
Report on BIRS workshop 07w5013: Operator spaces and group algebras, Sunday,
August 19, 2007 to Friday, August 24, 2007

This workshop was organized by Eberhard Kaniuth (Univeristy of Paderborn), Anthony
To-Ming Lau (University of Alberta), and Zhong-Jin Ruan (University of Illinois). The
workshop had a total of 42 participants. Our main speaker was Professor Gilles Pisier (Paris
VI/Texas A. and M.), who gave two 50-minute talks. The other 22 speakers each gave a 50-
minute talk. The following are reports on their talks, problems arising, and impacts following
the workshop.

1 The similarity problem

The two lectures of G. Pisier at the workshop concerned the similarity problem.
A locally compact group is unitarizable if any (continuous) uniformly bounded representa-

tion is unitarizable (i.e., if it is similar to a unitary representation). Dixmier asked already
in 1950 whether ‘unitarizable’ implies ‘amenable’ (the converse was proved by him and Day
independently). More precisely, a representation π : G → B(H) is unitarizable if there is an
invertible operator ξ : H → H such that g 7→ ξπ(g)ξ−1 is a unitary representation on G. In
1955, Ehrenpreis and Mautner showed that SL2(R) is not unitarizable, from which it follows
formally that any discrete free group admitting it as a quotient is also non-unitarizable.

Motivated by this, Kadison [41] formulated the following conjecture: any bounded homo-
morphism u : A→ B(H) from a C∗-algebra into the algebra B(H) of all bounded operators on a
Hilbert space H is similar to a ∗-homomorphism, i.e., there is an invertible operator ξ : H → H
such that x 7→ ξu(x)ξ−1 satisfies ξu(x∗)ξ−1 = (ξu(x)ξ−1)∗ for all x in A. In this latter case, we
say that ξ unitarizes u and that u is unitarizable. Without loss of generality, one may suppose
that A has a unit. Then u is unitarizable if and only if its restriction to the unitary group of A
is unitarizable as a group representation.

These conjectures remain unproved, although many partial results are known. In his series
of two talks, Pisier surveyed those results, as well as more recent results on the closely related
notion of length of an operator algebra that he introduced. In particular, he explained why
‘length equal to 2’ characterizes amenable groups or C∗-algebras. Moreover, he showed that, if
one can always force the similarity ξ to be in the von Neumann algebra generated by the range,
then the group (or the C∗-algebra) must be amenable. Here are some more precise definitions.

We denote by ‖u‖cb the completely bounded (in short, c.b.) norm of a linear mapping
between two operator spaces, i.e., two linear subspaces of the space B(H) of bounded operators
on a Hilbert space H. This plays a crucial role in similarity problems because of Haagerup’s
formula, valid for any (algebra) homomorphism u : A → B(H) defined on a C∗-algebra A:
‖u‖cb = inf{‖ξ‖‖ξ−1‖}, where the infimum is over all invertibles ξ on H that ‘unitarize’ u.

The similarity degree of a unital operator algebra A is defined (see [58] and more references
there) as the smallest α ≥ 0 for which there is a constant C such that any bounded morphism
(= unital homomorphism) u : A→ B(H) satisfies ‖u‖cb ≤ C‖u‖α.

On the other hand, an operator algebra A ⊂ B(H) is of length ≤ d if there is a constant K
such that, for any n and any x in Mn(A), there are an integer N = N(n, x) and scalar matrices
α0 ∈Mn,N (C), α1 ∈MN (C), . . . , αd−1 ∈MN (C), αd ∈MN,n(C) together with diagonal matrices
D1, . . . , Dd in MN (A) satisfying

x = α0D1α1D2 . . . Ddαd with
d∏
0

‖αi‖
d∏
1

‖Di‖ ≤ K‖x‖ .
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We denote by `(A) the smallest d for which this holds, and we call it the length of A (so that
‘A has length ≤ d’ is indeed the same as ‘`(A) ≤ d’). It is easy to see that, if `(A) ≤ d, then,
for any bounded homomorphism u : A→ B(H), we have ‖u‖cb ≤ K‖u‖d.

Now let G be a discrete group, and let A = C∗(G). We wish to restrict the above factorization
to the case when the entries of the diagonal matrices D1, . . . , Dd sit in G itself (viewed as
a subset of C∗(G) in the usual way). We denote by `(G) the smallest d as above, but for
these restricted factorizations. Analogously, we denote by d(G) the smallest α such that, for
some C, all uniformly bounded representations π satisfy ‖uπ‖cb ≤ C supg∈G ‖π(g)‖α, where
uπ : [G]→ B(H) is the homomorphism linearly extending π.

To summarize the basic known results, we state the following from [55, 57]; the last assertion
is due to Erik Christensen [12].

Theorem 1.1 (i) For any discrete unitarizable group G, we have d(G) = `(G).
(ii) Any G containing a non-abelian free group has infinite length (i.e. is not unitarizable).
(iii) The Dixmier question whether unitarizable groups are amenable is equivalent to the

assertion that there are no groups G with 2 < `(G) <∞.
(iv) For an infinite discrete group, G is amenable if and only if `(G) = 2.

Recall that a C∗-algebra A is nuclear (equivalently amenable in B. E. Johnson’s sense) if,
for all C∗-algebra B, there is a unique C∗-norm on A⊗B.

Theorem 1.2 (i) For any unital operator algebra A, we have d(A) = `(A).
(ii) The Kadison conjecture that all C∗-algebras are unitarizable is equivalent to the assertion

that there is a fixed d such that any C∗-algebra A has length `(A) ≤ d.
(iii) For an infinite-dimensional C∗-algebra A, we have d(A) = 2⇔ `(A) = 2⇔ A is nuclear.
(iv) There are examples (e.g., A = B(`2)) for which `(A) = 3.

The Banff meeting was followed in October 07 by a conference at the American Institute
of Mathematics (AIM) in Palo Alto on the dichotomy between amenable and non-amenable
groups. The Dixmier problem was one of the main problems discussed in that workshop, but the
participants were from a different background from those at Banff, with many from geometric
(infinite) group theory or random walks on groups. Pisier again gave a series of two talks,
concentrating on the group case rather than on operator algebras, at that meeting.

2 Operator algebras

A number of talks during the week circled around the interplay between groups and operator
algebras, e.g., von Neumann II1-factors arising either from ergodic group actions on probability
spaces (through the Murray–von Neumann group-measure space construction) or as the II1-
factor L(G) associated with the regular representation of a discrete group with infinite conjugacy
classes. It must be observed that, if a countable group G acts ergodically on a probability space
(X,µ), then the group-measure space factor M = L∞(X,µ)oG depends only on the equivalence
relation induced by G on X; in particular, amenability properties of the equivalence relation
translate into amenability properties of M .

At the workshop, C. Anantharaman-Delaroche gave a lucid survey talk on various
possible definitions of amenability for equivalence relations, group actions, and more general
groupoids. She put the emphasis on asymptotic properties of random walks on groupoids. A
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basic open question about II1-factors M is: Up to conjugacy, how many Cartan subalgebras are
there in M?

If M has no Cartan subalgebra, then M cannot come from the group-measure space con-
struction; if M has at least two Cartan subalgebras, then M comes from at least two genuinely
different actions (i.e., non orbit equivalent). The fact that the factor L(Fr) of the free group Fr
has no Cartan subalgebra is a success of Voiculescu’s free probability theory. The existence of a
II1-factor with two non-conjugate Cartan subalgebras is a joint result by two Fields medallists,
A. Connes and V. F. R. Jones in 1982 [14].

N. Ozawa lectured about his joint work with Popa on II1-factors with zero or one Cartan
subalgebra. He sketched the proof [53] that, if M is a II1-factor with the complete metric
approximation property (CMAP), then M ⊗ L(Fr) has no Cartan subalgebra (a far-reaching
generalization of Voiculescu’s result), and that, if the probability space (X,µ) carries a pro-
finite ergodic action of Fr, then the group-measure factor L∞(X,µ) o Fr has a unique Cartan
subalgebra (namely L∞(X,µ)).

A purely group-theoretical result of the Ozawa–Popa study is the fact that, if a wreath
product H o G has CMAP, then the acting group G is amenable. Since the workshop, Ozawa
and Popa, generalizing further [54], have shown that, if Γ is a non-amenable group with a strong
form of the Haagerup property (also called a-T-menability), which moreover has CMAP, then
L(Γ) has no Cartan subalgebra and L∞(X,µ) o Γ has a unique Cartan subalgebra when (X,µ)
carries a profinite ergodic action of Γ. These results raise the questions of having more examples
of groups satisfying CMAP and/or the Haagerup property.

During the workshop, two further talks addressed these questions. E. Guentner explained
his result with Higson [35] about groups acting properly and isometrically on finite-dimensional
CAT (0). Also A. Valette explained his result with Y. de Cornulier and Y. Stalder [15] that the
Haagerup property is preserved under wreath products. Together with the Ozawa–Popa result
mentioned above, this disproves a conjecture by M. Cowling in 1996 that the class of CMAP
groups coincides with the class of Haagerup groups; see [9]. Another by-product is that the
finite-dimensionality assumption cannot be removed from the Guentner–Higson result. These
three sets of results give rise to obvious questions about these classes. What are their permanence
properties? In particular, which kinds of semi-direct products preserve these classes?

In a slightly different direction, B. Bekka explained his remarkable super-rigidity result [4]
for SLn(Z), where n ≥ 3, in a von Neumann-algebra setting. Let f : SLn(Z) → U(M) be a
homomorphism to the unitary group of a finite factor M . Then either M is finite-dimensional
(and f factors through a congruence subgroup), or there exists a finite index subgroup Γ of
SLn(Z) such that f extends to a normal homomorphism L(Γ)→M . A corollary is that the full
C∗-algebra of SL4(Z) has no faithful trace, which answers negatively a question of Kirchberg [42]
(a positive answer would have proved the famous Connes’ embedding conjecture, also mentioned
in K. Dykema’s talk during the week: Every countable group embeds into the unitary group of
the ultra-power of the hyperfinite II1-factor!) An interesting open question is: What happens
if SLn(Z) is replaced by some other higher rank lattice?

Coming from theoretical physics, the Bessis–Moussa–Villani conjecture, going back to 1975,
states that the function t 7→ Tr(exp(A + itB)) is positive-definite on the real line for any two
self-adjoint matrices A and B of the same size. Of course this conjecture can be generalized to
any C∗-algebra with a faithful trace, and M. Bozejko explained the proof [6] of this generalized
form when A and B are q-Gaussian random variables, with q ∈ [−1, 1]; the case where q = 0
corresponds to free probability. Interesting connections were made with completely bounded
maps on Coxeter groups.

R. Archbold described some recent results [1, 2] that he had obtained with Kaniuth on the
stable rank sr(C∗(G)) and real rank of group C∗-algebras C∗(G) and of compact transformation
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group C∗-algebras C0(X) o G. In the case of an almost connected, nilpotent, locally compact
group, we have

sr(C∗(G)) = 1 +
[

1
2

rank(G/[G,G])
]
,

which generalizesg the result of Sudo and Takai for simply connected, nilpotent Lie groups.
On the other hand, an unresolved dichotomy was described for RR(C∗(G)) in the case where
rank(G/[G,G]) is even. For a second countable transformation group (G,X) with G compact,
detailed formulae were described for sr(C0(X)oG) and RR(C0(X)oG), subject to the proviso
that the space X is locally of finite G-orbit type. The meeting stimulated further work on these
problems, using some very recent results [7] of Brown on the real rank of CCR C∗-algebras. This
has resulted in substantial progress by Archbold and Kanuith on the dichotomy for RR(C∗(G)),
and also on the removal of the somewhat restrictive assumption of ‘finite G-orbit type’ in the
case where G is a compact Lie group acting on a second countable space X.

A C∗-algebra A is exact if the minimal tensor product by A preserves short exact sequences
of C∗-algebras. These algebras were the topic of the talk of M. Dadarlat.

A fundamental result of Kirchberg [43] asserts that the separable exact C∗-algebras are
precisely those C∗-algebras which embed in the Cuntz algebra O2. A C∗-algebra which can be
represented as an inductive limit of finite-dimensional C∗-algebras is called an AF algebra. A
major open problem in the structure theory of C∗-algebras is to characterize the C∗-algebras
which embed in separable AF-algebras. One has the following conjecture.
Conjecture: A separable C∗-algebra is AF-embeddable if and only if it is exact and quasidiagonal.

Recall that a separable C∗-algebra A is quasidiagonal if there is a sequence ϕn : A→Mn(C)
of completely positive contractions such that ‖ϕn(ab) − ϕn(a)ϕn(b))‖ → 0 as n → ∞ for all
a, b ∈ A. Voiculescu proved that quasidiagonality is a homotopy invariant in the class of separable
C∗-algebras. While the above conjecture is very much open, there are some promising results
towards its validity. N. Ozawa proved in [52] that AF-embeddability is a homotopy invariant in
the class of separable exact C*-algebras. In particular the cone, and hence the suspension, of
any separable exact C∗-algebra is AF-embeddable. Dadarlat [16] has verified the conjecture for
the class of separable, residually finite-dimensional algebras that are equivalent in KK-theory
to commutative algebras. Using a result of J. L. Tu, one then concludes that the C∗-algebra of
a countable amenable residually finite group is AF-embeddable. This brings us to another very
interesting open problem inspired by work of Vershik and Rosenberg.
Problem: Is the C∗-algebra of a countable amenable discrete group AF-embeddable or at least
quasidiagonal?

Dadarlat has shown that this is the case for central extensions of amenable, residually finite
groups by Zn. Nevertheless this problem seems very difficult even for the class of elementary
amenable groups. It is expected that the methods required to solve this problem would inspire
powerful generalizations of the Berg technique, and would lead to significant progress concerning
the structure of C∗-algebras associated to amenable groups.

K. Dykema discussed Horn inequalities. Indeed, given a Hermitian n × n matrix A, let
λA(1) ≥ λA(2) ≥ · · · ≥ λA(n) be its eigenvalues listed according to multiplicity. The classical
Horn inequalities, for Hermitian n× n matrices A, B, and C such that A+B + C = 0, are the
inequalities ∑

i∈I
λA(i) +

∑
j∈J

λB(j) +
∑
k∈K

λC(k) ≤ 0

for certain triples (I, J,K) of subsets of {1, . . . , n} with |I| = |J | = |K|, known as Horn triples.
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It was proved about ten years ago, due to work of due to work of Klyachko [45] and Knutson
and Tao [46] that the Horn inequalities, together with the trace equality

n∑
i=1

λA(i) +
n∑
j=1

λB(j) +
n∑
k=1

λC(k) = 0,

exactly chacterize the set of possible eigenvalues of such A, B, and C.
A question asked in the talk of Dykema was whether the analogues of the Horn inequalities

hold for self-adjoint elements in all II1-factors. This is related to Connes’ embedding problem,
a deep question that has many equivalent formulations. The main new result that was given in
the talk appeared about a year after the BIRS workshop [5]: it is that all Horn inequalities do
hold in all II1-factors. The proof of this result is actually a construction: given arbitrary flags
E , F and G in a II1-factor and a triple (I, J,K) whose corresponding Littlewood–Richardson
coefficient is equal to 1, there is a projection in the intersection S(E , I) ∩ S(F , J) ∩ S(G,K) of
the corresponding Schubert varieties. This construction seems to be new even in the case of
matrices. A more intricate eigenvalue question, analogous to Horn’s question, but with ‘matrix
coefficients’; by [13], this is equivalent to Connes’ embedding problem.

R. Smith discussed masas in von Neumann algebras. For an inclusion B ⊆ M of finite
von Neumann algebras, a unitary operator u ∈ M normalizes B if uBu∗ = B. The group of
normalizing unitaries is denoted by N (B), while N (B)′′ denotes the von Neumann algebra that
it generates inside M . Interest in these operators goes back to Dixmier in the 1950’s, who used
N (B)′′ to classify various types of maximal abelian self-adjoint subalgebras (masas) in factors.
It is always the case that B ⊆ N (B)′′, and B is singular if equality holds. A natural question
is how singularity relates to tensor products and, as part of a larger study with Sinclair, White,
and Wiggins [61], it was shown that the tensor product of singular masas is again singular.
Subsequently this was generalized by Chifan [10] to the formula

N (B1 ⊗ B2)′′ = N (B1)′′ ⊗ N (B2)′′

for arbitrary masas in finite factors.
Since then Smith has investigated normalizers for irreducible inclusions of factors (with

White and Wiggins [62]), where it is actually possible to determine them explicitly, unlike the
masa case. This has led recently to the resolution of the case where the subalgebra satisfies
B′ ∩M ⊆ B, which includes the two special cases already mentioned. For tensor products one
has to replace normalizers by a wider class of operators called groupoid normalizers, but then
the analogous result holds true [25]. This has already had a slightly suprising application to the
theory of maximal injective von Neumann subalgebras [8].

Various examples show that B′ ∩ M ⊆ B is a natural boundary for such theorems, but
all of this discussion holds true only for finite von Neumann algebras, and all such questions
are open for the other type of von Neumann algebras. In the finite case one has available the
basic construction algebra 〈M, eB〉 of Jones. The main current difficulty is to find a suitable
modification of the techniques to make progress on the other types of von Neumann algebras.

3 Fourier algebras

The Fourier algebra A(G) of a locally compact group G has been a very fruitful object for
interactions between operator algebras and harmonic analysis since the 1960s. Though the
Banach algebra structure is commutative, the spatial structure is not, and the theory of operator
spaces, which recognizes this non-commutativity, interacts surprisingly well with various aspects

5



of A(G). This has been known since the 1980s, with the pioneering work of Haagerup et al. on
multipliers. In 1995, Ruan showed that questions of amenability, a Banach algebra property,
can be resolved by tweaking that property in a way that takes operator space structures into
account, which leads to the notion of operator amenability ; indeed, he showed that A(G) is
operator amenable precisely when G is amenable [59]. Ruan’s work led to more intense research
into the operator space structure of A(G), for example, see the work of Forrest, Kanuith, Lau
and Spronk [27] on the complemented ideal problem, and work of Ilie and Spronk [39] on the
structure of homomorphisms.

M. Neufang spoke on his impressive work with Junge and Ruan [40] on completely bounded
multipliers of locally compact quantum groups. This extends theory pioneered by Haagerup in
the A(G) case, and Størmer and Ghahramani in the ‘dual’ group/measure algebra case. The
present work unifies the aforementioned cases, and provides new insight into cases with less
commutativity. This work has promoted further work between Hu, Neufang, and Ruan, who
now have several papers (e.g., [38]) on various Banach algebras related to these multipliers, and
on multipliers in a more classical setting. Following progress made at this meeting, Neufang
was able to conduct work with his student Kalantar on defining and characterizing in various
ways an intrinsic group for a locally compact quantum group, providing a beautiful analogue
of the intrinsic group found in the theory of algebraic quantum groups. They also describe
an invariant which is a certain subgroup of the torus, and in fact coincides with the latter in
the case of Woronowicz’s SUq(2) group. Promising insights into classification and structure of
general locally compact quantum groups will stem from these efforts.

While the characterization of operator amenability of A(G) was established by Ruan in
1995, the characterizations of other forms lagged by several years. Spronk in 2002 [63] showed
that A(G) is always operator weak amenability, and Forrest and Runde [26] characterized the
amenability of A(G) in 2004.

E. Samei presented on his work [28] with Forrest and Spronk, addressing such questions
on certain Fourier algebras of symmetric spaces. Since this meeting there has been exciting
progress. Critically using work presented at the meeting, Forrest, Samei, and Spronk [29] have
characterized weak amenability of A(G) for compact groups G. It remains an open question as
to whether A(G) is weakly amenable for various groups lacking a non-abelian connected compact
subgroup; for example G = SL2(R), the ax+ b group, or any of the Heisenberg groups.

M. Monfared reported on his work [37] with Hu and Traynor on the character amenability
of Banach algebras, extending work on a concept introduced and studied recently by Kanuith,
Lau, and Pym and by Monfared. Based on consultations at the meeting, Runde and Spronk
were able to improve one of their main results on the Fourier–Stieltjes algebra B(G); the paper
[60] considers the operator amenability of B(G). However, it is an open question to classify the
groups G for which B(G) is operator amenable. When does B(G) admit a point derivation?

The Herz–Figá-Talamanca algebras Ap(G) can be defined for any 1 < p < ∞. This class
includes the Fourier algebras A(G) at p = 2. Without the theory of von Neumann algebras
associated to them, the algebras Ap(G), in general, have a much more subtle theory than does
A(G). V. Runde reported on his work with Lambert and Neufang [47] establishing an operator
space structure on Ap(G) which allows a generalization of Ruan’s amenability theorem. In new
work, conducted in part at this meeting, Neufang and Runde have gained further insights into
the fine structures of Ap(G). Open questions remain as to whether the algebras Ap(G), for
amenable G, admit a nice homomorphism theorem, such as was proved for A(G) by Cohen for
abelian G and Ilie and Spronk for general amenable G.

N. Spronk reported on his generalization [64] of Feichtinger’s Segal algebras from abelian
groups to the general locally compact case, presented in a Fourier-algebra context. Through the
meeting, he was invited to France to meet with Ludwig, and they found a minimality condition
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characterizing this algebra in the dual group algebra setting. This suggests that a definition for
Feichtinger’s Segal algebra for locally compact quantum groups may be possible.

4 Banach algebras and other topics

The lecture of G. Dales involved the topological centres of some Banach algebras.
Let A be a Banach algebra, and regard A as a closed subspace of its second dual A′′. Then

there are two natural products on A′′; they are called the first and second Arens products,
and are denoted by 2 and 3, respectively. We briefly recall the definitions. As usual, A′ and
A′′ are Banach A-bimodules. For λ ∈ A′ and Φ ∈ A′′, define 〈a, λ · Φ〉 = 〈Φ, a · λ〉 and
〈a, Φ · λ〉 = 〈Φ, λ · a〉 for a ∈ A, and, for Φ,Ψ ∈ A′′, define

〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉 , 〈Φ 3 Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ A′) .

Then (A′′,2) and (A′′, 3 ) are both Banach algebras containing A as a closed subalgebra. The
left topological centres of A′′ is defined by

Z
(`)
t (A′′) = {Φ ∈ A′′ : Φ2Ψ = Φ 3 Ψ (Ψ ∈ A′′)} ,

and similarly for the right topological centre Z
(r)
t (A′′). See [18, 20, 48, 49, 50, 51] for extensive

discussions of these centres.
Let A be a Banach algebra. Then A is Arens regular if Z

(`)
t (A′′) = Z

(r)
t (A′′) = A′′; left strongly

Arens irregular if Z
(`)
t (A′′) = A, right strongly Arens irregular if Z

(r)
t (A′′) = A, and strongly Arens

irregular if A is both left and right strongly Arens irregular. A subset V of A′′ is determining
for the left topological centre of A′′ if Φ ∈ A whenever Φ ∈ A′′ and Φ 2 Ψ = Φ 3 Ψ (Ψ ∈ V ).

For example all C∗-algebras are Arens regular, but each group algebra L1(G) is strongly
Arens irregular. There has been recent interest in improving the latter result by finding ‘small’
sets that are determining for the left topological centre of L1(G)′′.

Let S be a cancellative semigroup. Then it is shown in [20] that certain subsets of βS of
cardinality 2 are determining for the left topological centre of ` 1(S)′′. The lecture, based on
[17], discussed analogous results for various weighted convolution algebras of the form ` 1(S, ω);
see also [51]. There are several open questions in [20] and [17]; here is one from [17]. Is there a
weight ω on R+ such that ` 1(R+, ω) is Arens regular?

Current research is given in [21], where many related results are obtained. For example it is
shown that, for each locally compact group G, the spectrum Φ of L∞(G) is determining for the
left topological centre of L1(G)′′. Here are two questions that are so far unresolved in [21]. (1)
Is there a finite subset of Φ that is determining for the left topological centre of L1(G)′′? (2)
Is the related measure algebra M(G) strongly Arens regular for each locally compact group G?
This is shown for non-compact groups G (of non-measurable cardinality) in [50], but it is open
for the case where G = T.

The lecture of V. Paulsen involved the projectivity and injectivity of C∗-algebras and G-maps.
There is a well-known contra-variant functor that connects compact spaces and abelian,

unital C∗-algebras. Thus many results on the injectivity of C∗-algebras correspond to results
about the projectivity of compact spaces. Gleason’s classical theorem is central here. Paulsen
gave an attractive, simple, and complete expositon of these notions, based on [34].

In the second part of the lecture, the above notions were generalized to a dynamical situation.
Let G be a discrete group. An action of G on a topological space X is a homomorphism of G
into the group of homeomorphisms of X that sends eG to the identity map. Now X is a G-
space. The notions of G-cover and G-projective, etc., are defined by analogy with the standard
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definitions. The definition of a G-projective cover requires care because the ‘obvious’ definition
does not work.

The aim of the authors was to prove that every G-space has a G-projective cover, seeking
to duplicate the theory of the first paragraph. This is an open question, and it leads to several
interesting questions discussed in [34].

The authors do show that certain ‘minimal’ G-spaces have G-projective covers, and they
derive various properties of G-projectivity that are related to topics in topological dynamics.
For this, they use some results on the algebra of βG; these results were taken from the monograph
[36], which was also refered to in some other talks at the meeting. Some of the questions raised
in [34] concern amenable groups, another favourite topic of the meeting.

The lecture of L. Turowska was on operator multipliers.
The study of Schur multipliers has its origins in the work of Schur in the early 20th. century.

These objects have a simple definition: a bounded function ϕ : N × N → C is a Schur multi-
plier if, whenever a matrix (aij)i,j∈N gives rise to a (bounded) transformation of the space l2,
the matrix (ϕ(i, j)aij)i,j∈N does so as well. A characterization of Schur multipliers was given
by Grothendieck in his Résumé: Schur multipliers are precisely the functions ϕ of the form
ϕ(i, j) =

∑∞
k=1 ak(i)bk(j), where ak, bk : N → C are such that supi

∑∞
k=1 |ak(i)|2 < ∞ and

supj
∑∞

k=1 |bk(j)|2 < ∞. Schur multipliers have had many important applications in analysis,
see e.g. [3], [23], and [56]. One of the forms of the celebrated Grothendieck inequality can be
given in terms of these objects [56].

The lecture described generalization of an approach of Birman and Solomyak to the multi-
dimensional setting, so extending many results known for classical Schur multipliers to ones
about operator multipliers.

First Turowska introduced multi-dimensional Schur multipliers imposing some metric condi-
tions as for the usual (‘continuous’) Schur multipliers and characterized them as elements of the
extended Haagerup tensor product, generalizing results by Grothendieck and Peller. The result
may be useful in connection with the theory of multi-dimensional operator integrals and their
applications to the differentiation theory of operator functions and in the theory of perturbation.

Among other results she established a non-commutative and multi-dimensional version of
the characterisation of Grothendieck and Peller which shows that the universal multipliers (i.e.,
multipliers with respect to any pair of representations) can be obtained as a certain weak limit
of elements of the algebraic tensor product of the corresponding C∗-algebras with uniformly
bounded Haagerup tensor norm. This was formulated as an open problem in [44], and is a
generalization of the Grothendieck theorem to non-commutative multipliers.

A project discussed at the workshop concerns the study of compactness properties of operator
multipliers. Schur multipliers ϕ whose associated linear operator Sϕ((aij)) = (ϕ(i, j)aij) is
compact were studied by Hladnik. The notion of complete compactness is an operator space
version of compactness which was defined and studied by Saar and Webster. A classification of
completely compact universal operator was obtained.

The relations between completely compact and compact multipliers and between completely
compact maps and compact maps are not fully understand so far. It was proved that the in-
clusion of completely compact multipliers in the set of compact ones is strict in general. To
formulate necessary and sufficient conditions about automatic complete compactness of com-
pact multipliers will be challenging. Some other interesting questions about multipliers which
have to be investigated are: the connection between the space of the Fourier transforms of
n-measures, completely bounded multipliers of the multidimensional Fourier algebra, and the
space of multidimensional Schur multipliers; the property of closability of multipliers, important
in connection with mathematical physics; factorisation of bounded multipliers and its connection
with the study of means (geometric, algebraic, harmonic, and others) of Hilbert space operators.
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The lecture of Y. Zhang concerned the approximate amenability of Banach algebras.
Let A be a Banach algebra A. Then: a continuous derivation D : A → X is approximately

inner if there exists a net (ξν) ⊂ X such that, for each a ∈ A, D(a) = limν(a · ξν − ξν · a);
A is approximately amenable if, for each Banach A-bimodule X, every continuous derivation
D : A→ X ′ is approximately inner.

This definition and many variants were introduced by Ghahramani, Loy, and Zhang [30, 33];
see also [11, 31], for example. Many results about these properties are now known; for example,
the Banach sequence algebras ` p are not approximately amenable [22].

The lecture discussed Segal algebras. Let G be a locally compact group. A Segal algebra
S on G is a dense left ideal of the group algebra L1(G) such that (S, ‖ · ‖) is a Banach algebra
for a norm ‖ · ‖, where ‖Lxf‖ = ‖f‖ ≥ ‖f‖1 for f ∈ S and x ∈ G. Of course, L1(G) itself is
amenable, and hence approximately amenable. The conjecture is that any proper Segal algebra
fails to be approximately amenable. This is proved in some cases in [32]; see also [19] for some
further recent results, where the authors concentrate on the case where G = T.

Related to this problem, it is shown in [11] that a Segal algebra on a SIN group is always
approximately permanently weakly amenable.

References

[1] R. J. Archbold and E. Kaniuth, On the stable rank and real rank of group C*-algebras of nilpotent locally
compact groups, Math. Scand., 97 (2005), 89–103.

[2] R. J. Archbold and E. Kaniuth, Stable rank and real rank of compact transformation group C*-algebras,
Studia Math., 175 (2006), 103–120.

[3] C. Badea and V. I. Paulsen, Schur multipliers and operator valued Foguel–Hankel operators, Indiana Univ.
Math. J., 50 (2001), 1509–1522.

[4] B. Bekka, Operator-algebraic superridigity for SLn(Z), n ≥ 3, Inventiones Math., 169 (2007), 401–425.

[5] H. Bercovici, B. Collins, K. Dykema, W. S. Li, and D. Timotin, Intersections of Schubert varieties and
eigenvalue inequalities in an arbitrary finite factor, arXiv:0805.4817.

[6] M. Bozejko, Bessis–Moussa–Villni conjecture and generalized Gaussian random variables, preprint
http://www.math.uni-bielefeld.de/sfb701/preprints/report/SfbReport08003.

[7] L. G. Brown, On higher real and stable ranks for CCR C∗-algebras, preprint.

[8] J. Cameron, J. Fang, M. Ravichandran, and S. A. White, The radial masa in a free group factor is maximal
injective, arxiv:0810.3906, 2008.

[9] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups with the Haagerup property.
Gromov’s a-T-menability. In Progress in Mathematics, Volume 197, Birkhäuser Verlag, Basel (2001).
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