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1 Introduction

Our workshop on Discrete geometry and topology in low dimensions (Or-
ganizers: Karoly Bezdek (University of Calgary), Robert Connelly (Cornell
University), Herbert Edelsbrunner (Duke University)) was running between
April 1 - 6, 2007 at BIRS in Banff and was centered around three major com-
ponents that are multi-connected and witnessing important breakthrough
results such as Voronoi cells and their applications, distance geometry and
volume calculations and also persistent topology and witness complexes. This
report surveys some important subcollection of the many research problems
that have been discussed in details at our meeting.

2 The Kneser-Poulsen conjecture

Let ‖ . . . ‖ denote the standard Euclidean norm of the n-dimensional Eu-
clidean space En. So, if pi,pj are two points in En, then ‖pi − pj‖ denotes
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the Euclidean distance between them. It will be convenient to denote the
(finite) point configuration consisting of the points p1,p2, . . . ,pN in En by
p = (p1,p2, . . . ,pN). Now, if p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN)
are two configurations of N points in En such that for all 1 ≤ i < j ≤ N the
inequality ‖qi − qj‖ ≤ ‖pi − pj‖ holds, then we say that q is a contraction
of p. If q is a contraction of p, then there may or may not be a continuous
motion p(t) = (p1(t),p2(t), . . . ,pN(t)), with pi(t) ∈ En for all 0 ≤ t ≤ 1 and
1 ≤ i ≤ N such that p(0) = p and p(1) = q, and ‖pi(t)−pj(t)‖ is monotone
decreasing for all 1 ≤ i < j ≤ N . When there is such a motion, we say that
q is a continuous contraction of p. Finally, let Bn(pi, ri) denote the closed
n-dimensional ball centered at pi with radius ri in En and let Voln(. . . ) rep-
resent the n-dimensional volume (Lebesgue measure) in En. In 1954 Poulsen
[28] and in 1955 Kneser [27] independently conjectured the following for the
case when r1 = · · · = rN :

Conjecture 2.1 If q = (q1,q2, . . . ,qN) is a contraction of p = (p1,p2, . . . ,pN)
in En, then

Voln[∪Ni=1B
n(pi, ri)] ≥ Voln[∪Ni=1B

n(qi, ri)].

Conjecture 2.2 If q = (q1,q2, . . . ,qN) is a contraction of p = (p1,p2, . . . ,pN)
in En, then

Voln[∩Ni=1B
n(pi, ri)] ≤ Voln[∩Ni=1B

n(qi, ri)].

Actually, M. Kneser seems to be the one who has generated a great deal of
interest in the above conjectures also via private letters written to a number
of mathematicians. For more details on this see for example [26].

3 Nearest and farthest point Voronoi diagrams

For a given point configuration p = (p1,p2, . . . ,pN) in En and radii r1, r2, . . . , rN
consider the following sets:

Vi = {x ∈ En | for all j , ‖x− pi‖2 − r2
i ≤ ‖x− pj‖2 − r2

j},

V i = {x ∈ En | for all j , ‖x− pi‖2 − r2
i ≥ ‖x− pj‖2 − r2

j}.
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The set Vi (resp., V i) is called the nearest (resp., farthest) point Voronoi
cell of the point pi. (For a detailed discussion on nearest as well as farthest
point Voronoi cells we refer the interested reader to [23] and [29].) We now
restrict each of these sets as follows:

Vi(ri) = Vi ∩Bn(pi, ri),

V i(ri) = V i ∩Bn(pi, ri).

We call the set Vi(ri) (resp., V i(ri)) the nearest (resp., farthest) point
truncated Voronoi cell of the point pi. For each i 6= j let Wij = Vi ∩ Vj and
W ij = V i∩V j. The sets Wij and W ij are the walls between the nearest point
and farthest point Voronoi cells. Finally, it is natural to define the relevant
truncated walls as follows:

Wij(pi, ri) = Wij ∩Bn(pi, ri) =

Wij(pj, rj) = Wij ∩Bn(pj, rj),

W ij(pi, ri) = W ij ∩Bn(pi, ri) =

W ij(pj, rj) = W ij ∩Bn(pj, rj).

4 Csikós’s formula

The following formula discovered by Csikós [20] proves Conjecture 2.1 as
well as Conjecture 2.2 for continuous contractions in a straighforward way in
any dimension. (Actually, the planar case of the Kneser-Poulsen conjecture
under continuous contractions have been proved independently in [15], [19],
[16] and [4].)

Theorem 4.1 Let n ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of a
point configuration in En such that for each t, the points of the configuration
are pairwise distinct. Then

d

dt
Voln[∪Ni=1B

n(pi(t), ri)] =
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∑
1≤i<j≤N

(
d

dt
dij(t)) · Voln−1[Wij(pi(t), ri)],

d

dt
Voln[∩Ni=1B

n(pi(t), ri)] =∑
1≤i<j≤N

−(
d

dt
dij(t)) · Voln−1[W

ij(pi(t), ri)],

where dij(t) = ‖pi(t)− pi(t)‖.

On the one hand, Csikós [21] managed to generalize his formula to config-
urations of balls called flowers which are sets obtained from balls with the help
of operations ∩ and ∪. This work extends to hyperbolic as well as spherical
space. On the other hand, Csikós [22] has succeded to prove a Schläfli-type
formula for polytopes with curved faces lying in pseudo-Riemannian Einstein
manifolds, which can be used to provide another proof of Conjecture 2.1 as
well as Conjecture 2.2 for continuous contractions (for more details see [22]).

5 A short outline of the proof of Bezdek and

Connelly of Conjectures 2.1 and 2.2 in E2

In the recent paper [10] Bezdek and Connelly proved Conjecture 2.1 as well
as Conjecture 2.2 in the Euclidean plane. In fact, the paper contains a proof
of an extension of these conjectures to flowers as well. In what follows we give
an outline of the three step proof published in [10] by phrasing it through
a sequence of theorems each being higher dimensional. The proofs of these
results are based on the underlying Voronoi diagrams.

Theorem 5.1 Consider N moving closed n-dimensional balls Bn(pi(t), ri)
with 1 ≤ i ≤ N, 0 ≤ t ≤ 1 in En. If Fi(t) is the contribution of the ith
ball to the boundary of the union ∪Ni=1B

n(pi(t), ri) (resp., of the intersection
∩Ni=1B

n(pi(t), ri)), then ∑
1≤i≤N

1

ri
· Voln−1(Fi(t))

decreases (resp., increases) in t under any analytic contraction p(t) of the
center points, where 0 ≤ t ≤ 1.
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Theorem 5.2 Let the centers of the closed n-dimensional balls Bn(pi, ri),
1 ≤ i ≤ N lie in the (n − 2)-dimensional (affine) subspace L of En. If
Fi stands for the contribution of the ith ball to the boundary of the union
∪Ni=1B

n(pi, ri) (resp., of the intersection ∩Ni=1B
n(pi, ri)), then

1

2π

∑
1≤i≤N

1

ri
· Voln−1(Fi)

is equal to the volume of ∪Ni=1B
n−2(pi, ri) (resp., ∩Ni=1B

n−2(pi, ri)) lying L.

Theorem 5.3 If q = (q1,q2, . . . ,qN) is a contraction of p = (p1,p2, . . . ,pN)
in En, then there is an analytic contraction of p onto q in E2n.

Note that Theorem 5.1, 5.2 and 5.3 imply in a straighforward way that
Conjecture 2.1 as well as Conjecture 2.2 hold in the Euclidean plane. Also,
it is worth mentioning that somewhat surprisingly Theorem 5.3 (also called
the leapfrog lemma) cannot be improved namely, it has been proved in [3]
that there exist point configurations q and p in En, constructed actually in
the way as it was suggested in [10], such that q is a contraction of p in En

and there is no continuous contraction from p to q in E2n−1.

6 Further results obtained from the proof of

Bezdek and Connelly

It is worth listing two additional results obtained from the proof published
in [10] in order to describe a more complete picture of the status of the
Kneser-Poulsen conjecture. For more details see [10].

Theorem 6.1 Let p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN) be two
point configurations in En such that q is a piecewise-analytic contraction of
p in En+2. Then the conclusions of Conjecture 2.1 as well as Conjecture 2.2
hold in En.

The following generalizes a result of Gromov in [25], who proved it in the
case N ≤ n+ 1.
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Theorem 6.2 If q = (q1,q2, . . . ,qN) is an arbitrary contraction of p =
(p1,p2, . . . ,pN) in En and N ≤ n+ 3, then both Conjecture 2.1 and Conjec-
ture 2.2 hold.

As a next step it would be natural to investigate the case N = n+ 4.

7 Kneser-Poulsen-type results for spherical

and hyperbolic convex polytopes

It is somewhat surprising that in spherical space for specific radius of balls
(i.e. spherical caps) one can find a proof of both Conjecture 2.1 and Conjec-
ture 2.2 in all dimensions. The magic radius is π

2
and the following theorem

describes the desired result in details.

Theorem 7.1 If a finite set of closed n-dimensional balls of radius π
2

(i.e. of
closed hemispheres) in the n-dimensional spherical space is rearranged so that
the (spherical) distance between each pair of centers does not increase, then
the (spherical) n-dimensional volume of the intersection does not decrease
and the (spherical) n-dimensional volume of the union does not increase.

The method of the proof published by Bezdek and Connelly in [11] can
be described as follows. First, one can use a leapfrog lemma to move one
configuration to the other in an analytic and monotone way, but only in
higher dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that one
can prove using Schläfli’s differential formula. Then one can apply an integral
formula to relate the volume of the higher dimensional object to the volume
of the lower-dimensional object, obtaining the volume inequality for the more
general discrete motions.

The following statement is a corollary of Theorem 7.1 (for details see [11])
the Euclidean part of which has been proved independently by Alexander [2],
Capoyleas and Pach [17] and Sudakov [31].

Theorem 7.2 Let p = (p1,p2, . . . ,pN) be N points on a hemisphere of
the 2-dimensional spherical space S2 (resp., points in E2), and let q =
(q1,q2, . . . ,qN) be a contraction of p in S2 (resp., in E2). Then the perime-
ter of the convex hull of q is less than or equal to the perimeter of the convex
hull of p.
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We remark that Theorem 7.1 extends to flowers as well moreover, a pos-
itive answer to the following problem would imply that both Conjecture 2.1
and Conjecture 2.2 hold for circles in S2 (for more details on this see [11]).

Problem 7.3 Suppose that p = (p1,p2, . . . ,pN) and q = (q1,q2, . . . ,qN)
are two configurations in S2. Then prove or disprove that there is a monotone
piecewise-analytic motion from p = (p1,p2, . . . ,pN) to q = (q1,q2, . . . ,qN)
in S4.

Note that in fact, Theorem 7.1 states a volume inequality between two
spherically convex polytopes satisfying some metric conditions. The following
problem searches for a natural analogue of that in hyperbolic 3-space. In
order to state it properly we recall the following. Let A and B be two planes
in the hyperbolic 3-space and let A+ (resp., B+) denote one of the two closed
halfspaces bounded by A (resp., B) such that the set A+ ∩B+ is nonempty.
Recall that either A and B intersect or A is parallel to B or A and B have
a line perpendicular to both of them. Now, ”the dihedral angle A+ ∩ B+”
means not only the set in question but, also it refers to the standard angular
measure of the corresponding angle between A and B in the first case, it
refers to 0 in the second case, and finally, in the third case it refers to the
negative of the distance between A and B as well.

Problem 7.4 Let P and Q be compact convex polyhedra of the 3-dimensional
hyperbolic space with P (resp., Q) being the intersection of the closed half-
spaces HP

1 , H
P
2 , . . . , H

P
N (resp., HQ

1 , H
Q
2 , . . . , H

Q
N). Assume that the dihedral

angle HQ
i ∩H

Q
j is at least as large as the corresponding dihedral angle HP

i ∩HP
j

for all 1 ≤ i < j ≤ N . Then prove or disprove that the volume of P is at
least as large as the volume of Q.

Using Andreev’s version [1] of the Koebe-Andreev-Thurston theorem and
Schläfli’s differential formula Bezdek [6] proved the following partial analogue
of Theorem 7.1 in hyperbolic 3-space.

Theorem 7.5 Let P and Q be nonobtuse-angled compact convex polyhedra
of the same simple combinatorial type in hyperbolic 3-space. If each inner
dihedral angle of Q is at least as large as the corresponding inner dihedral
angle of P , then the volume of P is at least as large as the volume of Q.
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8 Alexander’s conjecture

It seems that in the Euclidean plane, for the case of the intersection of con-
gruent disks, one can sharpen the results proved by Bezdek and Connelly
[10]. Namely, Alexander [2] conjectures the following.

Conjecture 8.1 Under arbitrary contraction of the center points of finitely
many congruent disks in the Euclidean plane, the perimeter of the intersection
of the disks cannot decrease.

The analogous question for the union of congruent disks has a negative
answer, as was observed by Habicht and Kneser long ago (for details see [10]).
In [12] some supporting evidence for the above conjecture of Alexander has
been collected in particular, the following theorem was proved.

Theorem 8.2 Alexander’s conjecture holds for continuous contractions of
the center points and it holds up to 4 congruent disks under arbitrary con-
tractions of the center points.

We note that Alexander’s conjecture does not hold for incronguent disks
(even under continuous contractions of their center points) as it is shown in
[12]. Last but not least we remark that if Alexander’s conjecture were true,
then it would be a rare instance of an asymmetry between intersections and
unions for Kneser-Poulsen type questions.

9 Disk-polygons and ball-polyhedra

The previous sections indicate a good deal of geometry on unions and inter-
sections of balls that is worth for studying. In particular, when we restrict
our attention to intersections of balls the underlying convexity suggests a
broad spectrum of new analytic and combinatorial results. To make the
setup ideal for discrete geometry from now on we will look at intersections of
finitely many congruent closed n-dimensional balls with non-empty interior
in En. Also, it is natural to assume that removing any of the balls defin-
ing the ball-polyhedron in question yields the intersection of the remaining
balls to become a larger set. If n = 2, then we will call the sets in question
disk-polygons and for n ≥ 3 they will be called ball-polyhedra. This defini-
tion along with some basic properties of ball-polyhedra (resp., disk-polygons)
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were introduced by Bezdek in a sequence of talks at the University of Calgary
in the fall of 2004. Based on that the paper [13] written by Bezdek, Lángi,
Naszódi and Papez systematically extended those investigations to get a bet-
ter understanding of the geometry of ball-polyhedra (resp., disk-polygons) by
proving quite a number of theorems, which one can regard the analogues of
the classical theorems on convex polytopes.

10 Shortest billiard trajectories

Billiards have been around for quite some time in mathematics and generated
a great deal of research. (See for example the recent elegant book [32] of
Tabachnikov.) For our purposes it seems natural to define billiard trajectories
in the following way. This introduces a larger class of polygons for billiard
trajectories than the traditional definition widely used in the literature. So,
let C be an arbitrary convex domain that is a compact convex set with
non-empty interior in the Euclidean plane. Then we say that the closed
polygonal path P (possible with self-intersections) is a generalized billiard
trajectory of C if all the vertices of P lie on the boundary of C and if all
the inner angle bisectors of P are perpendicular to a supporting line of C
passing through the corresponding vertex of P . If P has N sides, then we say
that P is an N-periodic generalized billiard trajectory in C. Note that our
definition of generalized billiard trajectories coincides with the traditional
definition of billiard trajectories whenever the billiard table has no corner
points. According to Birkhoff’s well-known theorem if B is a strictly convex
billiard table with smooth boundary (that is if the boundary of B is a simple,
closed, smooth and strictly convex curve) in the Euclidean plane, then for
every positive integer N > 1 there exist (at least two) N -periodic billiard
trajectories in B. This motivates the following theorem that has just been
proved in [5]. In order to state that theorem in a possible short form it seems
natural to introduce the following concept. Let D be a disk-polygon in the
Euclidean plane having the property that the pairwise distances between the
centers of its generating disks of radii r are at most r. In short, we say that
D is a fat disk-polygon with parameter r > 0. In fact, it is easy to see that
the disk-polygon D with parameter r is a fat disk-polygon if and only if the
centers of the generating disks of D belong to D or putting it somewhat
differently if and only if the center of any (closed) circular disk of radius r
containing D belongs to D.
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Theorem 10.1 Let D be a fat disk-polygon in the Euclidean plane. Then
any of the shortest generalized billiard trajectories in D is a 2-periodic one.

Take a disk-polygon D with generating disks of radii r > 0. Then choose
a positive ε not larger than the inradius of D (which is the radius of the
largest circular disk contained in D) and take the union of all circular disks
of radius ε that lie in D. The set obtained in this way we call the ε-rounded
disk-polygon of D and denote it by D(ε). The proof of the following theorem
published in [5] is based on Theorem 10.1.

Theorem 10.2 Let D be a fat disk-polygon in the Euclidean plane. Then
any of the shortest (generalized) billiard trajectories in the ε-rounded disk-
polygon D(ε) is a 2-periodic one for all ε > 0 being sufficiently small.

Actually, we believe that the following even stronger statement holds (see
also [5]).

Conjecture 10.3 Let D be a fat disk-polygon in the Euclidean plane. Then
any of the shortest (generalized) billiard trajectories in the ε-rounded disk-
polygon D(ε) is a 2-periodic one for all ε being at most as large as the inradius
of D.

Last but not least we mention the following result obtained as a corollary
of Theorem 10.1. This might be of independent interest in particular, because
it generalizes the result proved in [9] that any closed curve of length at most
1 can be covered by a translate of any convex domain of constant width 1

2

in the Euclidean plane. As usual if C is a convex domain of the Euclidean
plane, then let width(C) denote the minimal width of C (that is the smallest
distance between two parallel supporting lines of C).

Corollary 10.4 Let D be a fat disk-polygon in the Euclidean plane. Then
any closed curve of length at most 2 ·width(D) of the Euclidean plane can be
covered by a translate of D.

It would be natural and important to look for higher dimensional ana-
logues of these theorems.
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11 Searching for an analogue of Steinitz the-

orem for standard ball-polyhedra in E3

One can represent the boundary of a ball-polyhedron in E3 as the union
of vertices, edges and faces defined in a rather natural way as follows. A
boundary point is called a vertex if it belongs to at least three of the closed
balls defining the ball-polyhedron. A face of the ball-polyhedron is the in-
tersection of one of the generating closed balls with the boundary of the
ball-polyhedron. Finally, if the intersection of two faces is non-empty, then
it is the union of (possibly degenerate) circular arcs. The non-degenerate
arcs are called edges of the ball-polyhedron. Obviously, if a ball-polyhedron
in E3 is generated by at least three balls, then it possesses vertices, edges and
faces. Finally, a ball-polyhedron is called a standard ball-polyhedron if its ver-
tices, edges and faces (together with the empty set and the ball-polyhedron
itself) form an algebraic lattice with respect to containment. We note that
not every ball-polyhedron of E3 is a standard one a fact, that is somewhat
surprising and is responsible for some of the difficulties arising at studying
ball-polyhedra in general (for more details see [14] as well as [13]).

In this survey paper, a graph is always a non-oriented one and has finitely
many vertices and edges. Recall that a graph is 3-connected if it has at least
four vertices and deleting any two vertices yields a connected graph. Also,
a graph is called simple if it contains no loops (edges with identical end-
points) and no parallel edges (edges with the same two end-points). Finally,
a graph is planar if it can be drawn in the Euclidean plane without crossing
edges. Now, recall that according to the well-known theorem of Steinitz a
graph is the edge-graph of some convex polyhedron in E3 if, and only if, it
is simple, planar and 3-connected. As a partial analogue of Steinitz theorem
for ball-polyhedra the following theorem is proved in [13].

Theorem 11.1 The edge-graph of any standard ball-polyhedron in E3 is a
simple, planar and 3-connected graph.

Based on that it would be highly interesting to find an answer to the
following question raised in [13].

Problem 11.2 Prove or disprove that every simple, planar and 3-connected
graph is the edge-graph of some standard ball-polyhedron in E3.
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12 On global rigidity of ball-polyhedra in E3

One of the best known results on the geometry of convex polyhedra is
Cauchy’s rigidity theorem: If two convex polyhedra P and Q in E3 are
combinatorially equivalent with the corresponding facets being congruent,
then also the angles between the corresponding pairs of adjacent facets are
equal and thus, P is congruent to Q. For more details on Cauchy’s rigidity
theorem and on its extensions we refer the interested reader to [18]. In order
to phrase properly the main theorem of this section we need to recall the
following terminology. To each edge of a ball-polyhedron in E3 we can assign
an inner dihedral angle. Namely, take any point p in the relative interior
of the edge and take the two balls that contain the two faces of the ball-
polyhedron meeting along that edge. Now, the inner dihedral angle along
this edge is the angle of the two half-spaces supporting the two balls at p.
The angle in question is obviously independent of the choice of p. Finally, at
each vertex of a face of a ball-polyhedron there is a face angle formed by the
two edges meeting at the given vertex (which is in fact, the angle between
the two tangent half-lines of the two edges meeting at the given vertex). We
say that the standard ball-polyhedron P in E3 is globally rigid with respect
to its face angles (resp. its inner dihedral angles) if the following holds: If
Q is another standard ball-polyhedron in E3 whose face-lattice is isomorphic
to that of P and whose face angles (resp. inner dihedral angles) are equal to
the corresponding face angles (resp. inner dihedral angles) of P , then Q is
similar to P . (Note that in case the family of ball-polyhedra is defined with
the additional restriction that the radii of the generating balls are all equal
to say, 1, then in the above definition of global rigidity ”similar” should be
replaced by ”congruent” as in [14].) A ball-polyhedron of E3 is called tri-
angulated if all its faces are bounded by three edges. It is easy to see that
any triangulated ball-polyhedron is in fact, a standard one. The following
theorem has been proved in [14].

Theorem 12.1 Let P be a triangulated ball-polyhedron in E3. Then P is
globally rigid with respect to its face angles.

It remains to be a challanging problem to answer the following related
question.

Problem 12.2 Let P be a triangulated ball-polyhedron in E3. Prove or dis-
prove that P is globally rigid with respect to its dihedral angles.
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Finally, we mention that one can regard the above problem as an analogue
of Stokker’s conjecture [30] according to which for convex polyhedra the face-
lattice and the dihedral angles determine the face angles.

13 Illumination of ball-polyhedra

As we have mentioned before [13] lays a broad ground for future study of
ball-polyhedra by proving several new properties of them and raising open
research problems as well. This list includes among many things analogues
of the classical separation theorems of convex polytopes, a Kirchberger-type
theorem, analogues of the Caratheodory theorem and the Euler-Poincare
formula for ball-polyhedra. Here we want to focus on another possible di-
rection for research. Let K be a convex body (i.e. a compact convex set
with nonempty interior) in the n-dimensional Euclidean space En, n ≥ 2.
According to Hadwiger (see [7]) an exterior point p ∈ En \ K of K illumi-
nates the boundary point q of K if the half line emanating from p passing
through q intersects the interior of K (at a point not between p and q).
Furthermore, a family of exterior points of K say, p1,p2, . . . ,pN illuminates
K if each boundary point of K is illuminated by at least one of the point
sources p1,p2, . . . ,pN . Finally, the smallest N for which there exist N ex-
terior points of K that illuminate K is called the illumination number of K
denoted by I(K). In 1960, Hadwiger (see [7]) raised the following amazingly
elementary but, very fundamental question. An equivalent but somewhat
different looking concept of illumination was introduced by Boltyanski in
the same year. There he proposed to use directions (i.e. unit vectors) in-
stead of point sources for the illumination of convex bodies (for more details
see [7]). Based on these circumstances the following conjecture we call the
Boltyanski-Hadwiger illumination conjecture. According to this conjecture
the illumination number I(K) of any convex body K in En, n ≥ 2 is at most
2n and I(K) = 2n if and only if K is an affine n-cube. This conjecture is
easy to prove for n = 2 but, it is open for all n ≥ 3.

The following statement follows from the Separation Lemma of Bezdek
[7]. In order to state it properly we need to recall two basic notions. Let
K be a convex body in En and let F be a face of K that is let F be the
intersection of K with some of its supporting hyperplanes. The Gauss image
ν(F ) of the face F is the set of all points (i.e. unit vectors) u of the (n− 1)-
dimensional unit sphere Sn−1 ⊂ En centered at the origin o of En for which
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the supporting hyperplane of K with outer normal vector u contains F. It is
easy to see that the Gauss images of distinct faces of K have disjoint relative
interiors in Sn−1 and ν(F ) is compact and spherically convex for any face F .
Let C ⊂ Sn−1 be a set of finitely many points. Then the covering radius of
C is the smallest positive real number r with the property that the family of
spherical balls of radii r centered at the points of C cover Sn−1.

Theorem 13.1 Let K ⊂ En, n ≥ 3 be a convex body and let r be a positive
real number with the property that the Gauss image ν(F ) of any face F of K
can be covered by a spherical ball of radius r in Sn−1. Moreover, assume that
there exist N points of Sn−1 with covering radius R satisfying the inequality
r +R ≤ π

2
. Then I(K) ≤ N .

Using Theorem 13.1 as well as the optimal codes for the covering radii of
four and five points on S2 ([24]) one can easily prove the result stated below.
(In fact, weaker but, still reasonable estimates can be proved for larger values
of x (relative to r) by taking into account additional (optimal) codes from
[24].)

Theorem 13.2 Let B(x, r) be a ball-polyhedron in E3 having the property
that the diameter of the centers of its generating balls is at most x, where
0 < x < 2r with r standing for the radii of the generating balls of B(x, r).
Then for 0 < x ≤ 0.57r we have that I(B(x, r)) = 4 and for 0.57r < x ≤
0.77r we get that I(B(x, r)) ≤ 5.

Based on this it is tempting to raise the following question.

Problem 13.3 Prove or disprove that if B is an arbitrary ball-polyhedron
of E3, then I(B) ≤ 5. More generally, prove or disprove that there exists
a universal constant c > 0 such that the illumination number of any n-
dimensional ball-polyhedron in En is smaller than (2− c)n for all n ≥ 3.
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polyhedra, Beiträge Algebra Geom. 46(2) (2005), 609–614.

[7] K. Bezdek, The illumination conjecture and its extensions, Period.
Math. Hungar. 53(1-2) (2006), 59–69.

[8] K. Bezdek, From the Kneser-Poulsen conjecture to ball-polyhedra via
Voronoi diagrams, Proceedings of the 4th International Symposium
on Voronoi Diagrams in Science and Engineering, IEEE Computer
Society (2007), 3–6.

[9] K. Bezdek and R. Connelly, Covering curves by translates of a convex
set, Amer. Math. Monthly 96(9) (1989), 789–806.

[10] K. Bezdek and R. Connelly, Pushing disks apart - the Kneser-Poulsen
conjecture in the plane, J. reine angew. Math. 553 (2002), 221–236.

[11] K. Bezdek and R. Connelly, The Kneser-Poulsen conjecture for
spherical polytopes, Discrete Comput. Geom. 32 (2004), 101–106.

[12] K. Bezdek, R. Connelly and B. Csikós, On the perimeter of the in-
tersection of congruent disks, Beiträge Algebra Geom. 47(1) (2006),
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Károly Bezdek, Department of Mathematics and Statistics, 2500 University
drive N.W., University of Calgary, AB, Canada, T2N 1N4.
e-mail: bezdek@math.ucalgary.ca

17


