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1 Overview of the Field
In the study of nonlinear elliptic PDEs, variational and topological methods are the essential tools to attack
the existence question. They essentially rely on some compactness properties of the set of solutions or quasi-
solutions. As we explain below, such properties fail in general for a large class of interesting problems which
are relevant in physical, biological and theoretical models. This fact has opened in the sixties a very rich line
of research which is far from being exhausted yet. In this context, there are several typical issues which we
can roughly resume as follows:

• the basic description of the way a specific elliptic PDE exhibits a loss of compactness;

• the identification of the “good” situations where compactness is recovered and existence results can be
established directly;

• a deeper description of the asymptotic behavior in the “bad” cases where usually both existence and
non-existence can occurr;

• the construction of explicit solutions with a non-compact behavior through a combination of perturba-
tive techniques and variational/topological devices in some specific “bad” situation.

The most famous and paradigmatic problem in this context is represented by the Yamabe equation in confor-
mal geometry. On a compact n−dimensional manifold M , n ≥ 3, with a background metric g0, the problem
of finding a conformal metric g to g0 is equivalent to solve

−4(n− 1)
n− 2

∆g0u + Sg0u = cu
n+2
n−2 in M, (1)

for some c = 0,±1 depending on the background metric g0. Here, ∆g0 is the Laplace-Beltrami operator
with respect to g0 and Sg0 is the scalar curvature of g0, defined as a suitable trace of the Riemann tensor
Riemg0 of g0.

Yamabe [22] proposed the following method to attack the existence. First, we replace the nonlinear term
u

n+2
n−2 with u

n+2
n−2−ε, ε > 0. Compactness is recovered for every ε > 0 yielding to a “ground-state” solution

uε by standard variational methods. The solution of (1) is then obtained as the limit of uε as ε → 0. Yamabe
in [22] claimed to be able to carry out this limiting procedure on uε.
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Later, Trudinger [20] found a gap in Yamabe’s proof, closely related to non-compactness phenomena for
(1). In fact, not every solutions sequence uε has goood compactness properties, and the key point is to identify
the “energy” levels where compactness might fail (the “energy” functional is here the associated Rayleigh
quotient). In particular, the first “energy” threshold can be computed explicitly as S

n
2 , where S is the Sobolev

constant S of the embedding D1,2(Rn) ↪→ L
2n

n−2 (Rn). Indeed, whenever ‖uε‖∞ → +∞ as ε → 0, around
the maximum points xε of uε the sequence uε has an asymptotic profile given by a solution U of

{
−∆U = cU

n+2
n−2 in Rn

0 < U ≤ U(0) = 1 in Rn.
(2)

For c = 0,−1 problem (2) does not possess solutions. Trudinger [20] solved (1) for compact manifolds
with non-positive Yamabe invariant (c = 0,−1) where the sign of c in (2) prevents non-compactenss phe-
nomena.

In the difficult case of positive Yamabe invariant c = 1, the problem remained open for several years and
became popular as the Yamabe conjecture. When c = 1 all the solutions of (2) are known, coincide with
the extremals of the Sobolev inequality and have the same “energy” S

n
2 . The limiting procedure on uε is

still effective for c = 1 and produces a positive solution to (1) whenever the “energy” level of uε does not
approach the first bad level S

n
2 . Since the flat space Rn and the round sphere (Sn, h) are in correspondence

through the stereographic projection, the key point is how to “measure” the difference between the geometry
of a manifold (M, g) and that of (Sn, h). In this respect, the complete resolution has been given in two steps
by Aubin [2] in ′76 and then by Schoen [17] in ′84.

In the Euclidean space Rn, the Yamabe problem takes the simpler form (2) and the solution set is well
understood. On a bounded domain Ω ⊂ Rn, the Yamabe problem can be supplemented by a Dirichlet
boundary condition:

{
−∆u = u

n+2
n−2 in Ω

u = 0 on ∂Ω.
(3)

The “ground state” energy of (3) is independent of Ω and coincides with S
n
2 –the one on Rn. No hope

to produce solutions with the Yamabe procedure. The idea of Brezis and Nirenberg [8] was to introduce a
perturbing term λuq, 1 < q < n+2

n−2 , to see a similar effect as in the Yamabe problem. This line of research
has been continued later by several authors along the last twenty years, but the results have not had a deep
scientific impact due to the limited relevance of such class of PDEs.

We won’t discuss here other very interesting equations in nonlinear PDEs, where similar non-compactness
phenomena arise, such as the prescribed H−curvature problem for surfaces with given boundary [6] and the
problem of harmonic maps [16].

More generally, the identification of a limiting problem and the knowledge of its solution set give insights
on non-compact sequences of solutions. To the above list of typical issues we then add:

• identification of the limiting problem and the corresponding solutions set.

The Yamabe problem is the higher-dimensional version of the constant Gauss curvature problem for compact
surfaces– referred to as the Uniformization Theorem– which can be written as the two-dimensional equation

−∆g0u + Kg0 = eu in S,

where Kg0 denotes the Gauss curvature of g0. The statistical mechanics of point vortices in the mean
field limit leads to variants of it:

on a compact surface S

−∆g0u = λ

(
V eu

∫
S V eu

− 1
vol S

)
in S, (4)

and on a bounded domain Ω ⊂ R2
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{
−∆u = λ V eu

R
Ω V eu in Ω

u = 0 on ∂Ω,
(5)

where λ > 0. When inf
Ω

V > 0 a first aymptotic description of non-compact sequences of solutions to
(5) has been given by Brezis and Merle [7] without assuming any boundary conditions. Additional infor-
mation (Dirichlet boundary conditions or compact surfaces without boundary) allow a complete picture of
the good/bad situations in terms of λ (and not in terms of “energy” levels): solutions with λ away from the
set 8πN form a compact set in a strong norm, while for λ → 8πk non-compact sequences can generally be
found. The limiting problem, which is responsible for such a quantization of critical situations, reads in this
case as






−∆U = eU in R2

U ≤ U(0) = 0 in R2
∫

R2 eudx < +∞.
(6)

Chen and Lin [11, 12] have derived very precise asymptotic estimates on non-compact sequences and
the Leray-Schauder degree dλ, λ > 0, of the associated nonlinear map has been explicitly computed. Fine
existence results readily follow whenever dλ (= 0. A somehow related problem (for example, the limit-
ing equation is the same) is the Euler-Lagrange equations associated to the Moser-Trudinger functional on
H1

0 (Ω):
{
−∆u = λueu2

in Ω
u = 0 on ∂Ω,

(7)

where λ > 0. See [1, 14].

We conclude this overview with the mention of the huge class of singularly perturbed problems. The scalar
case is of interest in the study of standing waves of Schrödinger operators in the semi-classical limit [15], in
the study of phase transitions [13] (the so-called Allen-Cahn equation) and in the Gierer-Meinhardt model
for the dynamics of biological populations. The complex case has been largely studied in connection with
the classical Ginzburg-Landau theory in super-conductivity for type II super-conductors [4].

2 Recent Developments and Open Problems
Despite of the complete resolution of the Yamabe problem, there are still interesting questions to be addressed.
Schoen [18] attempts to describe the set of metrics having constant curvature in a given conformal class, with
an interest towards a-priori estimates and multiplicity results of the Yamabe equation. In particular, for
locally conformally flat compact manifolds M which are not conformally equivalent to the round sphere he
shows that the Yamabe solutions in a given conformal class with prescribed volume form a compact set in
C2,α(M). He leaves open the case of non locally conformally flat compact manifolds, in literature referred
to as the Schoen conjecture. Later, several authors (Druet, Li, Marques, Zhu, Zhang) have established the
validity of this conjecture in low dimension n ≤ 7 and in every dimension under an additional assumption on
g. Brendle has constructed counter-examples to this conjecture for dimensions n ≥ 52, and it is still open to
know the exact dimensions to have the validity of the Schoen conjecture.

The constant Gauss curvature problem extends to a fourth order equation on 4−dimensional compact man-
ifold, as well as the Yamabe problem to n−dimensional compact manifolds with n ≥ 5. On 4−manifolds,
Paneitz in the first ’80 discovered a fourth order operator Pg having the same transformation law of the
Laplace-Beltrami operator ∆g under conformal changes of the metric. The operator Pg is built with a princi-
pal part given by ∆2

g . A notion of curvature –the so-called Q−curvature– was then introduced in terms of Sg

and the Ricci tensor Ricg of g. The problem of prescribing a constant Q−curvature on a compact 4−manifold
leads to a fourth-order elliptic PDE with esponential nonlinearity:

Pg0u + 8Qg0 = 8ceu in M, (8)
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where c = 0,±1 depends on the sign of
∫

M Qg0dv(g0). The interest in solving this problem is in the
same spirit of the Uniformization Theorem and relies on a 4−dimensional Gauss-Bonnet formula:

∫

M
(Qg +

|Wg|2

8
)dv(g) = 4π2χ(M),

where Wg is the Weyl tensor of (M, g) and χ(M) is the Euler characteristic of M . Existence results are
available for compact manifolds with non-negative Yamabe invariant and

0 ≤
∫

M
Qg0dv(g0) < 8π2.

It is completely open such a question when
∫

M Qg0dv(g0) ≥ 8π2.

In the flat case, equation (8) can be considered also on bouded domains Ω ⊂ R4 in the mean field form

∆2u = λ
V eu

∫
Ω V eu

in Ω (9)

and possibly supplemented by either Dirichlet boundary conditions

u =
∂u

∂n
= 0 on ∂Ω

or Navier boundary conditions

u = ∆u = 0 on ∂Ω.

Similarly as in two dimensions, we can consider the Euler-Lagrange equations associated to the Moser-
Trudinger functional:

∆2u = λueu2
in Ω, (10)

with either Dirichlet or Navier boundary conditions. Quantization issues for (9) and (10) are not known,
and the “bad” situations have not been identified yet.

Another direction has been recently pursued in conformal geometry. Letting σk the k−th elementary symmet-
ric polinomial, we have that Sg coincides with (a multiple of) σ1(λ1(g), . . . ,λn(g)), where λ1(g), . . . ,λn(g)
are the ordered eigenvalues of the Schouten tensor of g –defined in terms of the Ricci tensor Ricg of g and
Sgg. Viaclowsky [21] has proposed the so-called k−Yamabe problem, which corresponds to finding a metric
g in a given conformal class with σk(λ1(g), . . . ,λn(g)) being a constant. The case k = 2 has been consid-
ered by Chang, Gursky and Yang [10], and in its Euclidean counter-part by Caffarelli, Nirenberg and Spruck
[9] for every k = 1, . . . , n. The geometric implications of solving the k−Yamabe problem are strong and
make their study very interesting. Analytically, the problem is delicate and is still under investigation.

In several theories in super-conductivity (for example, in the Ginzburg-Landau and Chern-Simons models),
there is a very special physical regime, referred to as the selfdual regime, where the Euler-Lagrange equations
considerably simplify. The function u = ln |φ| –where the Higgs complex function φ is an order parameter
measuring the superconductivity state in the sample Ω– satisfies exactly equations like (4) or (5) with an addi-
tional singular source term supported at the zero set of φ. In all these models, such a set is always composed
by finitely many points –the so-called vortices– with integer multiplicities.

Since the presence of a singular source term can be re-absorbed into a vanishing potential V , in many
physical applications there is a definite interest in considering potentials V in (4) or (5) which vanish at
finitely many points in Ω. From the physical point of view, the simplest situation of interest is a potential V
in the form

V = |x− p|αK , inf
Ω

K > 0

with α ∈ N. As when inf
Ω

V > 0, there is a quantization of the “bad” levels in the form
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λ ∈ 8πN

as shown by Tarantello [19]. In the easier case α /∈ N a similar quantization does hold according to [19]
and sharp asymptotic estimates are available in [3]. When α ∈ N these estimates are still missing, no spike
solutions are known and a formula for the Leray-Schauder degree is not available yet.

In the context of Ginzburg-Landau theories, physicists have proposed several other models to take into ac-
count specific effects which have physical relevance. For example, an anisotropic Ginzburg-Landau model
does not adequately describe the magnetic properties of a layered high-temperature superconductor. The in-
terest in layered structures relies on the fact that many of high-temperature superconductors are obtained as
highly anisotropic crystalline materials composed of stacks of copper oxide superconducting planes separated
by insulating or weakly superconducting material. The Lawrence-Doniach model has been instead proposed
to properly capture the effect of the layered structure, where stacks of parallel superconducting planes are
coupled via the Josephson interaction. This effect is particularly noticable when an external “in-plane” field
is applied to the sample, i.e. the magnetic field is parallel to the superconducting planes. As ε → 0 it is not
clear the behavior of the Lawrence-Doniach model.

More generally, for singularly perturbed problems it is often possible to construct for small ε > 0 solutions
which are strongly localized around finitely many concentration points. They are obtained in a constructive
way as small perturbations of a specific family of approximating solutions, built on as a suitable gluing of
several local profiles of the associated limiting problem centered at such concentration points. The concen-
tration points can’t be chosen freely but are prescribed by the problem under consideration.

In the last years, in collaboration with several authors, Malchiodi has been able to construct solutions
localized around higher dimensional concentration sets Γ. The limiting problem, which provides the good
local profiles to build the approximating family, has to be considered in Rn−dim Γ, and Γ is prescribed by
some geometric condition (when dim Γ =1 , Γ is usually a geodesic with respect to some distance function).
There are many analytical difficulties which have been overcome and clarified by Malchiodi’s work. His
ideas could be fruitfully applied in many problems (not only for the singularly perturbed ones) to construct
solutions which exhibit a concentration and/or a blow-up behavior on a manifold Γ of positive dimension (in
case the situation Γ = {p1, . . . , pk} is already well understood).

3 Scientific Progress Made
The speakers of our workshop have reported about the results they have recently established. They have given
partial/complete answers to the open questions in our field as listed in the previous section. We will report in
the sequel only about the most striking achievements and we won’t attempt to give a complete account of the
talks in our workshop.

In this respect, the first result to quote is the complete resolution of the Schoen conjecture as reported by
Marques. In collaboration with Khuri and Schoen, they establish compactness of the set of metrics with
volume one and constant scalar curvature in a given conformal class for all the non locally conformally flat
compact manifolds M of dimension n ≤ 24. In this context, the counter-examples of Brendle for n ≥ 52
are extended by Marques and Brendle to all the remaining dimensions 25 ≤ n ≤ 51. The picture is then
complete in the compact case: the Schoen conjecture is valid on locally conformally flat manifolds (different
from the round sphere) and on non locally conformally flat manifolds of dimension n ≤ 24, and is false in
general in the remaining situations.

In a joint work with Djadli, Malchiodi solves the constant Q−curvature problem on compact 4−manifolds
with non-negative Yamabe invariant and

∫
M Qg0dv(g0) ≥ 0. For the associated “energy” functional J , by

looking at the “energy” sublevels Ja = {J ≤ a} for a very negative, they see how to define a suitable
min-max scheme to produce a critical “energy” level c. They also introduce in the equation a parameter λ
so that the original problem corresponds to λ =

∫
M Qg0dv(g0). To recover compactness, taking advantage

of the Struwe monotonicity trick, they show the validity of the Palais-Smale condition for λ in a small
dense subset aorund

∫
M Qg0dv(g0) and find an associated solution. By a previous result of Malchiodi,
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compactness does hold when λ is far from 8π2N and, by a limiting procedure, an existence result is deduced
for

∫
M Qg0dv(g0) ∈ [0,+∞)\8π2N. Malchiodi has also shown that a Morse theoretical approach, similar in

spirit to the one just described, works also for (4) when inf
S

V > 0. It yields to existence results and simplifies
the proof of a degree formula for dλ obtained by Chen and Lin [12]. Let us also point out the contribution
of the talk of Lucia on a general deformation lemma for a class of functionals that do not satisfy Palais-Smal
condition, including the ones arising in the stuy of the mean field equation (4).

As far as (9), Robert in his talk has given a beautiful and complete description of the general state-of-art.
When inf

Ω
V > 0, in dimension two a non-compact sequence un always satisfies a concentration property of

the nonlinear term which is equivalent to have

un −
∫

Ω
V eundx→ −∞ in Cloc(Ω \ {p1, . . . , pk}) as n→ +∞,

for a finite number of points p1, . . . , pk ∈ Ω. Surprisingly, it generally does not hold in dimension four
and the situation can become quite weird. However, adding a L1−bound on ∆un or a Dirichlet/Navier
boundary condition, the situation becomes similar to that of the two-dimensional case.

Wei has reported about a later work, in collaboration with Lin, Robert and Wang, concerning (9) on a
domain Ω ⊂ R4 with Dirichlet or Navier boundary conditions. They have established compactness for λ in
compact sets of [0,+∞) \ 64π2N, sharp asymptotic estimates for λ → 64π2N as well as a degree-counting
formula for dλ, in the same line of [11, 12]. Similarly, Struwe has reported on a quantization property for (10)
with Navier boundary conditions: for positive solutions uk ⇀ 0 weakly in H2(Ω) the concentration energy

Λ = lim
k→+∞

∫

Ω
|∆uk|2dx

is quantized in integer multiples of Λ1 = 16π2. A discussion grows out on the possibility of obtaining
for (10) sharp asymptotic estimates and a degree formula as for (9).

On the k−Yamabe problem, we can point out the talk of Ge on an analytic foundation for the fully non-linear
equation

σ2(λ1(g), . . . ,λn(g))
σ1(λ1(g), . . . ,λn(g))

= f

on compact manifolds M with positive Yamabe invariant. As an application, in a joint work with Wang
and Lin, they prove that, if a compact 3−dimensional manifold M admits a metric g with positive scalar
curvature Sg > 0 and

∫
M σ2(λ1(g), λ2(g), λ3(g))dv(g) > 0, then it is topologically a quotient of the sphere.

In the fully nonlinear context, Y.Y. Li has explained his contribution in terms of a Liouville-type result for
entire solutions of general conformally invariant fully nonlinear elliptic equations of second order, motivated
by the study of the limiting problem along non-compact sequences. The interest is strictly related to a-priori
estimates for this class of problems on compact manifolds M .

Thanks to the quantization property in [19] and to the sharp asymptotic estimates in [3], Lin has been able to
compute a degree formula for (4) with a potential V in the form

V = |x− p|αK , inf
S

K > 0

with α /∈ N. In his talk, he gives the explicit expression for the degree formula when α /∈ N and describes
how to get, with a limiting procedure, a similar degree formula for α ∈ N. In this way, for α ∈ N it is possible
to overcome the difficult identification of all the possible non-compact sequences (and their contribution to
the changes of the degree when λ crosses the values in 8πN). A discussion grows out on how try to establish
sharp asymptotic estimates for α ∈ N and how to construct explicit non-compact sequences. In this respect,
del Pino and Musso carry to the audience attention a recent partial result in collaboration with Esposito on
non-compact sequences for simply connected domains. A general result should be in order via a suitable
gluing argument.
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Sandier in his talk presents the rigourous derivation of an anisotropic Ginzurg-Landau theory as the limit,
in a certain regime, of the Lawrence-Doniach model. In particular, if the interlayer distance goes to zero
no faster than ε, an extension of the order parameter between the layers converges weakly to the canonical
harmonic map away from the vortices, and the magnetic potential converges to a vector field whose magnetic
field satisfies the anisotropic London equation. In an ongoing joint work with Alama and Bronsard, they also
find that anisotropic 3D models have interesting Gamma limits as ε→ 0.

In collaboration with Bronsard and Millot, Alama is interested to describe the asymptotic behavior as
ε → 0 of the energy minimizers of a two-dimensional superconductor under the effect of an external applied
magnetic field. They are interested in determining the number and the distribution of the vortices, which are
defects of the superconductive state and appear in the model as quantized singularities. For an external applied
magnetic field near the “lower critical field”, as ε → 0 these vortices concentrate along a curve determined
by a classcial problem from potential theory. Here, the “lower critical field” represents the critical value of
an external applied magnetic field for which vortices first appear in the superconductor.

Solutions of the Allen-Cahn equation with finite energy as ε → 0 admit a limiting profile given as an entire
solution of the Allen-Cahn equation (with ε = 1) having at most a growth Rn−1 of the energy on BR(0),
as R → +∞. Del Pino presents the results of some joint works with Kowalczyk, Pacard and Wei, where a
solution of this type is constructed having a finite number of nearly parallel transition layers. The solution
is constructed as a gluing of one-dimensional profiles with a single transition located very far appart one to
each other. Similarly, for the stationary nonlinear Schrödinger equation mulitple bump lines are found, while
Toda system is shown to rule out the asymptotic shape of these transition lines.

The last talk we would like to quote concerns solutions which concentrate and blow-up along a curve. In col-
laboration with del Pino and Pacard, Musso considers slightly sub-critical Yamabe equation (3) in a domain
Ω ⊂ Rn. Since they are interested in boundary concentration and ∂Ω is a (n − 1)−dimensional manifold,
the right exponent in the Yamabe equation is not n+2

n−2 but the critical Sobolev exponent in dimension n − 1,
i.e. n+1

n−3 . For this problem, they construct a family of solutions whose energy density concentrates as a
Dirac line measure on Γ, where Γ is a closed geodesic in ∂Ω with negative curvature and satisfying some
non-degeneracy condition.

4 Outcome of the Meeting
The meeting has given the opportunity of all the participants to exchange ideas and to communicate new
results and research directions in this field. As planned in our proposal, we have had the big opportunity to
gather junior and senior scientists, and let them the possibility of a fruitful exchange of experiences.

We hope to have stimulated new interactions in our mathematical community, whose revenues will certainly
become manifest in next years.
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[2] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,
J. Math. Pures Appl. (9) 55 (1976), 269–296.

[3] D. Bartolucci and C.-C. Chen and C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field
equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241–1265.

[4] F. Bethuel and H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential
Equations and their Applications 13, Birkhuser Boston, Boston, 1994.

[5] S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008), 951–979.



8

[6] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich’s conjecture, Comm. Pure Appl.
Math. 37 (1984), 149–187

[7] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of−∆u = V (x)eu in two
dimensions, Comm. Partial Differential Equations 16 (1991), 1223–1253.
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