape, the effectiveness of the
technique of fitting the sidebands weakens. Often the predictions in each
bin of the signal and the background suffer from limited Monte Carlo sam-
ples, which introduces another source of uncertainty and a set of nuisance
parameters in each bin.

One can address the problem very similarly to the approach Kyle Cran-
mer proposed at PHYSTAT03 – to maximize the likelihood separately with
respect to the nuisance parameters for the null hypothesis and the test hy-
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pothesis, and then apply known techniques for computing limits or confidence
belts. I have a bias towards testing two hypotheses at a time and not many
more, since the acceptance or exclusion of a test hypothesis should not de-
pend on other test hypotheses considered or not considered.

One pitfall to avoid in doing a Bayesian limit with marginalization over
the unknown nuisance parameters is double-use of the data sidebands to con-
strain backgrounds. The integration over nuisance parameters of the likeli-
hood times the prior is effectively fitting the background shape to the data,
as only those values of the background normalization nuisance parameters
which best reproduce the data will be represented with significant weight
in the integral. To use the data sidebands to construct the prior for the
background (a Gaussian constraint), and then to use the same data in the
likelihood function would double-count the effect of this data on the back-
ground uncertainty.

Software is available at
www.hep.uiuc.edu/home/trj/cdfstats/mclimit csm1/index.html
It calculates both Bayesian upper limits and CLs ones. P-values are also

computed for comparing the data to the null and test hypotheses.
An odd feature of p-values in low-statistics single-channel analyses is a

manifestation of the discontinuous coverage curves. Over coverage is un-
avoidable, and particularly noticeable for channels with few expected events.
If a second, much weaker channel is combined with a strong channel with
little expected background (say s1=3, b1=1, s2=0.1, b2=2), then the ob-
served limit can jump sharply when the second channel is added. Part of
the over coverage of the single-channel case is now recovered by dividing the
probability of each strong-channel’s outcome into sub-outcomes indexed by
the weak channel’s outcome. If a continuous spectrum of signal and back-
ground can be constructed instead of a single counting experiment, then the
distributions of the expected outcomes will not only be more optimal because
of the extraction of more information from the data, but also will suffer less
from the Poisson over coverage problem.
Toby Burnett: Detection of gamma rays ”Finding point sources in
the gamma-ray sky”

The main point here is that it is conventional in astrophysics to quote
source discoveries with a ”5 sigma” threshold, but without an analysis to
demonstrate that the probability of a false positive is really at the level of
a 5-sigma Gaussian. This is probably evident in the number of unidenti-
fied sources ”found” by EGRET, and certainly demonstrated by the recent
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GLAST data challenge.
I see it as a clear message to those performing such analyses that the

null hypothesis does not depend on the position, so that the p-value must be
determined empirically.
James Bueno: Bayesian upper limits I described the software I have
written in Root C++ to calculate Bayesian upper limits for the Poisson
problem with a choice of informative priors for background and efficiency via
numerical Gaussian quadrature, and illustrated it on some examples.
Luc Demortier: Reference analysis I described the use of reference pos-
terior distributions as a means of making inference about a parameter of
interest in the presence of nuisance parameters and summarized their prop-
erties.
Eric Marchand: On the behaviour of Bayesian credible intervals
for some restricted parameter space problems. This is recent work
with Bill Strawderman. For estimating a positive normal mean, Zhang and
Woodroofe (2003) as well as Roe and Woodroofe (2000) investigated HPD
credible sets associated with priors obtained as the truncation of noninfor-
mative priors onto the restricted parameter space. They established the
attractive lower bound of (1−α)/(1 +α) for the frequentist coverage proba-
bility of these procedures. W. Strawderman and I established that their lower
bound is applicable for a substantially more general setting with underlying
distributional symmetry. We showed that the lower bound still applies for
certain types of asymmetry (or skewness), and we extended results obtained
by Zhang and Woodroofe (2002) for estimating the scale parameter of a
Fisher distribution. There is a wide scope of applications, including esti-
mating parameters in location models and location-scale models, estimating
scale parameters in scale models, estimating linear combinations of location
parameters such as differences, estimating ratios of scale parameters, and
problems with non-independent observations.
Gunther Zech: Likelihood vs coverage Coverage intervals versus
Likelihood ratio intervals An example was constructed such that a cov-
erage interval and a likelihood interval disagree by a large extent. It was
demonstrated that the likelihood interval is at least intuitively much more
attractive. The reason for this behavior is the fact that coverage intervals
accept all parameter values which are compatible with the measurement
whereas likelihood ratio intervals take into account the fact that only one
and not several parameters can be true. As a consequence of this caveat of
the coverage intervals, which is related to a violation of the likelihood princi-
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ple, one should not require coverage for likelihood ratio or Bayesian intervals
while coverage intervals which exclude relatively high likelihood ratios are
very problematic.
Giovanni Punzi: Frequentist limits

I briefly described a fully frequentist method for incorporating nuisance
parameters (systematic uncertainties) in the evaluation of confidence inter-
vals, by means of a direct Neyman construction in multi-dimensional space.
Thanks to an appropriate choice of ordering algorithm, results were obtained
with good general properties: strict coverage, small overcoverage, and con-
tinuous behavior in the limit of small systematic uncertainty. The algorithm
allows for both 1-sided and 2-sided limits (F-C or central) to be obtained,
and puts no requirements on the distribution of the subsidiary measurements
(related to the systematics), which may even be unavailable. Some results
and comparisons for the benchmark problem of group A were presented.
Conrad, Jan and Cranmer, Kyle: Profile likelihood for marked
Poisson processes
Bodhisattva Sen: Confidence intervals with nuisance parameters
We discussed the Hybrid Resampling Method for dealing with nuisance pa-
rameters. We also proposed an extension of the Feldman and Cousins Uni-
fied method to include nuisance parameters. The Expectation-Maximization
(EM) algorithm in relation to the signal plus noise model with marks (aux-
iliary variable associated with each event) is proposed. We also sketch a
possible Bayesian hypothesis testing procedure for testing discovery in this
scenario.

4.2.2 Multivariate

Stephen Bailey: Signal/background separation of supernova events
in Supernova Factory images The Supernova Factory is developing a
Support Vector Machine (SVM) approach to replace its current cut-based
approach. The SVM works considerably better than cuts at 25% signal
efficiency but performs about the same at 50% signal efficiency. The primary
difficulty is a time varying background; participants provided several useful
suggestions for training classifiers under under such conditions by including
background parameters in the classification variables. At the suggestion of
the participants, the Supernova Factory will also try Random Forest and
Boosted Decision Tree classifiers which might work better with the noise and
outliers in the dataset.
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Radford Neal: Bayesian neural nets + robust classifiers
I described a neural network analysis of Byron Roe’s data, which has 50

PID variables, to be used to classify events into one of two types. The NN
has two hidden layers which connections from all inputs to all hidden units.
Each connection has a weight attached to it, a ’bias’ constant, and a tanh
activation function. The output for each hidden unit is

tanh(b+ ΣiwiVi)

and this is converted at the end to a binary classifier by the logistic function.
This can be parameterized, by treating the weights and biases as param-

eters. It can be shown that even with just one hidden layer any function can
be approximated with enough units.

In principle the parameters could be estimated by maximum likelihood,
but this is not usually a good idea, since the data can be fitted exactly with
enough units. NonBayesian methods incorporate either regularization or a
naive method called ’early stopping’, or an ensemble version of that analogous
to cross-validation. This version of early stopping actually does quite well.

It turns out that he number of hidden units is not so crucial; early stop-
ping basically corrects for this.

A Bayesian version works better, by integrating over the space of weights
in the network, with a combination of prior and likelihood. This integration
is carried out by MCMC. The Metropolis algorithm is very slow, but a hybrid
MC version works well. The result is a probability for classification, but this
is done on a large number of networks, and averaged (at the last step). The
Bayesian version can incorporate a hyper-prior for the parameters on some
of the parameters in the network. This allows some improved classification
if the data turns out to be very predictable.

You can show that there is no statistical necessity to constrain the number
of hidden units. However the computations do get slow as the number gets
too large.

The next step is adding some boosting to this, to concentrate on the
items that are hard to classify, but of course apply larger weights to the
easy-to-classify items so that the output remains unbiased. This hopefully
will reduce the computation time.
Toby Burnett: Decision trees

I made two points:

• Classification analysis can be used, not only to distinguish rather dif-
ferent entities, but to improve resolution. GLAST uses classification
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trees to help characterize gammas that have well-measured energy and
direction.

• It is productive to study misclassified background events, in order to
discover new variables that can be used in a new classification. Many
of the GLAST variables had such an origin.

Ilya Narsky: Multivariate classification Software for multivariate
classification

Various software packages for multivariate classification have been used
in HEP and elsewhere.

R, a popular tool among statisticians, implements many methods for clas-
sification and exploratory analysis of data. It is easy to install and use, has
built-in graphics for display of data, and is generally well documented. How-
ever, R tends to be slow, especially on large data sets. R is a high-level
interpreter suited for interactive analysis but hardly a reasonable choice for
analyzing large amounts of data through batch jobs. WEKA, an object-
oriented Java package, and MATLAB extensions implement many classifica-
tion methods and are used by researchers in academia. SAS and S-plus offer
software suites for industry but are less likely to be used in academia due to
the high cost of their licenses.

HEP researchers have been using various implementations of neural net-
works for the last two decades. For example, Stuttgart Neural Network
Simulator (SNNS) and JETNET have become popular at BaBar. Plenty of
other implementations are available.

Several packages have been developed recently within the HEP commu-
nity to implement advanced classifiers such as boosted decision trees, random
forest and others. These include Byron Roe’s m-boost, Narsky’s StatPattern-
Recognition and TMVA (now available in Root). StatPatternRecognition,
for instance, implements decision trees, boosting, arc-x4, random forest, a
bump hunting algorithm (PRIM), linear and quadratic discriminant analy-
sis, and interfaces to two SNNS networks.

At present, HEP analysts can choose software from a great number of
available packages. Unfortunately, a HEP researcher working on specifics of
a physics analysis, typically a grad student or a post-doc, often knows little
about multivariate classification in general and even less about available soft-
ware to make an informed choice. It would be very useful for the community
to survey existing software packages and publish results of this survey online
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or in any other form available to HEP researchers. The proposed categories
for software comparison are listed here: ” versatility and the scope of im-
plemented methods ” ease of installation and use ” quality of manuals and
documentation ” CPU speed and memory consumption; how these quanti-
ties scale versus data size and dimensionality, both for the training cycle and
for post-training classification; also maximal sample size and dimensionality
that can be handled by the package ” types of inputs that can be handled by
the package (real, integer, categorical, mixed etc) ” quality and convenience
of the graphics interface, both for input and output ” suitability for interac-
tive analysis and/or batch jobs ” ease of integration in the C++ framework
Although it would be interesting to compare the predictive power of various
implementations of the same method, this task would require a non-trivial
amount of manpower. Because implementations of the same method vary
among packages, such a comparison would not be possible without careful
adjustment of input parameters for each implementation of the classifier,
which is a time-consuming effort.

The proposed comparison would be a nice project for one or two under-
grads or graduate students and a useful service to the community.
Blobel, Volker: Systematics for goodness of fit Dealing with sys-
tematics for chi-square and for log-likelihood goodness of fit

Systematic errors are at the origin of the unsatisfactory situation when
data from many experiments are used in a global analysis and parameter
estimation, and when attempts are made to determine uncertainties of pre-
dictions from parton distributions. Often the profile chi-square for single
parameters and functions of parameters appear to be much to narrow.

The different error contributions in HEP experiments and the methods,
to incorporate these error contributions in the log-likelihood expression are
discussed. Often this is not done in an optimal way.

The normalization factor for all data of a single experiment is a product
of many factors and its distribution can often be described by a log-normal
distribution. In the log-likelihood expression the factor should be applied to
the theoretical expectation, not to the experimental value, to avoid a bias.

Recent experiments publish a lot of data about the contributions to the
overall covariance matrix from various systematic effects, and this informa-
tion has to be used in parameter estimation. The contribution to the covari-
ance matrix describing the statistical errors is usually given as a diagonal
matrix. However due to finite experimental resolution. corrections for the
bin-to-bin fluctuations have to be applied; correlations between data points
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are often neglected and the given statistical errors are often too optimistic.
Nicolai Meinshausen: Using R for classification problems

The R-Project web page (www.r-project.org) has the code, all the various
packages, a set of manuals, and so on. An advantage of R is that it is easy
to play around with the data, fairly quickly, and there are packages written
for many many statistical routines. A disadvantage is that it is quite as
’portable’ as C++, and it is maybe not so easy to translate R fitted objects
to another language. Also it can be slow as it is an interpreted program.

Variable Selection: With approximately 200 variables, one suggestion is
that they all be kept in the classifier, and only deleted if they demonstra-
bly don’t have any impact on the classifier. Of course the variables in this
category may be different between classifiers, but in general the set of really
important ones ”should” be consistent from one classifier to the next. Nico-
lai showed some plots available from random forests that identify variable
importance according to a few measures related to classification.
Raoul LePage: Comments on Classification

I described how multivariate Gaussian based confidence regions may be
obtained directly from scaled bootstrap plots with sufficient blocking to im-
prove normality. This will apply to plots of a kind often seen in talks at this
meeting, although not to all of them. The other part of my talk outlined a
possible approach to the problem of developing useful classifiers for signal vs
noise. The idea is to exploit the capabilities of modern methods of solving
linear inverse problems by using them to directly obtain a density over the
events ”e” space that is interpreted at p(signal — e) for a particular choice
of the probability p of signal (i.e. blending signal and noise events in the
proportions p, 1-p). The idea also turns on telling the solver that integrals
of some specified functions X(i) ¿ 0 (these are used by the inverse method
to build the density) are identically one. Such functions can be chosen from
any convenient class thought to be capable of building a good density for the
purpose and would be normalized according to their integrals on the training
set. In the present context favorite choices might include decision trees with
specified parameters, logistic models, or any combination of these.
Neal, Radford: Handling Systematic Errors in Simulations
Reinhard Schwienhorst: Multivariate classification Comparisons

I gave a talk summarizing the work of several people, comparing different
classifiers for the data sets that had been sent out before or during the meet-
ing. We used the statistical data analysis package R and software written by
Ilya Narsky (one of the workshop attendees) and data sets from MiniBoone,
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Glast, Babar, and the D0 single top quark search. We found that Bayesian
Neural networks, boosted decision trees and random forests did about as well
as classifiers tuned within each experiment, even when using these classifiers
out-of-the-box, without any special tuning. We also learned that installing
and running R is straightforward and results can be obtained in a few hours,
at least with the help of an expert

5 Summary of discussions

5.1 Limits with Nuisance Parameters

convenors David van Dyk (statistics) Joel Heinrich (intervals),
After listing the main methods that have been proposed to solve the

upper limits problem, an attempt was made to collectively construct a matrix
that listed their properties. This resulted in considerable discussion, and the
addition of a few more methods. After the break, it was clear that the matrix
was only reasonably complete in the column marked coverage, and that only
for a single channel. As all the methods had reasonable coverage properties,
more information was needed for a prospective user to decide which to use.

A collaborative project to supply the necessary information about each
method was therefore initiated. Proponents of each method agreed to sup-
ply their resulting intervals for a common set of test cases. This would per-
mit direct comparison of frequentist coverage, interval lengths, and Bayesian
credibility. It was decided that 1 channel and 10 channel cases would be
investigated. Those doing the work would have until the end of October
to complete the task. Joel Heinrich agreed to generate the test cases and
process the results.

The statisticians proposed adding a hierarchical Bayesian method to the
list, and described in detail how this worked. This was accepted, after some
discussion—physicists had been reluctant in the past to employ this strategy,
but were persuaded by the statisticians that it would be worth trying.

5.2 Significance

convenors David van Dyk, Luc Demortier
The discussions on significance revolved around a set of questions that

arise in various ways in searches for new physics. Statisticians were asked to
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comment.
(1) Why a 5 sigma discovery threshold? Do we really believe in such

small probabilities?
As previously explained by Louis Lyons, the motivation for the 5-sigma

threshold in high energy physics is that many observed 2- and 3-sigma effects
have been known to disappear, and that this is understood to be due to the
”look-elsewhere” effect, and to unidentified or improperly modeled system-
atic effects. There is also a subjective aspect to the choice of threshold, in
that physicists will require a very high standard of evidence for invalidating
laws in which they believe strongly, such as energy conservation for example.

Although statisticians do not object to the 5-sigma threshold, they warn
against using it as an excuse for ignoring the look-elsewhere and system-
atic effects. The latter should always be carefully investigated and taken
into account in significance calculations. This warning becomes even more
important as we move towards experiments of increasing size and complexity.

(2) Should the same significance threshold be used in all situations, re-
gardless of the type of hypothesis being tested and regardless of sample size?

Although the evidence provided by p values against a given hypothesis
has been shown numerous times (by professional statisticians) to depend on
the type of hypothesis being tested as well as on sample size, the statisticians’
answer to the above question was a measured ”Yes, but be aware that the
evidence provided by p values depends on these conditions.”

(3) What methods are there to incorporate systematic uncertainties in p
values? Which one(s) should we recommend?

Several methods were described at the meeting. High energy physicists
seem to favor the ”prior-predictive” method, which consists in averaging the
p value over some prior density for the nuisance parameters. A concern,
voiced by Kyle Cramner, is that a different way of setting up the prior in
the calculation could lead two competing experiments to large differences
in significance. A simple example is a Poisson p value with a Gaussian
uncertainty on the mean. If the width of the Gaussian is independent of the
mean, the resulting prior-predictive p value will tend to be conservative. On
the other hand, if the width is proportional to the mean, the p value will be
liberal.

(4) Are there general rules for choosing an optimal test statistic? What
about in multiple dimensions, and with sparse data?

According to the statisticians present, the likelihood ratio statistic is the
best bet in the vast majority of situations.
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(5) What can we say about the likelihood ratio in non-standard situations,
e.g. when a parameter is on the boundary of the maintained hypothesis, or
when nuisance parameters appear under the alternative but not under the
null?

This problem was discussed by Luc Demortier in his plenary talk and
by Roger Barlow in a parallel talk. Non-standard likelihood ratio tests are
quite common in high energy physics, for example when scanning a spectrum
for a resonance with unknown mean and/or width. There have been several
recent developments in this area by statisticians, in particular by econome-
tricians. Among the statisticians present, Anthony Davison suggested some
techniques based on moving average searches or on wavelet transforms. He
also pointed out the usefulness of importance sampling (using the likelihood
ratio as weight) in computations. Richard Lockhart pointed to recent work
by Taylor and Worsley. Jim Linnemann provided two useful papers, one ad-
vocating the use of posterior-predictive p values, and the other a test statistic
based on a score process.

(6) How should we handle a significant-looking discrepancy in one distri-
bution out of many?

One possibility is to do a multiple test (Bonferroni or improvements
thereon). Another possibility is to split the data sample in two, use the
first half to ”fish” and the second half to calculate significances. FDR tech-
niques may be useful in well-planned fishing expeditions, as well as in particle
ID algorithms.

(7) Should we seriously consider alternatives to p values?
Alternatives to p values do exist: Mike Evans’ observed relative surprise,

Jose Bernardo’s Bayes reference criterion, Jim Berger’s relative likelihoods.
However, the statisticians present thought that these alternatives do not
have enough ”experience” yet to support their use, and they are not as well
understood as p values. Nancy Reid mentioned that posterior hypothesis
probabilities can sometimes be a useful alternative to p values.

A general comment is that a significance calculation will always be more
persuasive when there exists a plausible alternative hypothesis that is shown
to describe the data better than the null.

In addition to the discussion we had on the above questions, there were
a couple of interesting talks. One was by Anthony Davison, on significance
functions, where he showed how to eliminate nuisance parameters from these
functions, how to handle discrete problems, and the relation between signif-
icance functions and reference posteriors. The other talk was by Tom Junk,
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who discussed some interesting examples of p value calculations in high en-
ergy physics.

5.3 Multivariate Problems

convenors David van Dyk, Joel Heinrich (intervals), Luc Demortier (p-values)
Group C: Nancy Reid and Byron Roe

The following list of questions was compiled, and to some extent dis-
cussed, in the classification group:

1. go over classification methods: what can be said about applicability in
different situations

2. Models not perfect; what can we say about robustness or other flaws
in the model.

3. How do we get an intuitive feeling for the classification methods? Graph-
ical methods?

4. Methods for variable selection? How to find the ’best’ set of variables?
Why do we need to reduce the number of variables?

5. How many data-sets have been looked at by different people.

6. Unisims, multisims: estimating systematic uncertainties.

7. Uniform framework? (Should we all be re-inventing the wheel?)

8. Question: is subjectivity adding to the quality of the analysis or not?

9. Can we learn about statisticians’ methodology: Raoul, Nicolai

A graphical display was suggested by Radford Neal: Plot ∆ log(p/(1−p))
which is the change in the classifier output when variable 27 is changed by ε
in the training case, vs variable 27. If the plot is straight, variable 27 affects
the logit linearly; if the plot is curved then the variable isn’t linear, but it
is additive (no interaction). If the plot is scattered, then there are interac-
tions going on with the other variables. (The computation of ∆”prediction”
adjusts for the presence of the other 49 variables.)
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Note that one plot needed for each PID, and that each plot has as many
points as there are events in the training sample. There could be an ’ensem-
ble’ of such plots, one for each of the networks that go into the bagging, OR,
it could be based on the averaged or bagged prediction.

Jim Linneman had the following thoughts
Variable preparation: If you have multiple backgrounds, you could con-

sider training either separate classifiers for each; or training a multiple class
classifier (even though all background classes would eventually be lumped
into ”non-signal”). Might be easier to diagnose that way.

You could consider removing from the training on a particularly resistant
background which is truly nearly indistinguishable from your signal, rather
than confusing the classifier by calling very similar events background in one
case and signal in another. But as above, a multi-classifier might also address
that issue differently.

For trees, no need to modify variables since they are invariant under
uniform monotone transformations (as are cuts).

For nets, they like to have mean zero std deviation = 1 if you have no
better idea. If you do so, then for the Bayes nets, you can use the same
hyper-priors (the weight scales start out the same). If you have widely vary-
ing variables, say ones covering a wide range with a wide range of frequency,
you might for example log-transform them. Ideally, if you have real reason
to know some variable should be a good separator, you would ideally want it
such that one unit of input change would correspond to one unit of output
change, so an important variable might be given a larger initial standard
deviation than one; that way similar weights would start out be causing big-
ger responses to this variable. But: such selection is not always obvious: a
variable which by itself (1-d) shows little separation between signal and back-
ground can nonetheless be important in classification if it interacts strongly
with other variables.

Terminology: physicists confuse the term ”correlated or non-independent
variables” with ”interacting variables”: I believe the issue is that correlation
or independence would be a property of simply the signal or background dis-
tributions individually, while interaction has to do with the pair of variable’s
needing to be considered together to classify (predict a third variable, such as
class membership); so it would be more a property of the ratio of the signal
and background pdf’s]

Non-ordered categorical variables. Say you have inputs which fall natu-
rally in 3 classes, but which don’t have any inherent ordering. For example,
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you have observations with 3 different kind of electronics, but don’t really
want to claim they like in a ”good better best” relationship. It’s better to
classify them into the 3 groups with similar characteristics if you can, than
asking the classifier to figure it out from, say, the 100 different serial numbers.
And the good way to encode those is to have 3 categorical input variables
each with 0 or 1 values, so that only one of them is on for a given input. On
the other hand, if there is a natural ordering relationship like ”good better
best” it may not be so bad to encode them as 1, 2, or 3 (though the response
might be nonlinear–little difference between good and better, but big im-
provement for best). Or if you really have a quantitative number, it’s better
to use instantaneous beam intensity as a continuous variable than classifying
them as low, medium, and high intensity.
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