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1 Overview of the Field
The theory of algebraic group embeddings has developed dramatically over the last twenty-five years, based
on work of Brion, DeConcini, Knop, Luna, Procesi, Putcha, Renner, Vust and others. It incorporates torus
embeddings and reductive monoids, and it provides us with a large and important class of spherical varieties.
The interest in these, and related, topics has led to vigorous and celebrated mathematical activity in Europe,
Asia and North America. This BIRS workshop provided a timely opportunity to enhance the visibility of this
highly interdisciplinary industry, by bringing together some of the principal players in group embeddings and
representation theory.

Certain aspects of representation theory are well connected to the geometry of group embeddings, espe-
cially through the examples of linear algebraic monoids. The study of representations of reductive monoids
has links with quasihereditary algebras and highest weight categories, important topics in the theory of fi-
nite dimensional algebras. Important work in this area includes that of Cline, Parshall, and Scott, Donkin,
Erdmann, Green, Ringel and others. There are also significant interactions with the representation theory of
finite groups, Hecke algebras, and quantum groups, and combinatorics.

The widespread interest in group embeddings results from the inherent richness and depth of the results;
combining techniques from commutative algebra, algebraic geometry, representation theory, convex geom-
etry, linear algebra, spherical embeddings, semigroup theory, and combinatorics. This subject is mature yet
still growing, and there are many interesting open questions.

The ”wonderful compactification” stands out among all others as the one embedding of a semisimple
group that serves as the role model for further development. DeConcini and Procesi [?] originally calculated
the Betti numbers and cell decomposition using the method of Bialinycki-Birula. Since then, important work
has been done by Brion [?] and Springer [?] on the geometry of orbit closures. Kato [?] and Tchoudjem [?]
have found an analogue of the Borel-Weil-Bott theorem, and Kato [?] described all the equivariant vector
bundles. The wonderful compactification can also be described in terms of certain reductive monoids [?].
Several authors have discovered explicit cell decompositions of the wonderful compactification [?], [?], [?],
[?]. Luna has recently identified a more general class of wonderful embeddings.

There will be generalized Schur algebras (in the sense of Donkin [?]) implicit in the coordinate bialgebra
of any reductive monoid, and the representation theory of the monoid breaks up into a direct sum of the rep-
resentation theories of the various generalized Schur algebras, which are finite dimensional quasihereditary
algebras. All of this extends the classic motivating example of polynomial representation theory of general
linear groups. Although this goes back to Schur’s dissertation, at the very inception of representation theory
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as a mathematical discipline, it remains in positive characteristic a vigorous and intensively studied aspect of
modern representation theory, with important work in the past twenty-five years by Green, James, Donkin,
Erdmann, Cline, Parshall, and Scott, Dlab, Ringel, and others.

Solomon has studied certain finite monoids (the Renner monoids), analogues of the Weyl group of a
reductive group. The simplest examples are the rook monoids which are natural generalizations of the sym-
metric groups. There is recent interesting work of Halverson and Ram (see [?], [?]) on a q-analogue of the
rook monoid. This is just the tip of a large unchartered iceberg; many intriguing structures exist in abundance,
and little is known in general. Recent results of Steinberg [?] have brought some much-needed clarity to the
representation theory of inverse semigroups.

2 Recent Developments and Open Problems
2.1 Recent Developments
There are a great many of these. We give a sketch of the some of the important ones.

1. Complexity of group actions [?], [?].

2. Stable reductive varieties [?], [?].

3. Analogues of the Bruhat decomposition for spherical varieties [?], [?], [?].

4. Equivariant compactifications of spherical homogeneous spaces [?], [?], [?].

5. Cartier and Weil divisors on spherical varieties [?], [?].

6. Universal Gm torsors on certain moduli spaces [?], [?].

7. Embeddings of Gn
a ; an important beginning with many interesting examples [?].

8. Compactification of Jacobian varieties [?].

9. Among group embeddings and spherical varieties there should be many opportunities to identify and
study examples of ”Cox rings” [?, ?].

10. Moduli spaces of group compactifications; generalizations of the toric Hilbert scheme [?, ?, ?, ?, ?].

11. More general wonderful embeddings [?]. See also recent work of P. Bravi and G. Pezzini, and P. Bravi
and S. Cupit-Foutou.

12. Counterexample to Renner’s conjecture regarding blocks of algebraic monoids [?]

13. The issue of normality for symplectic and orthogonal monoids now settled in [?].

14. Putcha’s penetrating assessment of conjugacy classes on a reductive monoid [?]

15. Steinberg’s recent results [?] on the representation theory of inverse semigroups, using Moebius inver-
sion and Munn-Ponizovski to obtain information about multiplicities and character formulas.

2.2 Open Problems
1. Describe the cohomology rings of smooth, complete group embedddings, by generators and relations.

For toric varieties, the answer is given by a result of Jurkiewicz and Danilov. For ”regular” group
embeddings, the equivariant cohomology ring has been described by Bifet, De Concini and Procesi as
a subring of a larger ring. But no generators of the cohomology ring are known in general.
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2. Construct B × B-equivariant desingularizations of the closures of B × B-orbits in G-embeddings (G
a connected reductive group, B a Borel subgroup). Does there exist such a desingularization with
only finitely many fixed points of the maximal torus T × T ? This reduces easily to constructing a
B×B-equivariant desingularization of the closure of B; for regular embeddings, this closure is almost
always singular. An affirmative answer to this question implies that the intersection cohomology of
B × B-orbit closures vanishes in all odd degrees. This was proved by Springer for the wonderful
compactification, by combinatorial arguments.

3. Study the topology of hypersurfaces in smooth complete group embeddings: determine their numerical
invariants, by generalizing the known results for toric varieties.

4. (Related to problem 1). In the case of a smooth, projective group embedding X , find an explicit
cell decomposition of X , similar to what was done by Brion, Springer and Renner for the wonderful
compactification. How is each cell made up of B×B-orbits? Can one find an explicit Bialinycki-Birula
1-parameter subgroup? Is there a monoid-theoretic way to do it in some cases?

5. Compute the characters of simple modules (in the describing characteristic) for reductive normal alge-
braic monoids. This remains the most fundamental problem in representation theory.

6. Describe the blocks for reductive normal algebraic monoids. Donkin has a combinatorial description
of the blocks of the monoid of all n × n matrices, but there are no results in any other case thus far.
DeVisscher’s recent counterexample in Type C shows that the answer is not easily predicted from the
(known) description of the blocks of reductive algebraic groups.

7. Establish characteristic-free, double-centralizer results for classical groups and other related situations.
In a sense, this goes back to early work of DeConcini and Procesi [?].

8. Describe the structure and representation theory of various centralizer algebras arising from double
centralizer situations. Such algebras tend to be ”diagram” algebras with a strong combinatorial flavour,
and the modular representation theory of such algebras is wide open.

9. Obtain a class of embeddings for nonreductive groups that is well-behaved geometrically. Such embed-
dings could help lead to numerical/cohomological information about representations of nonreductive
groups.

3 The Workshop Program
MONDAY
9:00–10:00 Mohan Putcha, Decompositions of reductive monoids
10:30–11:30 Valentina Kiritchenko, Euler characteristic of complete intersections in reductive groups
13:00–14:00 Guided Tour of The Banff Centre; meet in the 2nd floor lounge, Corbett Hall
14:00–15:00 Xuhua He, G-stable-piece decomposition of a wonderful compactification
15:30–16:20 Brian Parshall, Some new highest weight categories with applications to filtrations
16:30–17:30 Dan Nakano, Cohomology for algebraic groups and Frobenius kernels

TUESDAY
9:00–10:00 Claus Mokler, The face monoid associated to a Kac-Moody group
10:30–11:30 Alvaro Rittatore, The structure of algebraic monoids: the affine case
13:30–14:20 Jürgen Hausen, Cox rings and combinatorics
14:30–15:30 Ivan Arzhantsev, Geometric invariant theory via Cox rings
16:00–16:40 Benjamin Steinberg, Möbius functions and semigroup representation theory
16:50–17:30 Volodmyr Mazorchuk, Schur-Weyl dualities for symmetric inverse semigroups
WEDNESDAY
9:00–10:00 D. Luna, Examples of wonderful varieties
10:30–11:30 Zinovy Reichstein, Essential dimension and group compactifications



4

THURSDAY
9:00–10:00 Lizhen Ji, Borel-Serre compactification of locally symmetric spaces and applications
10:30–11:30 Kiumers Kaveh, Newton polytopes for flag and spherical varieties
13:30–14:20 Leonard L. Scott, Semistandard filtrations in highest weight categories
14:30–15:30 Nicolas Ressayre, Geometric invariant theory and eigenvalue problem
16:00–16:40 V. Uma, Equivariant K-theory of compactifications of algebraic groups
16:50–17:30 Jon Kujawa, Cohomology and support varieties for Lie superalgebras
FRIDAY
9:00–10:00 Henning Haahr Andersen, Combinatorial categories and Kazhdan-Lusztig theories
10:30–11:30 Stephen Donkin, Calculating the cohomology of line bundles on flag varieties in

characteristic p

4 Abstracts of Talks Given

Speaker: Henning Haahr Andersen (Aarhus)
Title: Combinatorial categories and Kazhdan-Lusztig theory
Abstract: In joint work with Jantzen and Soergel [1] in the early 1990’s we constructed a combinatorial
category K. We used it to compare representations of (small) quantum groups to modular representations
of the corresponding (infinitesimal) semisimple algebraic group. In recent work Peter Fiebig [2] considers
another combinatorial category B and he gives a functor B → K. This he then applies to the related Kazhdan-
Lusztig theories.

We shall discuss the constructions of the two categories, the functor between them, and the consequences
in representation theory.

[1] H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of quantum groups at a p-th root of
unity and of semisimple groups in characteristic p: Independence of p, Asterisque 220 (1994), pp. 1–321.

[2] P. Fiebig, Sheaves on affine Grassmannians, Projective Representations and Lusztig’s Conjectures,
Preprint (Universität Freiburg 2007).

Speaker: Ivan V. Arzhantsev (Moscow State University)
Title: Geometric invariant theory via Cox rings
Abstract: (Joint work with Jürgen Hausen.) The passage to a quotient by an algebraic group action is often
an essential step in classical moduli space constructions of Algebraic Geometry, and it is the task of Geo-
metric Invariant Theory (GIT) to provide such quotients. Starting with Mumford’s approach of constructing
quotients for actions of reductive groups on projective varieties via linearized line bundles and their sets of
semistable points [7], the notion of a “good quotient” became a central concept in GIT, compare [10] and [3].

A good quotient for an action of a reductive group G on a variety X is an affine morphism π : X → Y
of varieties such that Y carries the sheaf of invariants π∗(OX)G as its structure sheaf. In general, a G-variety
X need not admit a good quotient, but there may be many (different) invariant open U ⊆ X with a good
quotient; we will call them the good G-sets. In this talk, we present a combinatorial construction of good
G-sets U ⊆ X , which are maximal with respect to the properties either that the quotient space U//G is
quasiprojective or, more generally, that it comes with the A2-property, i.e., any two of its points admit a
common affine neighbourhood.

Our first step is to consider actions of G on factorial affine varieties X . The basic data for the construction
of good G-sets of X are orbit cones. They live in the rational character space XQ(G), and for any x ∈ X
its orbit cone ω(x) is the convex cone generated by all χ ∈ X(G) admitting a semiinvariant f with weight
χ such that f(x) %= 0 holds. It turns out that there are only finitely many orbit cones and all of them are
polyhedral.

To any character χ ∈ X(G) we associate its GIT-cone, namely

λ(χ) :=
⋂

χ∈ω(x)

ω(x) ⊆ XQ(G).

We say that a collection Φ of orbit cones is 2-maximal, if for any two members their relative interiors overlap
and Φ is maximal with respect to this property.
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Theorem. Let a connected reductive group G act on a factorial affine variety X .
(i) The GIT-cones form a fan in XQ(G), and this fan is in a canonical order reversing bijection with the

collection of sets of semistable points of X .
(ii) There is a canonical bijection from the set of 2-maximal collections of orbit cones onto the collection

of A2-maximal good G-sets of X .

For the case of a torus G this result was known before. The first statement is given in [2]. Moreover, a
result similar to the second statement was obtained in [4] for linear torus actions on vector spaces, and for
torus actions on any affine factorial X, statement (ii) is given in [1].

To obtain the general statement, we reduce to the case of a torus action as follows. Consider the quotient
Y := X//Gs by the semisimple part Gs ⊆ G. It comes with an induced action of the torus T := G/Gs, and
the key observation is that the good T -sets in Y are in a canonical bijection with the good G-sets in X . This
approach turns out to be as well helpful for computing GIT-fans, because Classical Invariant Theory in many
cases provides enough information on the algebra K[X]G

s

of invariants.
Our next aim is to study quotients of certain non-affine G-varieties X , e.g., the classical case of X being

a product of projective spaces. More precisely, we consider normal varieties X with a finitely generated Cox
ring

R(X) =
⊕

D∈Cl(X)

Γ(X,O(D)),

where the divisor class group Cl(X) is assumed to be free and finitely generated. The “total coordinate
space” X of X is the spectrum of the Cox ring R(X). This X is a factorial affine variety [2] acted on by
the Neron-Severi torus H having the divisor class group Cl(X) as its character lattice. Moreover, X can be
reconstructed from X as a good quotient q : X̂ → X by H for an open subset X̂ ⊆ X .

After replacing G with a simply connected convering group, its action on X can be lifted to the total
coordinate space X . The actions of H and G on X commute, and thus define an action of the direct product
G := H × G. Given a good G-set W ⊆ X , we introduce a “saturated intersection” W &G X̂ . The main
feature of this construction is the following.

Theorem. The canonical assignment W '→ q(W &G X̂) defines a surjection from the collection of good
G-sets in X to the collection of good G-sets in X .

So this result reduces the construction of good G-sets on X to the construction of good G-sets in X ,
and the latter problem, as noted before, is reduced to the case of a torus action. Again, this allows explicit
computations. Note that our way to reduce the construction of quotients to the case of a torus action has
nothing in common with the various approaches based on the Hilbert-Mumford Criterion, see [3], [5], [7],
[9] and [11].

As a first application of this result, we give an explicit description of the ample GIT-fan, i.e., the chamber
structure of the linearized ample cone, for a given normal projective G-variety X with finitely generated
Cox ring. Recall that existence of the ample GIT-fan for any normal projective G-variety was proven in [5]
and [11]. As an example, we compute the ample GIT-fan for the diagonal action of Sp(2n) on a product of
projective spaces P2n−1.

A second application of the above result are Gelfand-MacPherson type correspondences. Classically
[6], this correspondence relates orbits of the diagonal action of the special linear group G on a product of
projective spaces to the orbits of an action of a torus T on a Grassmannian. Kapranov [8] extended this
correspondence to isomorphisms of certain GIT-quotients and used it in his study of the moduli space of
point configurations on the projective line. Similarly, Thaddeus [12] proceded with complete collineations.
We put these correspondences into a general framework, relating GIT-quotients and also their inverse limits.
As examples, we retrieve a result of [12] and also an isomorphism of GIT-limits in the setting of [8].

Finally, we use our approach to study the geometry of quotient spaces of a connected reductive group G on
a normal variety X with finitely generated Cox ring. The basic observation is that in many cases our quotient
construction provides the Cox ring of the quotient spaces. This allows to apply the language of bunched rings
developed in [2], which encodes information on the geometry of a variety in terms of combinatorial data
living in the divisor class group.

[1] I.V. Arzhantsev, J. Hausen: On embeddings of homogeneous spaces with small boundary. J. Algebra
304, No. 2, 950–988 (2006), math.AG/0507557
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[2] F. Berchtold, J. Hausen: GIT-equivalence beyond the ample cone, Michigan Math. J. 54, No. 3,
483–516 (2006), math.AG/0503107

[3] A. Bialynicki-Birula: Algebraic Quotients. In: R.V. Gamkrelidze, V.L. Popov (Eds.), Encyclopedia
of Mathematical Sciences, Vol. 131., 1–82 (2002)

[4] A. Bialynicki-Birula, J. Świci ecka: A recipe for finding open subsets of vector spaces with a good
quotient. Colloq. Math. 77, 97–114 (1998)

[5] I.V. Dolgachev, Y. Hu: Variation of geometric invariant theory quotients. (With an appendix: “An
example of a thick wall” by N. Ressayre). Publ. Math., Inst. Hautes Etud. Sci. 87 (1998), 5–56.

[6] I.M. Gelfand, R.W. MacPherson: Geometry in Grassmanians and a generalization of the dilogarithm.
Adv. in Math. 44, 279–312 (1982)

[7] D. Mumford, J. Fogarty, F. Kirwan: Geometric Invariant Theory. 3rd enl. ed.. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete. Berlin: Springer-Verlag. (1993)

[8] M.M. Kapranov: Chow quotients of Grassmannians. I. Advances in Soviet Math. 16, Part 2, 29–110
(1993)

[9] N. Ressayre: The GIT-equivalence for G-line bundles. Geom. Dedicata 81, No. 1–3, 295–324 (2000)
[10] C.S. Seshadri: Quotient spaces modulo reductive algebraic groups. Ann. of Math. (2) 95, 511–556

(1972)
[11] M. Thaddeus: Geometric invariant theory and flips. J. Amer. Math. Soc. 9, 691–723 (1996)
[12] M. Thaddeus: Complete collineations revisited. Math. Ann. 315, 469–495 (1996)

Speaker: Stephen Donkin (York)
Title: Calculating the cohomology of line bundles on flag varieties in characteristic p
Abstract: Let G be a connected reductive group over an algebraically closed field of characteristic p and let
B be a Borel subgroup. The character of the cohomology of a the line bundle on the flag variety G/B is not
well understood (by contrast with the situation in characteristic zero where this is given by Weyl’s character
formula, via the Borel-Weil-Bott Theorem). We describe some general methods of calculation and a complete
solution for the case G = SL3(k).

Speaker: Jürgen Hausen (Tübingen)
Title: Cox rings and combinatorics
Abstract: (Joint work with I.V. Arzhantsev and F. Berchtold.) Suppose that X is normal variety with
Γ(X,O∗) = K∗ and free, finitely generated divisor class group Cl(X). Fix a subgroup K ⊂ WDiv(X)
of the group of Weil divisors mapping isomorphically onto Cl(X). The Cox ring R(X) is the algebra of
global sections of a sheaf of K-graded algebras:

R(X) := Γ(X,R), where R :=
⊕

D∈K

O(D).

Note that multiplication in the Cox ring is just multiplication of rational functions on X . Up to isomorphy, the
Cox ring does not depend on the choice of K. A basic observation is that Cox rings are unique factorization
domains.

The sheaf R defines moreover a generalized universal torsor ′X → X . Suppose that R is locally of
finite type; this holds for example, if X is locally factorial or if R(X) is finitely generated. Then we may
consider the relative spectrum ′X := SpecX R, which turns out to be a quasiaffine variety. The K-grading
of R defines an action of the torus H := Spec K[K] on ′X , and the canonical morphism p : ′X → X is a
good quotient, i.e., it is an H-invariant affine morphism satisfying OX = (p∗O′X)H .

If X has a finitely generated Cox ring R(X), then ′X is an invariant open subvariety of the total coordi-
nate space X := Spec R(X). Thus, varieties with finitely generated Cox ring are obtained as good quotient
spaces of certain affine torus actions on factorial affine varieties. Such quotients in turn admit a description
by combinatorial data, which we call “bunches of cones”. We describe basic geometric properties of X in
terms of its defining bunch of cones, for example, we discuss singularities, the ample cone, Fano criteria, and
modifications. Moreover, we give some applications to almost homogeneous spaces.

[1] I.V. Arzhantsev, J. Hausen: On embeddings of homogeneous spaces with small boundary. J. Alge-
bra 304, No. 2, 950–988 (2006), math.AG/0507557
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[2] F. Berchtold, J. Hausen: Cox rings and combinatorics. Transactions of the AMS 359, No. 3, 1205–
1252 (2007), math.AG/0311105

Speaker: Xuhua He (SUNY - Stony Brook)
Title: G-stable-piece decomposition of a wonderful compactification
Abstract: Let G be a connected semisimple algebraic group of adjoint type over an algebraically closed field.
Let us consider the diagonal G-action on the wonderful compactification X of G. The classification of the G-
orbits were obtained by Lusztig in terms of G-stable pieces. He also used the G-stable-piece decomposition to
construct certain simple perverse sheaves on X (which are called character sheaves on X). In this talk, I will
discuss some geometric properties of the G-stable pieces. First, we will talk about some relation between the
G-stable pieces and the B×B-orbits in X , where B is a Borel subgroup of G. We will then use this relation
to study the closure relation of the G-stable pieces and some algebro- geometric properties of the closures
of G-stable pieces. Although the closures are not normal in general, they do have “nice” singularities (for
example, they admit a Frobenius splitting and as a consequence, they are all weakly normal). If time allows,
we will also discuss some generalization to complete symmetric varieties.

Speaker: Lizhen Ji (Michigan)
Title: Borel-Serre compactification of locally symmetric spaces and applications
Abstract: Let G be a semisimple linear algebraic group defined over Q, and Γ ⊂ G(Q) an arithmetic
subgroup. Let X = G/K be the symmetric space of noncompact type associated with the real locus G =
G(R). Assume that the Q-rank of G is positive, or equivalently, the locally symmetric space Γ\X is non-
compact. In studying both Γ and Γ\X , an important role is played by the Borel-Serre compactification
Γ\X

BS
, which is the quotient by Γ of a partial compactification X

BS
of X . For example, together with the

Solomon-Tits Theorem for Tits building of G, X
BS

can be shown that Γ is a virtual duality group, but not a
virtual Poincare duality group.

In this lecture, I will explain this and other applications, together with the following topics:

1. X
BS

is a Γ-cofinite universal space for proper actions of Γ.

2. A uniform Borel-Serre method to construct compactifications of both symmetric and locally symmetric
spaces, in particular, the reductive Borel-Serre compactification.

3. Analogues for Teichmuller spaces and mapping class groups and applications.

Speaker: Kiumars Kaveh (Toronto)
Title: Newton polytopes for flag and spherical varieties
Abstract: The goal of the talk is to give a natural geometric description of the string polytopes for flag varieties
and spherical varieties analogous to the definition of the Newton polytopes for toric varieties. This will be a
generalization of a result of Okounkov for Gelfand-Cetlin polytopes of SP (2n, C).

The classical construction of Gelfand and Cetlin associates a convex polytope to each irreducible repre-
sentation of GL(n, C) in such a way that the integral points in the polytope parameterize the elements of a
natural basis for the representation. Equivalently one can think of them as polytopes associated to the ample
line bundles on the flag variety. A main feature of the G-C polytopes is that the self-intersection number of a
generic section of the line bundle is given by the volume of the corresponding polytope. This can be viewed
as the flag variety analogue of the well-known Kushnirenko theorem in toric geometry. Since then G-C poly-
topes have been generalized to all reductive groups, called “string polytopes”, by the works of Littelmann,
Bernstein, Zelevinsky and others. Even further, it has been generalized to spherical varieties by Okounkov
(for classical groups) and by Alexeev-Brion for all reductive groups.

After an introduction to G-C and string polytopes, I will discuss the main result of the talk. Namely, we
see that the integral points in the string polytope of a dominant weight λ can be interpreted as the highest
terms of the elements of the corresponding irreducible representation Vλ (regarded as polynomials on the big
cell) with respect to a natural valuation or term order.

In the second part of the talk, I generalize this construction to any algebraic variety equipped with an
ample line bundle (even without a group action!). That is, we associate a convex set (which in most cases turns
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out to be a polytope) to an ample line bundle, hence arriving at a far reaching generalization of Kushnirenko
theorem in toric geometry. In particular the Okounkov-Brion-Alexeev polytope of a spherical variety can be
obtained in this way. Part of this work is joint with A. G. Khovanskii.

Speaker: Valentina Kiritchenko (Jacobs University Breman)
Title: The Euler characteristic of complete intersections in reductive groups
Abstract: Consider the following class of hypersurfaces in a complex reductive group: for each representation
of the group take all generic hyperplane sections corresponding to this representation. I will present an
explicit combinatorial formula for the Euler characteristic of complete intersections of such hypersurfaces.
The Euler characteristic is expressed in terms of the weight polytopes of the corresponding representations.
In particular, this formula extends the formulas of Bernstein and Khovanskii (all complete intersections in
a complex torus) and of Brion and Kazarnovskii (zero-dimensional complete intersections in an arbitrary
reductive group).

The main ingredients of my formula are Chern classes of a reductive group. These classes are related
to the usual Chern classes of regular compactifications of the group. An adjunction formula involving these
Chern classes allows to express the Euler characteristic via the intersection indices of the Chern classes
with hyperplane sections. The latter are then computed using the De Concini-Procesi algorithm, which was
originally devised for the intersection indices of divisors in wonderful compactifications of symmetric spaces.
I will show how to refine this algorithm so that it produces explicit formulas for the intersection indices.

Speaker: Jon Kujawa (University of Georgia)
Title: Cohomology and Support Varieties for Lie Superalgebras
Abstract: (Joint work with Brian D. Boe and Daniel K. Nakano.) Let g = g0 ⊕ g1 be a simple classical
Lie superalgebra over the complex numbers as classified by Kac [3]. The classical Lie superalgebras are the
simple Lie superalgebras whose g0-component is a reductive Lie algebra. Let G0 be the reductive algebraic
group such that Lie G0 = g0.

This project entails developing a support variety theory for Lie superalgebras much like the theory for
representations in prime characteristic. We first construct detecting subalgebras of g and show that these
subalgebras arise naturally by using results from invariant theory of reductive groups by Luna and Richardson
[5]. In particular, if R = H•(g, g0; C) is the relative cohomology for the Lie superalgebra g relative to g0
then there exists a Lie subsuperalgebra e = e0 ⊕ e1 such that

R ∼= S•(g∗1)
G0 ∼= S•(e∗1)

W ∼= H•(e, e0; C)W ,

where W is a finite pseudoreflection group. By using the finite generation of R we develop a theory of support
varieties for modules over the Lie superalgebra (cf. [2]). This description allows us to conclude that the
representation theory for the superalgebra over C has similar features to looking at modular representations
of finite groups over fields of characteristic two.

One of our main objectives was to uncover deeper results about combinatorics of the blocks for finite
dimensional representations of the Lie superalgebra g. The “defect” of a Lie superalgebra and the “atypical-
ity” of a simple module (due to Kac-Wakimoto and Serganova) are combinatorial invariants used to give a
rough measure of the complications involved in the block structure. We can now provide cohomological and
geometric interpretations of the defect of a Lie superalgebra. In particular, this suggests that one could give a
more general and functorial definition of defect.

A focus of recent work is the calculation of support varieties in specific cases. We calculate the support
varieties for the finite dimensional universal highest weight supermodules (ie. Kac supermodules) for several
infinite families of classical Lie superalgebras. When g = gl(m|n) we are able to use powerful results of
Serganova [7] to calculate the support varieties of the simple supermodules. In particular, this allows us
to confirm our “atypicality conjecture” discussed in the previous paragraph in the case of gl(m|n). These
calculations also show that there are striking differences between this theory and the classical theory of
support varieties for finite groups.

Let us also mention recent joint work of Irfan Bagci, Jonathan Kujawa, and Daniel K. Nakano on the type
W simple Lie superalgebra which suggests that the theory extends to the Lie superalgebras of Cartan type.

[1] J. Dadok, V. Kac, Polar representations, J. Algebra 92 (1985), 504–524.
[2] E.M. Friedlander, B.J. Parshall, Geometry of p-unipotent Lie algebras, J. Algebra 109 (1987), 25–45.
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[3] V. Kac, Lie superalgebras, Advances in Math. 26 (1977), 8–96.
[4] V. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory,

Progr. Math. 123 (1994), 415–456.
[5] D. Luna, R.W. Richardson, A generalization of the Chevalley restriction theorem, Duke J. Math. 46

(1979), 487–496.
[6] D.I. Panyushev, On covariants of reductive algebraic groups, Indag. Math. 13 (2002), 125–129.
[7] V. Serganova, Characters of irreducible representations of simple Lie superalgebras, Proceedings of

the International Congress of Mathematicians, Vol. II Berlin, (1998), 583–593.

Speaker: D. Luna (Fourier Institute - Grenoble)
Title: Examples of wonderful varieties
Abstract: Wonderful varieties of rank bigger than 2, under a semi-simple group G, are difficult to describe
explicitely. So by “examples” I mean couples (H,S), where H is a subgroup of G such that G/H has a
wonderful completion, and where S is the “spherical system” of this completion (i.e. its main combinatorial
invariant). I will concentrate on examples for groups of type D4 and F4.

Speaker: Volodymyr Mazorchuk (Uppsala)
Title: Schur-Weyl dualities for symmetric inverse semigroups
Abstract: In this talk I would like to present new Schur-Weyl type dualities which connects the classical
symmetric inverse semigroup on {1, 2, . . . , n} (the rook monoid) and the relatively young dual symmetric
inverse semigroup on {1, 2, . . . , n}. This generalizes both the classical Schur-Weyl duality, the Schur-Weyl
type duality between the symmetric group and the partition algebra, and the Schur-Weyl type dualities for the
rook monoid discovered by Solomon. An interesting point here is the fact that the dual symmetric inverse
semigroup, which was originally defined via a dual categorical construction, now appears as the dual object
for the symmetric inverse semigroup from the representation theoretical point of view.

Speaker: Claus Mokler (Wuppertal)
Title: The face monoid associated to a Kac-Moody group
Abstract: The face monoid and its coordinate ring are obtained from the category of integrable modules of the
category O of a symmetrizable Kac-Moody algebra by a Tannaka reconstruction. The face monoid contains
the Kac-Moody group as open dense unit group. Its idempotents are related to the faces of the Tits cone. It
has similar structural properties as a reductive algebraic monoid. In my talk I will give an overview (on slides)
of the algebraic and algebraic geometric results obtained for this monoid as well as for the complex-valued
points of its coordinate ring.

Speaker: Brian Parshall (University of Virginia)
Title: Some new highest weight categories with applications to filtrations
Abstract: Let G be a semisimple, simply connected algebraic group defined over an algebraically closed field
k of positive characteristic p > h (the Coxeter number of G). Let C be the category of rational G-modules.
Assume that for each restricted, dominant weight, the Lusztig character formula holds for the character of
the irreducible G-module L(λ). In this talk, we present two new highest weight categories Creg

even and Creg
odd,

which might be called the “even” and the “odd” categories of rational G-modules. These categories are
(perhaps remarkably) full subcategories of C. This fact depends on the use of the realization of the standard
modules ∆red(λ) and costandard modules∇red(λ) using quantum groups. We indicate some applications of
the result; for example, we mention how it is related to a filtration conjecture.

This talk is based on:
[1] E. Cline, B. Parshall, and L. Scott, “Reduced standard modules and cohomology,” Trans. Amer. Math.

Soc., in press (2007).
[2] B. Parshall and L. Scott, “Some new highest weight categories,” to appear in conference proceedings

for ICRT-IV Tibet (2007).
Paper [1] initiates a cohomological study of the modules ∆red(λ), ∇red(λ) and applies this to the con-

jecture of Gurnalnick on 1-cohomology of finite groups. Paper [2] proves the main result mentioned above.

Speaker: Mohan Putcha (North Carolina State University)
Title: Decompositions of reductive monoids
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Abstract: A reductive monoid M is the Zariski closure of a reductive group G. We will discuss three basic
decompositions of of M , each leading to a finite poset via Zariski closure inclusion:

1. The decomposition of M into G × G-orbits. The associated poset is the cross-section lattice Λ. This
is a generalization of the face lattice of a polytope. While in general the structure of Λ is quite complicated,
it is possible to compute the Möbius function on it.

2. The decomposition of M into B×B-orbits, where B is the Borel subgroup of G. The associated poset
R is the Renner monoid of M whose unit group W is the Weyl group of G. For Mn(k), combinatorists know
R as the rook monoid and semigroup theorists know R as the symmetric inverse semigroup. We will discuss
the rich algebraic and combinatorial structure of R.

3. There is a decomposition of M related to conjugacy classes that is in betweeen the above two decom-
positions. The underlying finite conjugacy poset C is yet to be fully understood, but promises to have a very
rich combinatorial structure. For the matrix monoid Mn(k), C consists of partitions of m, m ! n, ordered
by a generalization of the dominance order on partitions of n. As an application of this decomposition we
derive a description of the irreducible components of the nilpotent variety Mnil of M .

Speaker: Daniel K. Nakano (University of Georgia)
Title: Cohomology for algebraic groups and Frobenius kernels
Abstract: (joint work with Christopher P. Bendel, Cornelius Pillen.) Let G be a connected reductive algebraic
group scheme, B be a Borel sub- group of G, and U be the unipotent radical of B. One of the outstanding
open problems is to generalize the Bott-Borel-Weil theorem to understand the structure of the line bundle
cohomology groups H•(λ) := H•(G/B,L(λ)) over fields of positive characteristic. A related question and
significant part of this problem involves computing the rational B-cohomology groups H•(B, λ) where λ is
a one-dimensional character.

Let F : G → G be the Frobenius map and Gr (resp. Br , Ur) be the r-th Frobenius kernels of G (resp.
B, U ). In this talk I will discuss recent progress in computing cohomology groups for algebraic groups and
Frobenius kernels. My objectives for the talk are as follows:

1) Outline how the cohomology calculations for H•(B, λ), H•(Gr, H0(λ)), H•(Br, λ), H•(Ur, k), and
H•(u, k) (ordinary Lie algebra cohomology for u = Lie U ) are interrelated.

2) Briefly discuss connections with B-cohomology and computing cohomology for Specht modules for
symmetric groups due to Hemmer-Nakano [HN]. This topic falls under Section 3 of the Conference Objec-
tives.

3) Discuss two conjectures related to these cohomological calculations:
a) Donkin’s Conjecture [D]: This conjecture has a counterexample which was discovered by van der

Kallen [vdK]. However, a modified version will be explained and formulated.
b) Induction Conjecture: This conjecture connects the Br-cohomology with Gr-cohomology.
4) Exhibit explicit cohomological calculations (via slides) for H1 and H2 even for small primes [BNP1,

BNP2, W]. Generic behavior will be discussed.
[AJ] H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic groups,

Math. Ann. 269, (1984), 487-525.
[AR] H.H. Andersen, T. Rian, B-cohomology, J. Pure and Applied Algebra, 209, (2007), 537–549.
[BNP1] C. P. Bendel, D. K. Nakano, and C. Pillen, Extensions for Frobenius kernels, J. Algebra 272,

(2004), 476-511.
[BNP2] C.P. Bendel, D.K. Nakano, C. Pillen, Second cohomology for Frobenius kernels and related

structures, Advances in Math., 209, (2007), 162–197.
[D] S. Donkin, Good filtrations of rational modules for reductive groups, Proc. Symp. Pure Math., 47,

(1987), 69–80.
[FP] E. M. Friedlander and B. J. Parshall, Cohomology of Lie algebras and algebraic groups, American

J. Math. 108, (1986), 235–253.
[HN] D.J. Hemmer, D.K. Nakano, On the cohomology of Specht modules, J. Algebra, 306, (2006), 191–

200.
[Jan1] J. C. Jantzen, Representations of Algebraic Groups, Second Edition, Mathematical Surveys and

Monographs, 107, AMS, Providence, RI, 2003.
[Jan2] J. C. Jantzen, First cohomology groups for classical Lie algebras, Progress in Mathematics, 95,

Birkhäuser, 1991, 289–315.
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[Kos] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74,
(1961), 329–387.

[KLT] S. Kumar, N. Lauritzen, J. Thomsen, Frobenius splitting of cotangent bundles of flag varieties,
Invent. Math. 136, (1999), 603–621.

[OHal1] J. O’Halloran, A vanishing theorem for the cohomology of Borel subgroups, Comm. Algebra
11, (1983), 1603–1606.

[PT] P. Polo and J. Tilouine, Berstein-Gelfand-Gelfand complexes and cohomology of nilpotent groups
over Z(p) for representations with p-small weights, Astérisque 280, (2002), 97–135.

[vdK] W. van der Kallen, Infinitesimal fixed points in modules with good filtration, Math. Zeit., 212,
(1993), 157–159.

[W] C. B. Wright, Second cohomology groups for Frobenius kernels, preprint (2007).

Speaker: Zinovy Reichstein (Univ. of British Columbia)
Title: Essential dimension and group compactifications
Abstract: The essential dimension of an algebraic object (e.g., of a finite-dimensional algebra, a polynomial,
an algebraic variety or a group action) is the minimal possible number of independent parameters required
to define the underlying structure. In recent years this notion has been studied by a number of algebraic,
geometric and cohomological techniques. In the first part of this talk I will give an overview of this topic.
In the second part, based on recent joint work with Ph. Gille, I will discuss a particular lower bound on the
essential dimension, conjectured by J.-P. Serre. Our proof of this bound relies on the existence and properties
of regular group compactifications.

Speaker: Nicolas Ressayre (Monpellier)
Title: Geometric invariant theory and eigenvalue problem
Abstract: Let A be an Hermitian matrix: it is diagonalizable with real eigenvalues. Let λ(A) denote its
increasing spectrum. Set

∆(l) = {(λ(A1), · · · , λ(Al)) | Ai Hermitian with A1 + · · ·+ Al = 0}.

The set ∆(l) is actually a convex polyedral cone. The cone ∆(l) may also be described in terms of the
tensor products of representations of SL(n) and there are has generalizations for all simple groups.

The question to determine explicitely the inequalities fullfilled by the points of ∆(l) began with H. Weyl
in 1912. Recently, Belkale and Kummar have proposed a list of inequalities which characterize the cone ∆(l)
(and its genralisations for the others simple groups) paramitrized by a condition expressed in terms of a new
product on the cohomology group of the flag varieties. Here, we assert that the list of Belkale and Kummar
is minimal. The proof is made by using GIT.

Speaker: Alvaro Rittatore (Universidad de la Republica)
Title: The structure of algebriac monoids: the affine case
Abstract: In the 80’s, L. Renner asked the following questions: “Is it true that if an algebraic monoid M is
such that its unit group is affine, then M is affine?”; “is it possible to extend Chevalley’s Theorem on the
structure of algebraic groups to the case of algebraic monoids?”. Recently (M. Brion ’07), such a structure
theorem has been proved. In this talk we concentrate on the first step of this study, namely we show that the
first question has a positive answer.

Speaker: Leonard L. Scott (Univesity of Virgina)
Title: Semistandard filtrations in highest weight categories
Abstract: A definition of semistandard filtration of an object in a highest weight category is given, assuming
finiteness of the indexing weight set and of all composition series in the latter category. These filtrations are
studied especially in maximal submodules of standard modules, and their behavior under exact functors, such
as translation to a wall in an algebraic groups setting, is examined. Some applications are given to extension
groups for irreducible modules.

Speaker: Benjamin Steinberg (Carleton University)
Title: Möbius functions and semigroup representation theory
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Abstract: Using Rota’s theory of Möbius inversion, we are able to make very explicit the work of Munn and
Ponizovskii on representations of inverse semigroups. In particular, one can obtain a formula for multiplicities
of representations using only knowledge of the characters of maximal subgroups and the Mobius function of
the idempotent semilattice. Since most important inverse monoids, such as Renner monoids of algebraic
monoids, have Eulerian semilattices, this leads to relatively simple formulas.

The results for inverse semigroups can be made to work for other classes of semigroups including semi-
groups of upper triangular matrices over a field. This leads to applications in computing spectra of random
walks on such semigroups.

Speaker: V. Uma (Madras)
Title: Equivariant K-theory of compactifications of algebraic groups
Abstract: In this talk we shall describe the G×G-equivariant K-ring of X , where X is a regular compactifi-
cation of a connected complex reductive algebraic group G. Furthermore, in the case when G is a semisimple
group of adjoint type, and X its wonderful compactification, we shall describe its ordinary K-ring K(X).
More precisely, we prove that K(X) is a free module over K(G/B) of rank the cardinality of the Weyl
group. We further give an explicit basis of K(X) over K(G/B), and also determine the structure constants
with respect to this basis.

The above results have recently appeared in my paper titled “Equivariant K-theory of compactifications
of algebraic groups” in Transformation Groups, Vol. 12, No.2, 2007, pp. 371–406.

5 Some Comments on the Outcome of the Meeting
It is clear that “embedding theory”, as portrayed in the activities of this conference, constitute a deep and
important part of mathematics. Embedding theory has its roots in the 19th century work of Cayley, Klein,
Schubert, Cartan and Hilbert. Since then it has been infused with the 20th century developments of Chevalley,
Weil, Nagata, Borel, Tits and Mumford. Some of the main general questions are

1. What “is” symmetry?

2. How is it compactified?

3. What does it “look like” at infinity?

4. How is it measured?

5. How do singularities play a role?

Each of these fundamental questions involves some important statements from the geometry of embed-
dings, combined with some important statements from representation theory.

The first important outcome of this exciting meeting was to “reaquaint” some of the main players in
representation theory with some of the main players in embedding geometry. Many important, developing
themes in algebra stem from the interaction of the following general themes.

1. Schur algebras, Highest weight categories and character formulas,

2. embedding theory of reductive groups,

3. algebro-geometric methods in representation theory,

4. geometric-topological methods in representation theory, and

5. intersection homology.

The second major outcome of the meeting was to aquaint some of the established researchers with some of
the developing young people. This was particularly successful. We had ten young and vigorous researchers
participating (Can, Cupit-Foutou, He, Kiritchenko, Kaveh, Maffei, Parker, Tchoudjem, Therkelsen, Uma).
Many of these young scholars have already made significant contributions to embedding theory. Unfortu-
nately there was not sufficient time for all of them to give a presentation.
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