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Introduction. A great many physical processes involving moving bound-
aries can be reduced, after various idealizations, to the so-called Hele-Shaw
problem. These are also known in the modern physics literature as Laplacian
growth processes since the field equation governing is Laplace’s equation and
the subsequent interface motion is given by some surface derivatives of this
field. Numerous physical phenomena that fall into this category: they in-
clude (but are not limited to) solidification processes [24], electrodeposition
[10], viscous fingering [4], bacterial growth and the modelling of cancer cells
[3]. The meeting in Banff in June 2007 focussed on the investigation of the
dynamics and growth of unstable interfaces that appear as a result of such
growth processes.

This field of research arguably originated in the 1940s [31, 12] and has
attracted a great deal of attention recently in both the mathematical and
physical communities due to newly found connections and applications to
areas of classical physics and mathematical physics. These include integrable
models, 2-dimensional quantum gravity and matrix models, the dynamics
of quantum hall droplets, transport of 1-dimensional fermions, propagation
of crystallization fronts and lightning propagation. The list of applications
is clearly very wide-ranging.

The common mathematical background for these developments is the
study of dynamics of the interface growth known as the Laplacian growth.
The simplest model for this process is the displacement of the viscous fluid
(say, oil) by a non-viscous one (referred to as air or, water, between two
closely spaced horizontal plates (the Hele-Shaw cell). Due to the high vis-
cosity of the oil, its incompressibility and the assumption that the flow takes
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place between two closely-spaced glass plates, the flow is governed by Darcy’s
law and the normal velocity of the interface is proportional to the normal
gradient of the pressure. The zero viscosity of the air allows one to assume
that the pressure is constant across the air domain.

If an interface develops a bump at some point in time the pressure gradi-
ent on that bump will be much larger than on the remaining “flatter” parts
of the boundary of the interface. The bump therefore grows faster and will
be quickly amplified during the growth process. This process is thus very
unstable and can produce asymptotic shapes such as a “finger” [35], [5] or,
within a discrete model, a fractal with characteristics similar to those ob-
tained in Diffusion-Limited Aggregation processes, cf., e.g., [24, 10, 3]. The
study of this growth phenomenon is currently enjoying a resurgence.

The mathematical model governing these and many other similar pro-
cesses reduces to the following “simple” equation for the moving boundaries:

V (ξ) = ∂nGD(t)(ξ, a). (1)

Here V is the normal component of the velocity of the moving boundaries
∂D(t) of the time dependent domains D(t) ⊂ Rd, ξ ∈ ∂D(t), t is time, ∂n is
the normal component of the gradient, and GD(t)(ξ, a) is the Green function
of the domain D(t) for the Laplace operator with a unit source located at
the point a ∈ D(t).

Up to this point, the most rewarding theory from the applications per-
spective has been developed in two dimensions (2D). In two dimensions,
the above equation can be rewritten as the area-preserving diffeomorphism
identity

# (z̄tzφ) = 1, (2)

where z(t, φ) := ∂D(t) is the moving boundary parameterized by φ ∈ [0, 2π]
and conformal when analytically extended into the region #φ := Im φ ≤ 0
[12, 31]. The equation (2) possesses many remarkable properties among
which the most noticeable one is the existence of an infinite set of conserva-
tion laws:

Cn(t) =
∫

D(t)
zn dx dy = Cn(0), (3)

where n runs over all non-negative [32] (non-positive [27]) integers in the
case of a finite (infinite) domain D(t), and an impressive list of exact time-
dependent closed form solutions [37]. For a rather pleasing interpretation
of conserved quantities Cn as coefficients of the multi-pole expansion of the
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fictitious Newtonian potential induced by the matter uniformly occupying
the domain D(t) see, e.g., [37].

It was established in [29] that the interface dynamics described by (2)
is equivalent to the dispersionless integrable 2D Toda hierarchy [38], con-
strained by a so-called string equation. Remarkably, this hierarchy, being
one of the richest existing integrable structures, describes an existing theory
of 2D quantum gravity (see the comprehensive review [38] and references
therein). The paper [29] generated a great deal of activity in apparently dif-
ferent mathematical and physical directions revealing profound connections
between Laplacian growth and random matrices [20], the Whitham theory
[21], and quadrature domains [30], [13, 11].

In short, Laplacian growth encapsulates a remarkable interconnection
between mathematics, physics, and engineering. This means that any no-
ticeable advance in one of these three branches of the subject often (if not
always) produces subsequent discoveries in another. The BIRS meeting of
2007 gathered experts from all these fields, and this has reflected the highly
interdisciplinary nature of the subject. The interaction among the partici-
pants was intense and the results, outlined below, are impressive.

The following publications reflect, if only partially, recent progress in
the field obtained in a few fresh collaborations started at the BIRS 2007
workshop: [1, 2, 7, 14, 18, 25], see also the volume [6] and the survey [30].

1. Potential theory and Riemann surfaces. Recall that Laplacian
growth is an interface dynamics where the boundary velocity equals the nor-
mal derivative of the Green function of the moving domain. Remarkably,
this non-linear complex dynamics with infinitely many degrees of freedom
possesses a complete set of conserved quantities (namely, the Richardson
harmonic moments). Consequently, wide classes of generalized quadrature
domains are preserved during the evolution. This implies in particular that
so-called algebraic domains (“classical quadrature domains”) remain alge-
braic.

A classical quadrature domain is an open subset Ω of the complex plane,
which satisfies the quadrature identity

∫

Ω
fdArea = u(f), f ∈ L1(Ω,dArea),

and u is a distribution with finite support (contained in Ω). By a doubling
procedure such domains can be identified with a class of symmetric Riemann
surfaces. Thus, Laplacian growth corresponds to certain kinds of dynamics
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of Riemann surfaces or, equivalently, of algebraic curves. A notable link
between classical function theory on algebraic curves, elimination theory
and quadrature domains was discovered in the article [14].

It is worth mentioning that an exact reconstruction algorithm of quadra-
ture domains from finitely many power moments, or equivalent data, exists,
see [11].

Much less understood is the “negative” Laplacian growth, under which
the bounded domain either shrinks down to a potential theoretic skeleton
of its original configuration, or breaks down due to singularity development
on the interface. This process has a common fluid dynamics interpretation,
namely a water/oil interface motion in a Hele-Shaw cell, where a fingering
instability discovered by P. G. Saffman and G. I. Taylor in 1958, occurs [33].
Despite many efforts during subsequent years there are still unanswered
questions in formulating a complete mathematical theory of it and quite a
few contributions to the workshop were aimed in this direction.

2. Elliptic growth and the Beltrami operator. The occurence of
the Laplace operator in mentioned above physical processes stems from the
continuity and incompressibility conditions satisfied by a fluid involved in
the potential flow. Specifically v = −λ∇p, where v, λ, and p are the fluid
velocity vector field, conductivity, and scalar velocity potential, respectively:

∇ · v = −∇ · λ∇p = −λ∇2p = 0.

As a first approximation, the conductivity λ was supposed to be constant,
while generally it is not; therefore the major equation for growth has to be
reconsidered as ∇ · λ(x)∇p = 0.

In [18] the authors present a natural extension of the Laplacian growth,
where the Green function of D(t) for the Laplace operator ∇2 is replaced
by the Green function of a linear elliptic operator,

L = ∇ · (λ(x)∇)− u(x), λ(x) > 0, x ∈ Rd. (4)

Such a process, which was naturally cristened an elliptic growth, is clearly
much more common in physics than the Laplacian growth. Consider, for
instance, viscous fingering between viscous and inviscid fluids in the porous
media governed by Darcy’s law

v = −λ∇p, (5)

4



where λ is the filtration coefficient of the media and p is the pressure (equal
to the Green function, GD(t)). One can easily imagine a non-homogeneous
media where the filtration coefficient λ is space-dependent. Such examples
of elliptic growth, where the elliptic operator L has the form of the Laplace-
Beltrami operator, L = ∇ · λ∇, and λ is a prescribed function of x, are
called an elliptic growth of the Beltrami type. It is clear that all moving
boundary problems other than viscous fingering with a non-homogeneous
kinetic coefficient λ fall into this category.

From a mathematical point of view this process is the Laplacian growth
occurring on curved surfaces instead of the Euclidean plane. In this case the
Laplace equation is naturally replaced by the Laplace-Beltrami equation,
and λ (that can also be a matrix instead of a scalar) is related to the metric
tensor. There are several works addressing the Hele-Shaw problem on curved
surfaces.

Another major source of examples of elliptic growth is related to screen-
ing effects, when u '= 0, while λ is constant in (4). The simplest example of
this kind is an electrodeposition, where the field p is the electrostatic poten-
tial of the electrolyte. It is known that in reality electrolyte ions are always
locally surrounded by a cloud of oppositely charged ions. This screening
modifies the Laplace equation for the electrostatic potential by adding to
the Laplace operator the negative screening term, −u(x), that stands for the
inverse square of the radius of the Debye-Hukkel screening in the classical
plasma. For the homogeneous screening u is a (positive) constant, so the
operator L becomes the Helmholtz operator, while for the non-homogeneous
case, when u is not a constant, L is a standard Schrödinger operator. Moti-
vated by this example, the moving boundary problem for L = ∇2 − u may
be called an elliptic growth of Schrödinger type.

As was shown in [18] these rather general types of elliptic growth still
retain remarkable mathematical properties, similar to those possessed by
the Laplacian growth. A mixed case with a non-constant λ and non-zero u
also shares similar properties but is less representative in physics and can
always be reduced to one of the two former types of elliptic growth by a
simple transformation.

It must be mentioned that in few prior works on elliptic growth an infinite
number of conservation laws, regarded as extensions of (3), were identified
as well, cf. [37, 28]. An integrable example in 2D, corresponding however
to a very special choice of the conductivity function, λ(x), was explicitly
constructed in [25]. The elliptic growth there essentially reduces to the well-
known Calogero-Moser integrable system.
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3. Stochastic analysis and fractal growth. Very recently, an inte-
grable model for the stochastic Laplacian growth with finite-size deposited
particles within the framework of so-called Loewner chains was developed.
As a consequence, it is expected to recover universal geometric character-
istics, such as the multifractal spectrum of the growing clusters. Notably,
this process retains integrability, despite its randomness.

In another important work combining stochasticity with integrability
[16], the authors have obtained a list of surprising results connecting random
entities and the tau-function - a powerful concept in the theory of integrable
systems. Taken together with the above mentioned results in Laplacian
growth, such nontrivial interconnections between integrability and random-
ness provide a constant source of new ideas.

4. Laplacian growth as a large N limit of random matrices
spectra. Some deep links between the stochastic Laplacian growth and the
theory of random matrices are discussed in the survey [30]. As it is often
the case in other applications of random matrices, this connection sheds new
light on older classical problems. To give a single example, an important
observation was made in [19] and developed in [36] (see also review [39])
that the Laplacian growth can be simulated by the evolution of an averaged
spectrum of normal random matrices as a function of a re-scaled size of
matrices from the statistical ensemble, when the size of a matrix, N , goes
to infinity.

The main observation is surprising: the evolution of the support of the
eigenvalues can be treated as the Laplacian growth of the domain. Namely, it
behaves exactly as an air bubble in the Hele-Shaw cell (with zero surface ten-
sion). Considering random matrices and the more general ‘beta-ensembles’
with the probability measure

N∏

j<k

|zj − zk|2β
N∏

l=1

dµ(xl, yl),

(here dµ(x, y) is a smooth measure in the plane), a natural framework is call-
ing to be developed, with the aim at solving the stochastic version of Lapla-
cian growth. Clearly, the large N approximation is by no means enough for
this purpose, so one should properly take into account 1/N -corrections and
understand the structure of the whole 1/N -expansion. This direction is now
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under intense development, and it can be fair to state that it has started at
the BIRS 2007 workshop.

5. Complex orthogonal polynomials. As mentioned above, the
(renormalized) eigenvalues of ensembles of random normal matrices con-
strained by simple external field potentials are known, in the limit as the
size of the matrix tends to infinity, to occupy regions that are generalized
quadrature domains. In this way, the methods of statistical physics inter-
sect with ideas from function theory and approximation theory with very
surprising results (cf. [1, 30]). In particular, it has been proved that the ge-
ometry of the limiting domain, encoded in its Schwarz function, determines
the cluster of zeros of some canonically associated complex orthogonal poly-
nomials. The resulting potential theoretic skeleton of the limiting domain
remains quite mysterious, and it is currently under intense investigation by
a number of researchers.

6. Applications to classical physics. The same mathematics of
Laplacian growth, involving conformal mapping theory, analytical/numerical
uniformization and function theory on compact Riemann surfaces, also arises
in a rich array of quite separate problems in classical physics: in fluid me-
chanics, for example, it arises in the study of free surface Stokes flows and in
vortical solutions of the Euler equations. A review of many different phys-
ical problems, all arising just within the field of classical fluid dynamics,
where quadrature domains arise has recently been compiled [9]. Most re-
cently, Laplacian growth models have been found to be relevant to describing
ionization processes in electrical streamers [26] – a physical problem where
Maxwell’s equations govern the physics. Such cross-disciplinary applications
of the mathematics of Laplacian growth are many and varied and new in-
stances are continually being uncovered.

7. Numerical simulations and industrial applications. It is
well-known that, in the continuous Laplacian growth problem, the initial
value problem can, under certain conditions, be ill-posed. Owing to this
ill-posedness, when small regularization effects are included – for example,
by including surface tension effects – any numerical method for resolving the
subsequent dynamics encounters a variety of challenges and much research
has gone into resolving these numerical issues over recent years. Other
challenging mathematical problems arise in the asymptotic analysis of such
problems. For example, a long-standing problem that was eventually solved
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in the 1980’s involved the selection mechanism for the Saffman-Taylor vis-
cous fingering problem. The solution to this problem gave birth to a new
area of asymptotic analysis now known as asymptotics beyond all orders [34]
owing to the role of exponentially small terms in picking out allowable so-
lutions. Many challenges in both the numerical and asymptotic analysis of
Laplacian growth problems remain and are the subject of ongoing work.
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