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1 Introduction

There is a long and fruitful relationship between mathematics and image understanding starting
with the desire to understand perspective in renaissance painting and art. This trend continued
with the development of non-Euclidean geometries over the past two centuries, and it has
expanded significantly over the past five decades with the introduction of new 3D digital imaging
systems in many scientific fields and the desire to employ machine vision in applications ranging
from robotics to medical imaging. Computer Vision started as a subfield of AI, but it has
expanded into a broad field using a wide range of methods from mathematics and statistics. The
formal study of image formation in the framework of projective geometry has produced many
new methods for uncalibrated cameras, visual correspondence and visual invariants over the
past twenty years, more recently expanding to cover very general camera models and algebraic
geometry based methods for studying critical configurations. Another very active topic is the
use of variational methods and PDE’s to compute image segmentations and 3D surface models.
The BIRS Mathematical Methods in Computer Vision workshop sought to span a broad range of
the applications of mathematics to computer vision, from newly emerging research directions to
mathematically-motivated algorithms that are have become practical enough to find their way
into applications. Finally, a lab session organized jointly with the Banff New Media Institute
went full circle to explore the use of modern computer vision methods in the creative process
for example for the creation of models and animations.

Loosely speaking, computer vision is the study of how to compute properties of the 3D world
from 2D images. One major line of study takes this rather literally, focusing on computing a
representation of the 3D geometry and appearance that is as complete as possible given the 2D
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images. Three areas related to this approach were covered in the workshop: geometric vision;
variational methods for estimating surfaces and appearances; and applications of scene recon-
struction. While a complete representation is useful for many engineering and entertainment
applications, notably ones involving graphical rendering, there is increasing evidence that it
is not necessary for many biologically relevant vision tasks. Much useful information can be
derived from the 2D visual signal without the recovery of explicit 3D information. Two areas
where the workshop represented this line of research were learning for visual recognition, which
is often performed using only 2D image signatures, and human motion tracking, which can take
place in 2D or 3D but which often involves 2D models.

In addition to technical presentations on the above topics, we singled out several areas that
we felt were of interest to a broader audience for special interaction sessions. These included
both generally accessible talks and hands-on interaction through demos and posters. One set of
sessions was aimed at the general public, including talks and demos of photo album organization
in 3D “photo-tourist” and scanning and digital display of virtual heritage. For details see the
summaries below. A second set of interaction sessions was designed to encourage collaboration
with the Banff Arts centre. The session was attended mainly by Banff New Media Institute
modelers and animators. It contained talks and hands-on demos on 3D modeling from 2D
images of scenes and objects. The participants started with real physical objects or with their
own images and by the end of the interaction they had computed the corresponding 3D digital
models. Another interaction topic was projector guided painting, which showed how computer
vision can analyze and aid novice painters. Again, more detailed summaries are given below.
To complement this, the Banff New Media Institute offered a visit to its lab that included a
tour of the facility and an in-depth demo of its 3D visualization “cave” and its modeling and
animation studios.

2 Presentation Highlights

2.1 Global Optimization and Large-Scale Problems in Geometric Com-
puter Vision

Fredrik Kahl of Lund University (Sweden) presented a framework for approaching globally
optimal solutions of geometric computer vision problems (slides: PDF, PPT). The overall
goal is to find the best model that is consistent with the observations. In the context of
geometric computer vision, this means that the differences between the reprojected 3D scene and
camera geometry and the image measurements should be minimized. Traditional reconstruction
algorithms use local descent and often fail owing to local minima.

Fredrik Kahl presented approaches that guarantee to find a solution with a residual error
within any desired tolerance (if such a reconstruction exists). His first approach is in the Branch
& Bound class and uses convex envelopes whereas his second uses lower-bounding relaxations
based on Linear Matrix Inequalities (LMI). The approaches are applicable for squared or abso-
lute residual differences (the latter being a more robust norm). He showed how to apply them
to several typical geometric computer vision problems including n-view triangulation and space
resection (estimation of intrinsic and extrinsic camera parameters).

Richard Hartley of the Australian National University described properties of quasi-convex
optimization problems and how to use them in computer vision problems. When using the L∞
norm to account for differences in image measurements and reprojected 3D scene and camera
geometry, many common geometric computer vision problems turn out to be quasi-convex.
Various properties of quasi-convex functions that make their global optimization feasible were
described.

In practice, one is usually confronted with a certain percentage of outliers in the image mea-
surements. These are typically dealt with using “RANSAC” type approaches in which initial
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solutions are computed from random minimal samples of measurements and checked for con-
sensus with the remaining measurements, until a satisfying solution is found. Richard Hartley
showed that for quasi-convex problems, the global solution with respect to all measurements
has the property that, if the measurements contain outliers, there is at least one among the
measurements with largest residual. This could be the basis for deterministic estimation pro-
cedures that guarantee to find all of the outliers in the measurements and thus the globally
optimal solution of the considered estimation problem.

Ananth Ranganathan of Georgia Tech presented solutions for performing inference on large-
scale graphical models and applied this to matching problems in geometric computer vision.
(Slides: PDF, PPT). The main motivation is to be able to handle large-scale reconstruction
problems where appearance information is unreliable or unavailable, thus posing challenges
for image matching. This is the case in the 4D-Cities project at Georgia Tech (modeling
of entire cities in 3D and over time using photographs or videos) as well as in laser-based
Simultaneous Localization and Mapping (SLAM) in robotics. In such cases, reliable matching
can be approached by computing marginal covariances for the structure and motion variables
and using these to perform maximum likelihood correspondences.

It is well-known that such marginal covariances can be expensive to obtain. Ananth Ran-
ganathan explained how to formulate geometric computer vision and SLAM problems using
graphical models so that inference on them can be explained in a purely graphical manner via
the concept of variable elimination. This leads to a new way of looking at inference that is
equivalent to the junction tree algorithm. When applied to linear(ized) Gaussian problems,
the algorithm yields the familiar QR and Cholesky factorization algorithms. This connection
with linear algebra in turn leads to strategies for very fast inference in arbitrary graphs, such
as those encountered in the above mentioned computer vision and robotics problems.

2.2 Multi-view Geometry

David Nistér of the University of Kentucky discussed the problem of determining the relative
locations of a set of microphones, simply by recording unknown sound sources. More precisely,
he assumed that “correspondence” is solved, so that time-difference-of-arrival (TDOA) mea-
surements are available for each pair of microphones and that sound sources are distant (they
are modeled as being located infinitely far away). David Nistér showed that under these as-
sumptions, the location of a set of microphones and sound sources can be computed via an
elegant matrix factorization. He also discussed degenerate and minimal cases. For example,
to locate four microphones, at least six sound sources are required. The proposed formulation
offers many similarities to concepts used in multi-view geometry, such as the absolute conic and
multi-linear matching constraints.

Anders Heyden of Malmö University presented a framework for unifying discrete and con-
tinuous approaches for camera motion estimation (slides: PDF, PPT). Traditionally, motion
estimation has been approached either from a pure discrete point of view, using multi-view
tensors, or from a pure continuous point of view, using optical flow. Anders Heyden showed
how to unify the two and derive hybrid methods combining the best part of each of them. This
is embodied by differential-algebraic matching constraints that can be used for handling motion
estimation in mixed scenarios containing both widely separated and closely spaced cameras. He
also showed how to update the motion parameters from image correspondences, requiring fewer
points than the traditional methods and also avoiding the non-linear constraints that usually
appear in the calibrated case. Finally, he presented extensions to trifocal tensor1 based motion
tracking of a rigid stereo-head.

1The trifocal tensor is an algebraic constraint linking corresponding points in three views.
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2.3 Segmentation of Dynamic Scenes

Marc Pollefeys of the University of North Carolina presented two families of approaches to
obtaining 3D reconstructions of dynamic scenes, using one or more cameras. (Slides: PDF,
PPT). The first set of approaches concerns the analysis and recovery of articulated motion
with non-rigid parts, e.g. human body motion with non-rigid facial motion. The motion of
points on the observed surface is modeled using a set of intersecting subspaces. By adopting
an affine projection model for the camera, the observed motion can be analyzed and recovered
using subspace methods. Overall, the approach allows motion segmentation to be performed
to recover the underlying kinematic chains and object shape. An example is shown in figure 1.

The second focus of Marc Pollefeys’ talk was on recovering dynamic shapes from silhouettes
extracted in image sequences acquired with multiple cameras. This is a standard approach in
computer vision, but it is usually assumed that throughout the image sequences, the objects of
interest are entirely in front of the background, which is static. Marc Pollefeys addressed the
case where the objects may be temporarily occluded by static objects during their displacements.
He developed a probabilistic formulation for recovering the occlusion patterns and the dynamic
object shape, as well as the shape of the occluding objects.

Figure 1: An example of motion segmentation and kinematic chain construction obtained with
the approach presented by Marc Pollefeys.

Rene Vidal of Johns Hopkins University presented a framework for segmenting scenes con-
taining independently moving objects and/or dynamic textures. (Slides: PDF). An example
of such a scene is a bird floating on water: the bird moves independently from the rest of the
scene and the appearance of the water is continuously changing. One can model such scenes as
the output of a collection of dynamical models exhibiting discontinuous behavior both in space,
due to the presence of multiple moving objects, and in time, due to the appearance and dis-
appearance of objects. Segmentation of dynamic scenes is then equivalent to the identification
of this mixture of dynamical models from the image data. The difficulty is that although the
identification of a single dynamical model is a well understood problem, the identification of
multiple hybrid dynamical models is not: in order to estimate a mixture of models one needs
to first segment the data and in order to segment the data one needs to know the model pa-
rameters. Vidal proposed to approach this “chicken-and-egg” problem using a technique called
Generalized Principal Component Analysis (GPCA). In the case of data living in a collection of
subspaces, this proceeds in two steps. First, a general vector of polynomials is fitted to all of the
data points (without segmentation); the polynomials represent a meta-model whose coefficients
are the tensor products of the coefficients of the lower-degree polynomials representing the indi-
vidual component models. The parameters of individual models can be found by differentiating
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the fitted polynomials. Rene Vidal showed how to apply this framework to diverse problems in
computer vision, such as image/video segmentation, 3-D motion segmentation, dynamic texture
segmentation, and heart motion analysis.

Raghav Subbarao of Rutgers University explained how to generalize non-parametric estima-
tion to data belonging to differential manifolds rather than Euclidean spaces, with applications
in computer vision. (Slides: PDF, PPT). Many computer vision tasks involve the parameter
estimation in the presence of noise and outliers. An alternative to parametric model fitting
is the use of non-parametric techniques such as the popular mean shift mode discovery algo-
rithm. For example mean shift can be used for clustering data points from some feature space
representing visual cues, and also for image segmentation, object tracking, image smoothing,
etc. Previous computer vision applications of mean shift have assumed that the data points
belong to vector spaces but in reality the geometric constraints involved and the nature of the
imaging device often lead to non-vectorial feature spaces. This is the case for example when
the goal is to estimate one or several rigid motions between pairs of images or point sets. In
such cases the feature space often still exhibits the regular geometry of an analytical manifold.
Raghav Subbarao developed a nonlinear mean shift algorithm that generalizes Euclidean mean
shift to analytic manifolds. As examples he considered two frequently occurring classes of pa-
rameter spaces, Grassmann manifolds and matrix Lie groups, using the algorithm for motion
segmentation, model-based optical flow field segmentation and diffusion tensor based image
smoothing.

2.4 Scene Reconstruction I

Yasutaka Furukawa of the University of Illinois presented a multi-view stereo algorithm that
reconstructs a scene as a dense set of patches, i.e. points with associated surface normals.
(Slides: PDF, PPT). The algorithm has two main steps. First, sets of feature points are de-
tected in each image and matched across multiple images. Each match yields a single patch;
the generated patches are sparse and only correspond to regions with salient image features.
To densify the coverage, the second pass of the algorithm expands the set of matches, recur-
sively adding new patches in the vicinity of existing ones. These are initialized based on the
location and orientation of an existing patch then refined by optimizing a photo-consistency
measure over patch orientation and depth relative to a reference image. The proposed method
is different from existing multi-view stereo algorithms in various ways. First, it does not require
any initialization, such as the visual hulls or bounding boxes that are often used to start the
iterative deformation of surface based models. Secondly, it includes only a very small amount
of regularization; this may be a drawback in some cases but it also allows the method to handle
objects with complicated topologies. Thirdly, the method is memory efficient – the memory
usage is proportional to the size of the inputs and outputs. It is also robust to outliers in
input images such as moving pedestrians in an outdoor scene being reconstructed. Yasutaka
Furukawa showed impressive experimental results on various data sets – for an example see fig-
ure 2 – along with a qualitative and quantitative comparison with state-of-the-art image-based
modeling algorithms and laser range scanners.

Kyros Kutulakos of the University of Toronto presented Confocal Stereo, a novel approach
for high-resolution 3D photography using a single camera. In contrast to other image-based
approaches, the method allows depth maps to be computed using pixel-by-pixel processing,
thus allowing the reconstruction of very fine surface details and scenes with multiple depth
discontinuities occurring within several pixels (e.g. high-resolution images of hair). Confocal
stereo works by taking a number of images of the same scene with different focus and lens
aperture. At its heart is the confocal constancy property: as the aperture varies, the pixel
intensity of a visible in-focus scene point varies in a predictable way that does not depend
on the scene. To exploit this, Kutulakos developed a detailed lens model that factors out
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Figure 2: One input image and the corresponding view of a 3D model reconstructed with the
approach of Yasutaka Furukawa.

the geometric and radiometric distortions in high resolution SLR cameras with wide-aperture
lenses. He showed how to recover the model from images and how to use it to reconstruct
detailed 3D shape for a variety of complex scenes.

Gabriel Taubin of Brown University presented a 3D reconstruction method that exploits
images taken with multiple flash exposures. (Slides: PDF). It extends the range of so-called
shape-from-silhouette algorithms, which recover 3D shape based on object silhouettes extracted
in images. Silhouettes correspond to the outer contours of objects and do not for example pro-
vide information of 3D shape within concavities of the object surface. The proposed approach
uses sets of images. At each viewpoint several images are acquired under flashes in different
positions. Depth discontinuities are detected by extracting the shadows they cause under the
different flash-based illuminations. Geometric reasoning then allows the positions and orienta-
tions of points to be reconstructed, even when they are located inside concavities. However,
points that do not produce observable depth discontinuities can not be recovered and so the
method only produces a sparse and unevenly sampled representation of object shape. To han-
dle this Gabriel Taubin described a method for fitting an implicit surface to the oriented point
cloud, which is then used to generate additional oriented points on the surface of the object
in regions of low sampling density. He then presented some 3D reconstructions of objects with
or without texture and with rather fine surface details. He also also showed how to enrich the
resulting geometric models with appearance information by fitting a Phong reflectance model
to the observed image data.

2.5 Mathematics and Vision meets Arts: Banff Centre Interaction

Gabriel Taubin of Brown University presented a retrospective of pioneering work joint with
Holly Rushmeier and Fausto Bernardini on the digital capture of Michelangelo’s Pieta sculpture,
covering technical, organizational and heritage research issues. At the time when this work was
done real world capture projects outside the laboratory were a relatively new endeavor. For
the project Gabriel’s team developed hardware to capture the 3D geometry and an operational
procedure to scan pieces of the object, merge the resulting collection of geometric meshes, and
register texture images taken with a digital camera. Figure 3 illustrates the work flow. An
important facet of the work is its handling of the numerous practicalities associated with real
capture work in museums – an aspect rarely discussed in research papers but important in
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bringing vision into real-world use. Close collaboration and a good understanding of museum
rules and operation was required to make this collaboration between scientists and custodians
of historical heritage a success. Gabriel’s talk gave insights into many of these issues from the
early stages of planning and securing access, to the practicalities of capturing a large object
while working in a cramped space not designed for capture purposes. Finally, novel uses for the
digital model were presented, such as being able to view parts of the statue from viewpoints
otherwise occluded and the ability to speculate about alterations and modifications by trying
them out on the digital model.

Figure 3: From real object to digital model through piecewise acquisition of geometry and
registration of texture images.

Noah Snavely from University of Washington and Richard Szeliski from Microsoft presented
a new way to represent and browse large collections of snapshots of scenes such as popular tourist
sites. (Slides: PDF). The approach seeks a balance between the complexity and difficulty of
acquiring 3D information and the richness of the representation displayed to the user. Much
computer vision research seeks to create a complete texture mapped model of the scene, but
to date the corresponding algorithms are not universally robust and it is usually impossible to
guarantee the complete coverage of a complex scene, especially when details may be viewed
at a wide range of scales. As an accessible middle ground, the authors propose to use a
sparse geometric model as a means of registering the photos and camera positions in 3D and
navigating the scene and the collection, while still basing visual browsing on the original photos.
An example of the representation is shown in Fig. 4. Enhancements such as smooth transitions
between views and the display of a sparse stylized geometry provide a satisfying 3D browsing
experience. Several models based on unorganized photo collections from Internet photo sites
were shown. The results are currently being developed commercially by Microsoft Live Labs.

Neil Birkbeck and Adam Rachmielowski from the University of Alberta talked about a
three-level representation for capturing photo-realistic 3D models from 2D images. (Slides:
PDF). On the macro scale, a conventional triangulated geometric model is captured using es-
tablished shape-from-silhouette and structure-from-motion methods. At the level of texture
capture, most previous approaches have attempted to work directly with the resulting triangu-
lated models, but in practice they are often too coarse or inaccurate for good results. To improve
on this, Neil presented a variational method that simultaneously refines the geometry and esti-
mates a reflectance model. A novel aspect is that the representation in this step uses a depth
map w.r.t. the model facets, thus avoiding the generation of a complex model with many small
polygons while generalizing the image-plane disparity models typically used in conventional
stereo. This representation also naturally supports recent displacement mapping methods thus
providing more efficient rendering. Finally, on a micro level, instead of a conventional texture
based representation of surface color, a linear basis much like those used in movie compression
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Figure 4: On the left is an iconic representation of the Prague city square derived from photos
that one of the presenters took during a conference trip. The estimated camera locations are
shown as small rectangles. On the right is the view of one photo in the photo-tourist navigation
interface, and surrounding the image a selection of other nearby (in a 3D sense) photos. Several
navigation modes are available.

is used to encode the residual between the estimated model and the image inputs. This basis
can be modulated and correctly interpolated by indexing it on viewing angle, thus allowing the
rendering of arbitrary views not seen in the input images. Experiments illustrating the capture
of both objects and people were shown – see Fig. 5 – and the models were integrated into a
virtual city model inserted in the Edmonton landscape.

Figure 5: Object capture and insertion into a virtualized world.

Jim Rehg of Georgia Tech presented a system that trains novice painters using computer vision
to control overlay projectors. (Slides: PDF). The system is designed to support the traditional
painting experience and to intrude as little as possible on it. Rather than having to use digital
input methods (electronic pens and tablets, digitizing devices etc), the budding artist uses
conventional brushes, colors and canvasses. A computer vision system monitors the progress of
the painting and provides appropriate augmentations via two computer projectors. A variety
of painting aids and hints have been implemented and tested, from high level guidance to detail
brush work. In teaching layering of paintings, the system uses the projectors to enhance or mask
various areas, guiding the novice through the process of building the painting sequentially from
the base layers up – see Fig. 6. There is also a visual aid for mixing colors, and a tone blending
assistant to help with shading. To situate the current state within the time line from bare
canvas to final painting, the system can alter the appearance of the canvas to show goals in a
preview mode. It can also be completely turned off whenever the painter desires.
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Figure 6: A projector based system for training novice painters. Left: the setup with two
projectors and a video camera. Right: a projector-based augmentation showing paint layering.

The system has been tested by a number of painters, receiving positive feedback. Different
users use the system in very different ways but one indication of overall usefulness is timing
measurements that show that most participants choose to use the augmentation most of the
time rather than painting unsupported with the system off. The talk generated a considerable
amount of interest from the artists participating in the session. Both questions and criticisms
were aired.

Adrian Broadhurst of Vicon talked about using commercial motion capture for creative
applications and showed examples and clips of both the intermediate stages and the final results
in movies. The Vicon motion capture system is based on retro-reflective markers and infrared
lighting, see Fig. 7. Marker positions are detected by custom-made cameras with on-board
processing, with the thresholded binary images being sent to the PC for further processing and
3D structure computations. Special care has to be taken to get the correspondences between
different images of each marker correct. This is performed by using kinematic rigidity and
temporal track consistency constraints. An XML representation is used to describe the character
topology and joint types. From this a more detailed calibration is obtained by having the actors
perform a range of test motions. Finally, tracks of the desired movements are recorded. A recent
development in commercial motion capture is that multi-camera systems now can record the
motions of several interacting actors at once, instead of having to record each actor separately.
Adrian finished by showing clips from feature films where Vicon’s systems have been used for
special effects.

Figure 7: The Vicon motion capture system. Retro-reflective markers are fitted to the subject
and tracked as he or she performs the desired movements.
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Geert Caenen of KU Leuven talked about his work on making image-based structure-from-
motion (SFM) modeling available to archaeologists and other producers of virtual heritage.
(Slides: PDF). See Fig. 8. The work has involved a considerable systems engineering effort to
make the SFM pipeline robust and usable for non-computer vision people. The basic steps are
determining an ordering for the images, computing coarse scene geometry and camera positions
using SFM, then refining the geometry by revisiting the images at higher resolution with a
dense stereo algorithm. In addition, the SFM part has been integrated with 3D geometry
processing for mesh merging and global model building developed by other research groups.
The current system offers a web based interface that allows users to submit (unordered) sets
of images of a scene. Each data set is processed as a background job distributed over a large
set of KU-Leuven workstations. When processing has been completed the user is notified by
email and can download the model if processing was successful. If no model could be generated
the system sends an error message describing the point at which processing failed. A model
viewer was also developed as a part of the project. Several results were shown, including one
that captured a Dutch barn by parts and merged the results into a unified model.

Figure 8: Several photos (left) are used to build a textured 3D digital model using SFM.

2.6 BIRS-Banff centre hands-on interaction

The above interaction sessions were followed by joint BIRS and Banff Arts Centre demo, lab
and poster sessions. In the demo sessions the speakers showed how to apply their methods
and algorithms to real world imaging data. Fig. 9 shows an example of the interaction. The
interaction session turned out to be an excellent forum for further inquiry and discussions,
where participants automatically grouped themselves informally into small discussion groups.

Another goal of the interaction sessions was to provide 3D models of real world objects and
people for the Banff New Media Institute modelers and animators. Several of them came to
the lab sessions and brought objects to be captured. We provided lab setups for geometry and
appearance capture at several scales, ranging from small objects to people and people sized
objects – see Figs. 10 and 11.

In another session we were able to tour the Banff New Media Institute and see demos in its
audio, video and 3D studios. The modelers and animators showed us current work both related
to art, such as some 3D cave visualizations done for a New Media Artist, and education such
as a quantum physics game illustrating secure quantum communication.
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Figure 9: Geert Caenen, demonstrates the KU Leuven 3D reconstruction software using SFM
and dense stereo to a group of participants.

2.7 Variational Methods

Jan Erik Solem of Malmö University presented a general framework for variational formu-
lations and level set methods in computer vision problems. (Slides: PDF). The framework
consists of three steps: (i) selecting an appropriate energy functional, (ii) finding an initial
starting point, and (iii) choosing a specific optimization method and stopping criterion. The
level set method was used as a standard tool for solving the resulting energy minimization
problems. A number of applications to both curve and surface problems were presented.

One frequently occurring example is the problem of recovering 3D models of a scene given
only a sequence of images. Standard level set methods only allow closed surfaces to be recon-
structed. By combining two different level sets, one describing the surface and the other used as
a cut-off surface, open surfaces can also be treated. The standard optimization procedure is to
calculate the Euler-Lagrange equations of the energy functional and use them as the right hand
side in a system of partial differential equations. It was shown that this method can indeed
be interpreted as a gradient descent procedure once the gradient of a functional is properly
defined.

Yuri Boykov of the University of Western Ontario presented a framework for unifying contin-
uous methods such as level sets and discrete methods such as graph cuts. (Slides: PDF, PPT).
Among a multitude of approaches, the level set and graph minimal cut methods have emerged
as two powerful paradigms for computing image segmentations. These methods are based on
fundamentally different image representations. Level sets are formulated as infinite-dimensional
optimization problems on a spatially continuous image domain, whereas graph cuts are defined
as minimal cuts of a discrete graph representing the pixels of the image. Yuri showed that
graph cuts can be an efficient tool for the local or global optimization of several computer
vision functionals for geometric surfaces that are currently addressed mainly with variational
methods based on gradient flow PDEs. He also showed how to use the Cauchy-Crofton formula
to construct a grid-graph to approximate any given Riemannian metric up to a desired accu-
racy. Finally, he presented an integral approach to gradient flow where the max-flow algorithm
is used to construct an optimal step of a fixed length.

Todd Zickler of Harvard University presented a method based on appearance decomposition
for image-based shape recovery. (Slides: PDF, PPT). Image-based reconstruction systems are
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Figure 10: Left: A participant, Peter, being captured as a 3D model. Right: Neil Birkbeck
reconstructs his 3D geometry and dynamic texture using the U. of Alberta capture system.

Figure 11: The computed 3D wire-frame model and some textured renderings.

designed to accurately recover the three-dimensional shape of a scene from its two-dimensional
images. The reconstruction problem is ill-posed because images do not generally provide direct
access to 3D shape. Instead, shape information is coupled with additional factors such as
illumination, pose and surface reflectance. Shape recovery typically requires assumptions about
reflectance, for example that surfaces are Lambertian. When such assumptions are violated the
accuracy of the recovered shape can be compromised.

Todd Zickler presented two techniques for recovering shape that relax the assumptions about
surface reflectance. Both are based on the notion of an ‘appearance decomposition’. By decou-
pling some of the factors that determine an image (shape, reflectance, illumination and pose),
he obtained more direct access to shape information, greatly simplifying the reconstruction
problem. The first part treated Helmholtz stereopsis with a focus on recent calibration work to
make this reconstruction technique more practical. The second part presented a family of color-
based photometric invariants that extend the applicability of Lambertian-based reconstruction
techniques (structure from motion, stereo, photometric stereo, shape-from-shading, etc.) to a
broad class of specular, non-Lambertian scenes.
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Figure 12: Our visit to the Banff New Media Institute.

2.8 Scene Reconstruction II

Geert Caenen of KU Leuven presented a general framework for using generative image models
in computer vision applications. (Slides: PDF, PPT). Generative models have already shown
their value in computer vision. They explicitly model the image formation process in terms of
different imaging parameters and the unknown scene, allowing a number of image-based infer-
ence problems to be solved by inverting the process. The probabilistic nature of the framework
allows for the introduction of prior assumptions that can express coherence of the data, outliers
and much more.

Geert Caenen introduced the basic mathematical building blocks and tools for solving the
aforementioned problem (notably the E-M algorithm). He then demonstrated the genericity and
modularity of the framework by discussing various applications including image registration,
depth computation and 3D-reconstruction, illustrating these with practical examples.

Stefan Roth of Brown University presented the novel concept of specular flow and applied it
to surface structure recovery. (Slides: PDF). In scenes containing specular objects, the image
motion observed by a moving camera is an intermixture of the optical flows resulting from
diffuse reflectance (diffuse flow) and from specular reflections (specular flow). Stefan Roth
formalized the notion of specular flow with a few assumptions, showed how it relates to the
3D structure of the world, and developed an algorithm for estimating scene structure from 2D
image motion.

Unlike previous work on isolated specular highlights, he used two image frames and esti-
mated the semi-dense flow arising from specular reflections of textured scenes. A parametric
model was used for the image motion of a quadratic surface patch viewed from a moving cam-
era. The flow was modeled as a probabilistic mixture of diffuse and specular components and
the 3D shape was recovered using Expectation-Maximization. Rather than treating specular
reflections as noise to be removed or ignored, it was shown that the specular flow provides
additional constraints on scene geometry that improve the estimation of 3D structure when
compared with reconstruction from diffuse flow alone. The method was illustrated on a set of
synthetic and real sequences of mixed specular-diffuse objects.
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2.9 Scene Reconstruction III

Yuri Boykov of University of Western Ontario presented a photoflux functional for image
segmentation. (Slides: PDF, PPT). Recent advances in image segmentation have shown that
using flux based functionals can significantly improve the alignment of object boundaries. Yuri
Boykov proposed a novel photoflux functional for multi-view 3D reconstruction that is closely
related to the properties of photohulls. Since the photohull prior can be combined with reg-
ularization, the work unifies two major groups of multiview stereo techniques: space carving
and deformable models. It retains benefits from both groups, allowing fine shape details to be
recovered without over-smoothing while robustly handling noise. Photoflux provides a data-
driven ballooning force that helps to segment thin structures or holes. Yuri Boykov proposed
a number of different versions of photoflux based on global, local, and non-deterministic visi-
bility models. Some forms of photoflux can easily be incorporated into standard regularization
techniques, while new optimization methods were proposed for others. It was also shown that
photoflux-maximizing shapes can be viewed as regularized Laplacian zero-crossings.

Patrick Hébert of the University of Laval presented a unified surface representation for 3D
imaging and modeling. (Slides: PDF, PPT). Given a set of input data, the method builds a 3D
model in the form of a geometric representation and an associated appearance model for the
surface of each object. The process requires several steps that vary depending on whether the
input in in the form of color images or range data. Patrick Hérbert considered model building
as a unified process as opposed to a cascaded series of independent steps.

First he described an approach that was developed for the interactive modeling of surface
geometry from range data. It involves several steps including acquisition, alignment, fusion,
surface reconstruction, visualization and compression. A necessary condition for interactive
modeling is that the computational complexity of each step should be linear in the amount
of data acquired. The gradient of the signed distance field can be recovered directly from the
range data and each subsequent step benefits from this representation.

Secondly, he described a new approach for modeling surface appearance. When the aim
is to produce a model for visualization purposes alone, it is not essential to recover accurate
geometry so long as the appearance remains photorealistic. Instead of assuming a specific
reflectance model, he adopted an image-based approach that uses data acquired from a camera
that is moved around an object to produce a light field from a large set of calibrated images.
He proposed a frequency-based criterion to estimate a light field parametrization surface that
is well adapted to the object and the set of views.

Li Zhang of Columbia University presented a space-time approach to 3D photography. (Slides:
PPT). Recovering the 3D structure of a scene from photographs is an important problem in
several areas, including computer vision, computer graphics, and robotics. Two fundamental
challenges in 3D photography are the accurate reconstruction of scenes with complex occlusions
and of scenes containing dynamic objects. Li Zhang presented a space-time approach to these
two problems that exploits the temporal variation of spatial visual cues such as defocus and
stereo.

He first presented a temporal defocus method that reliably recovers the 3D structure of a
scene, regardless of its occlusion complexity. Then he presented a space-time stereo method
that accurately reconstructs objects that are deforming over time. Both methods significantly
outperform the state-of-the-art techniques for 3D sensing. Finally, he demonstrated several
applications of the proposed methods to computer graphics, including image refocusing, video
composition, expression synthesis, and facial animation

14



2.10 Visual Recognition and Learning

David Nistér of the University of Kentucky presented an impressive local appearance based
image indexing scheme that scales efficiently to very large image databases. (Slides: PDF,
PPT). The method reliably recognizes music CD covers from a 50 000 CD database in real time
on a portable computer. A larger 6 processor desktop system can search a 108 image database
in less than 6 seconds. The method is also being used for image matching in a city-scale visual
reconstruction system. The scheme uses affine invariant local image descriptors for robustness
to background clutter, occlusions and changes of view point, indexing these high-dimensional
descriptors using a novel hierarchical vector quantization tree to provide rapid calculation and
fine visual discrimination. The use of high-dimensional descriptors (128-D), a fine subdivision of
descriptor space (106 or more leaves), a modest branching factor each node (10-16× – neither
binary nor large), multi-level voting and careful vote weighting together lead to a dramatic
improvement in retrieval quality.

More generally, many media processing applications would benefit from data structures that
can efficiently index large sets of uncertain high-dimensional descriptors, but this appears to be
a difficult research problem owing to the curse of dimensionality. A large number of structures
including various kinds of spatial subdivision trees (kd-trees, quadtrees...), mixtures of trees
and locality sensitive hashing have already been tried in this context with mixed results at
best, but the hierarchical vector quantization scheme proposed here appears to offer hope for
progress.

Vincent Lepetit of EPF Lausanne described a visual tracking method based on the visual
recognition of characteristic local image regions (“keypoints”). (Slides: PDF). The method is
trained using a number of views of the target object, after which it tracks the object’s pose in real
time. In both phases distinctive keypoints are detected in the image at multiple scales and image
patches around them are extracted. The training method incrementally learns one visual class
for each observed keypoint, so that the keypoints seen during tracking can be classified to the
correct class (matched to the right source keypoint) despite changes in viewpoint and lighting.
The keypoint correspondences then allow the object pose to be recovered. A novel classifier is
used: a forest of randomized decision trees with internal decisions based on elementary pixel
comparisons and probabilistic merging of tree outputs. This method combines rapid learning
and execution and on-the-fly addition of classes with reliable classification over a large set of
keypoint classes.

Figure 13: A graphical model showing the interactions between body members that are taken
into account, and several examples of recovered poses, for Martin Bergtholdt’s method.

Martin Bergtholdt of Mannheim University presented his work on learning probabilistic
graphical models for recognizing classes of objects with highly variable geometry and appearance
such as humans. (Slides: PDF, PPT). The method uses a parts-based representation of the
class, learning both a statistical appearance model based on a local detector for each part
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and pairwise relationships between parts. The problem of detecting instances of the object in
the image then becomes one of finding optimal assignments of parts to image locations given
the complete graphical model. This inference is done either exactly with an A∗ search based
on some interesting new admissibility heuristics, or (for larger networks) approximately using
Belief Propagation. Experiments on face detection and on human detection despite complicated
articulated body poses show the promise of the approach, which is illustrated in Fig. 13.

Greg Mori of Simon Fraser University presented his work on estimating unusual human poses
from single images. (Slides: PPT). The main approach discussed begins by grouping the image
pixels into ‘superpixels’ – small homogeneous regions that almost surely lie on just one object
– as a means to reduce the computational complexity of later steps. It then uses learned part
detectors to assemble these into image segments that represent possible positions for limb and
body members, after which an efficient combinatorial search is applied to find the best assembly
of the detected segments into a coherent human body. For an example see Fig. 14. Greg also
described a variant based on combinatorially optimizing the image placement of an explicit 2D
body model under the assumption that its joint centres lie at superpixel centres.

Figure 14: The superpixel-assembly based method for human pose estimation from a single
image developed by Greg Mori’s group. The images show respectively the input image, its
segmentation into superpixels, a possible limb detection and the human body segments that
were finally recovered.

Phil Torr of Oxford Brookes University presented his group’s work on solving Markov Random
Fields (MRF’s) using Dynamic Graph Cuts and Second Order Cone Programming (SOCP) re-
laxations. (Slides: PDF, PPT). MRF’s are probabilistic graphical models representing networks
of individually simple but interconnected variables. They are used for many purposes in vision
including image segmentation, stereo and model-image matching and assignment problems.
The high dimensionalities of their state spaces make many calculations difficult, one of which is
finding the optimal (Maximum Likelihood or Maximum A Posteriori) state assignment to the
variables. The talk presented two methods for finding optimal or near-optimal assignments in
particular cases.

For many practical MRF’s with binary variables, the optimization can be reformulated as a
graph cut problem and solved using flow based algorithms such as augmenting paths, however
despite intensive work this computation remains relatively costly. Often we need to solve a
series of similar problems, for example when processing videos or because non-binary MRF’s
can be approximately solved using a series of binary problems or because different parameter
values need to be tested. The first part of the talk presented Dynamic Graph Cuts, a method
for solving a similar problem by reusing the search trees computed for the augmenting paths
in the current problem. The method often saves a great deal of computation, especially in
applications such as video segmentation where many of the problems in the sequence are very
similar.

The second part of the talk presented a generic method for approximating MAP states in
MRF’s by reformulating the problem as a 0-1 integer quadratic program (QP) and solving
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this using relaxation. Initial work used a semidefinite programming relaxation, but a newer
second order cone programming relaxation scheme gives similar or better results in much less
time. Unlike other popular schemes such as Belief Propagation or Graph Cuts, convergence is
achieved in just a few iterations. The method was illustrated on subgraph matching for object
detection in triangulated images and on pictorial structure matching (probabilistic networks of
parts with uncertain relative positions).

Jim Rehg of Georgia Tech presented his group’s work on learning optimal rejection cascades
for object detection. (Slides: PDF, PPT). Rejection based methods have shown themselves
to be one of the most successful and efficient approaches to object detection. They sweep the
image with a detection window, trying to save computation by rejecting windows that definitely
do not contain the object as quickly as possible. For this they use a chain or tree of classifiers,
each trained to handle the (increasingly more difficult) cases left undecided by the previous
level. Each stage depends on the previous ones and classifier training is a relatively complex
and expensive process, so optimizing such chains to meet a given set of final performance criteria
is not simple. The talk described a probabilistic look-ahead predictor for the performance of
the full rejection chain given the performance of the currently-trained elements of it. The
method allows the algorithm to make local decisions about classifier quality and threshold
during training that lead to good overall detector performance.

M. Alex O. Vasilescu of MIT Media Lab gave a talk about tensor (multilinear) extensions
of Principal Components Analysis (PCA) and Independent Components Analysis (ICA), two
traditional matrix-based linear dimensionality reduction methods that are often used in vision
and graphics. The methods apply to data sets that have several dimensions of variation, for
example sets of images of human faces with varying pose, lighting, expression and identity.

The tensor analogue of PCA is based on the “M-mode SVD” decomposition algorithm,
which essentially uses a series of Singular Value Decompositions (SVD’s) to apply independent
rotations to each axis of variation of the data tensor, moving as much of the “energy” (squared
norm) as possible into the first few components along each axis. Unlike the single axis of
variation case (conventional PCA using SVD), the resulting reduced “core tensor” is not usually
diagonal, although it often exhibits rapid decay along many or all of the axes. This makes
truncated forms of it useful for data approximation. Projecting an incoming data vector (here
an image) onto the core tensor axes allows the effects of the different influences to be separated
to some extent, for example removing pose and lighting variations to get a more canonical image
encoding intrinsic facial appearance (identity). Similarly, Multilinear Independent Components
Analysis (MICA) generalizes conventional linear ICA by applying transformations to each axis
that are designed to detect and emphasize non-Gaussian behavior such as long tails.

The methods were demonstrated in the context of facial image biometrics under chang-
ing facial geometry, expression, lighting and viewpoint. In this application, the “TensorFace”
(M-mode PCA) and “Independent TensorFace” (MICA) representations provide significantly
improved recognition rates relative to standard PCA and ICA – see Fig. 15. A second demon-
stration, TensorTextures, described an image based rendering technique that learns a multilin-
ear generative model for surface appearance from a sparse set of example images. The model
captures interactions between viewpoint, illumination and geometry including complex details
such as self-occlusion and self shadowing. A third demonstration extracted human motion
“signatures” useful for motion recognition and in computer graphics character animation from
human motion capture data.

2.11 Human Motion

Cristian Sminchisescu of the Toyota Research Institute Chicago gave a talk on Bayesian in-
ference algorithms for estimating 3D articular human motion from monocular video sequences.
(Slides: PDF). The problem is difficult because the human body has many degrees of freedom
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Figure 15: M-mode tensor representations of a face data set with identity, lighting and facial
pose variations. The left panel shows M-mode PCA, the right one M-mode ICA. On the left of
each panel, the corresponding non-tensor representation (i.e. normal PCA, ICA) is shown for
comparison.

and these are difficult to observe in monocular images owing to occlusions and depth ambigu-
ities. Body tracking research has traditionally used generative (forwards) models that predict
image observations based on a 3D body model but this rapidly runs into problems of ambigui-
ties and local minima because the inverse problem is inherently multi-valued. Recent work has
inverted this, directly learning to predict 3D body pose from image observations (discrimina-
tive or inverse modeling), typically regularized by some form of prior on typical human poses
or motions to stabilize the solution and reduce the degree of multi-valuedness. The focus of
the talk was a model of this kind called BM3E based on embedding a multi-valued Bayesian
mixture of expert inverse model in a Markov chain tracker. The talk also showed how to use
kernel-based nonlinear dimensionality reduction to reduce the state space to be estimated to a
more manageable dimension, and how to jointly learn discriminative and generative models to
provide more resistance to tracking failures. Some examples of static poses recovered by the
method are shown in Fig. 16.

Figure 16: Some human poses recovered from single images by Cristian Sminchisescu’s mixture
of experts method.

Raquel Urtasun of MIT described how to use Gaussian Processes2 (GP’s) to learn prior
models of human pose and motion for 3D person tracking. A Gaussian Process Latent variable
Model (GPLVM) provides a low-dimensional embedding of the human pose and defines a density
function that gives higher probability to poses close to the training data, while a Gaussian
Process Dynamical Model (GPDM) uses a second GP to provide a complex dynamical model.

2GP’s are infinite dimensional probability models taking the form of Gaussians in some linear function space.
Practical applications involve conditioning on a finite number of training observations to obtain a posterior
model that then allows point-predictions to be made using standard matrix calculus. GP based regression is
computationally expensive but it provides good levels of generalization from small training sets and useful model
uncertainty estimates, both of which are very useful in the high-dimensional limited-data learning problems
considered here.
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Bayesian model averaging allows both the GPLVM and the GPDM to be learned from relatively
small amounts of training data, and they provide graceful generalization to motions not seen
in the training set. Tracking is then formulated using MAP estimation on short sequences of
poses within a sliding temporal window. These priors allow effective tracking of a range of
human walking styles, despite weak and noisy image measurements and a very simple image
likelihood. Fig. 17 illustrates the process.

Figure 17: The stages of Raquel Urtasun’s Gaussian Process Dynamical Model based human
tracking framework.

David Fleet of the University of Toronto described his group’s work-in-progress on physics
based priors for modeling walking dynamics for 3D human tracking. (Slides: PDF). The current
motion priors for tracking are typically simple kinematic models that can not handle issues of
balance and contact dynamics. The new method uses a dynamical model inspired by the
passive anthropometric walker of (McGeer 1990) and (Kuo 2001,2002) – a simple 2D two phase
analytical model including toe-off impulses and a torsional spring in the hip, that manages to
simulate many aspects of human walking quite well even though it has no knees. The new model
(which does have knees) is used to track the lower bodies of walking people from monocular
video sequences, using an on-line sequential Monte Carlo tracking procedure to infer kinematic,
dynamic and anthropometric state variables. The tracker tolerates significant occlusions and
handles people walking straight and turning.

3 Summary and Prospects

Overall, we had very positive feedback about the workshop. The presentations were universally
well received and the ensuing discussions were often very lively. The Interaction with the Banff
Centre New Media Arts people was a new and interesting experience for both parties. The
friendly atmosphere of the facilities and the excursions of the group to the surroundings of
Banff stimulated informal discussions and thus contributed to the success of the meeting. A
number of new collaborations appear to have been started as a result of these interactions and
many of the participants have asked us whether there are any plans for a follow-up event.

It is clear that computer vision is a field that is currently making rapid progress, in part
owing to the widespread adoption of advanced mathematical techniques including partial dif-
ferential equation and random field models, mathematical programming, statistical learning,
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tensor decomposition, dimensionality reduction, Gaussian processes and even Galois theory.
Our ability to reconstruct detailed models of static and dynamic scenes from images and to
recognize individual objects, object classes and human motions from images has increased dra-
matically over the past decade and this trend is expected to continue for at least the next one.
Although the problems studied in computer vision are seldom very pure from a mathemati-
cal point of view, they have great diversity and many mathematically rich aspects, so further
opportunities for interaction between the two fields would be highly desirable.

We see a number of emerging topics that are likely to provide especially rich areas for
interactions over the next few years:

• Advances in the various different ways of attacking the minimization of large-scale energy
models (mathematical programming, graph cuts, PDE and level set methods. . . ), and
more generally in statistical computations on large-scale graphical models, will lead to
improved scene reconstruction and motion estimation methods, and also to improved
model-image matching and object recognition methods.

• The interaction between computer vision and computer graphics will continue to increase,
especially in areas where images are used as sources for rendering (capture of detailed
surface geometry and reflectance properties; modeling of large scale scenes and natu-
ral phenomena; light based models such as lumigraphs; capture of human appearance,
expression and movement). As the scale, degree of realism and mathematical sophisti-
cation of such models continues to grow, it will become ever more necessary to involve
mathematicians in this collaboration.

• More realistic statistical models of natural images will lead to more reliable and invariant
image features and a better understanding of what is needed for reliable visual recognition.
This is an extremely complex high-dimensional statistical modeling problem.

• The basic problem of representing 2D and 3D form has been one of the mainstays of vision
research for decades, but is not yet fully resolved. In one research direction, variational
methods are combined with increasingly precise physical models. In another, methods
and results from geometric computer vision are revisited and refined into new methods.

• In terms of impact on society, computer vision is poised to follow its sister disciplines
image processing and computer graphics into mainstream use. Most notably, this means
that new classes of users will be introduced to computer vision techniques. Today just
about any digital camera owner can apply advanced image processing techniques, e.g.
using PhotoShop, and groups of artists without science degrees can model and animate
computer graphics worlds. A challenge for computer vision is not only to develop methods
and algorithms, but also to make them usable to the general public, for example making
it possible for a layperson to compute a 3D model from photos.

Finally, in the name of all of the organizers and participants, we would like to thank PIMS,
BIRS and their sponsors for giving us the opportunity to organize this event in such prospicious
surroundings.
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Figure 18: Some of the participants on a day trip at Moraine Lake.
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