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1 Overview of the Field
Commutative Algebra and Algebraic Geometry have been closely connected since the early days of both
fields. Many of the concepts in Commutative Algebra have their origins in Geometry, and many of the
foundations of Algebraic Geometry are based on Algebraic results.

In this conference we brought together mathematicians who work in the interface of these two fields.
Many of them are using Geometric methods to solve questions in Algebra, while others are studying Geom-
etry using methods from Commutative Algebra.

The field is very broad, and our original intent was to concentrate on three main areas. The first deals
with problems in Positive and Mixed Characteristic, a topic which has been very active in recent years. The
second is in Integral Dependence and Integral Closure, a central topic in Commutative Algebra with many
applications to Geometry. The third topic is Secant Varieties and Algebraic Statistics, which presents a new
and unexpected application of Geometry to Algebra and other fields.

However, as the preparations for the conference progressed, it became clear that it was better to include a
wider range of topics, as there are many important developments that do not fit neatly into any of these three
areas. As a result, although the majority of the talks were closely related to the topics that we had originally
planned, we also had contributions that can be grouped into other areas, as well as a few that were in special
topics. The unifying theme was that all of the speakers discussed problems related to both Commutative
Algebra and Algebraic Geometry.

The remainder of this report presents the various areas that were represented and abstracts of the talks.
In addition to the three areas mentioned above, there is a section on Intersection Theory and Homological
Methods, and more general methods of classical Projective Geometry have been included in the section on
Secant Varieties.

2 Problems in positive and mixed characteristic.
The traditional area of study in Algebraic Geometry was spaces defined by equations over the real and com-
plex numbers. However, some problems can be solved by reducing these equations modulo a prime number,
and this leads to questions of positive characteristic. A ring R has characteristic p for a prime number p if
pr = 0 for all r in R. The main advantage this gives is that it allows the use of the Frobenius map, which
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sends an element r to rp; it is a ring homomorphism in this case. Most of the theory in positive characteristic
involves the Frobenius map in one way or another.

One of the main objects of study in positive characteristic is Hilbert-Kunz multiplicities, which are limits
of ordinary multiplicities over iterations of the Frobenius map. A central question is whether Hilbert-Kunz
multiplicities are rational, which is addressed in the talk by Paul Monsky.

Hilbert-Kunz functions of singular plane curves
Paul Monsky, Brandeis University

Let G be a homogeneous degree d element of L[x, y, z], where L is the algebraic closure of Z/p. If
q = pn, en(G) is the colength of the ideal generated by G and the qth powers of x, y and z. Then en(G) =
µq2 −Rn where µ lies between 3d/4 and d, and Rn = O(q).

The talk starts with known results about µ and Rn when G is irreducible, and explains ideas in my
proof that Rn = (periodic)q + (eventually periodic). It continues with speculation, arising from computer
calculations and my work with Teixeira, as to the behavior of Rn when G is reducible. In particular it makes
an explicit conjecture as to the value of en(Hj) when p = 2 and H = x3 + y3 + xyz. If this conjecture
holds the Hilbert-Kunz multiplicity of the 5-variable polynomial H +uv is an irrational element of Q(

√
7)—

whether Hilbert-Kunz multiplicities can be irrational is an outstanding problem . !

In recent years, another point of intersection of characteristic p methods in Algebra and Geometry has
been the study of multiplier ideals. This will be considered further in the next section, but one interesting
facet has been a relation with tight closure in positive characteristic. This is examined in the talk of Mircea
Mustaţă.

Test ideals vs. multiplier ideals
Mircea Mustaţă, University of Michigan

The talk is a report on joint work with Manuel Blickle, Karen Smith and Ken-ichi Yoshida. It compares
the behavior of certain invariants of singularities in characteristic zero (namely, the multiplier ideals and
their jumping numbers) with invariants in positive characteristic, the so-called generalized test ideals. The
multiplier ideals are by now well-established invariants, defined in terms of divisorial valuations, that can be
computed using resolutions of singularities.

On the other hand, the generalized test ideals have been introduced by Hara and Yoshida using techniques
inspired by tight closure theory. Results of Hara, Takagi, Yoshida and Watanabe, via reduction mod p,
relate the multiplier ideals of a singularity in characteristic zero with the corresponding test ideals in positive
characteristic. This connection is quite subtle, revealing deep connections with arithmetic, and there are still
very interesting open problems in this area.

It was clear from the beginning that several subtle properties of multiplier ideals, that are proved via
vanishing theorems (such as Subadditivity or the Restriction Theorem) have analogues in the context of test
ideals, and the proofs are much more elementary. The talk discusses joint work with Yoshida emphasizing
the different behavior of test ideals and multiplier ideals: roughly speaking, we show that all the algebraic
properties of multiplier ideals that follow from the computation in terms of resolutions, fail for test ideals.
A surprising result that also highlights this different behavior: we show that every ideal in a regular F -finite
local ring can be written as a test ideal.

The talk also covers results with Blickle and Smith about the behavior of the jumping exponents of test
ideals: under certain assumptions, these are all rational and form a discrete set (note the analogy with the
jumping numbers of multiplier ideals). !

Shunsuke Takagi also talked about test ideals in positive characteristic and presented some new results on
jumping numbers.
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Rationality of F -jumping numbers on singular varieties
Shunsuke Takagi, Kyushu University

This talk is based on a joint work with Craig Huneke. Let R be an excellent Noetherian ring of prime
characteristic p and I be an ideal which is not contained in any minimal prime ideal of R. Then we say
that a real number t > 0 is an F-jumping exponent of I if τ(It) #= τ(It−ε) for all ε > 0, where τ(It) is
the generalized test ideal of I with exponent t (see [1] for the definition of generalized test ideals). Blickle,
Mustaţǎ and Smith proved that the F-jumping exponents of I are rational and have no accumulation points if
R is an F- finite regular ring essentially of finite type over a field or if R is an F-finite regular ring and I is
a principal ideal. We generalize their results to the case of strongly F-regular rings. We say that an F-finite
reduced ring A of characteristic p > 0 is strongly F-regular if for every nonzero divisor c of A, there exists
q = pe such that c1/qA ↪→ A1/q splits an A-linear map. The following is our main results. Suppose that
R is a strongly F-regular ring of characteristic p > 0. Then the set of F-jumping exponents of I have no
accumulation points if one of the following conditions holds: (1) R =

⊕
n≥0 Rn is a Q-Gorenstein graded

ring with R0 a field and the (Gorenstein) index of R is not divisible by p; (2) R is a Q-Gorenstein ring whose
(Gorenstein) index is not divisible by p and I is a principal ideal; (3) R =

⊕
n≥0 Rn is a graded ring with

R0 a field and R has finite graded F-representation type (see [2] for the definition of rings with finite graded
F-representation type). Every F-jumping exponent of I is a rational number if the condition (1) or (2) holds.
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Another topic that was presented at the beginning was the main question in mixed characteristic, namely
the well known homological conjectures. Work on these conjectures has led to a deep study of the local
cohomology of the absolute integral closure of a local integral domain. This was the topic of the talk by
Gennady Lyubeznik.

A Property of the Absolute Integral Closure of an Excellent Local Domain in Mixed
Characteristic
Gennady Lyubeznik, University of Minnesota

In this talk we presented a proof of the following theorem:
Theorem. Let (R,m) be a Noetherian local excellent domain of mixed characteristic, residual character-

istic p > 0 and dimension at least 3. Let
√

pR (resp.
√

pR+) be the radical of the principal ideal of R (resp.
R+) generated by p. Set R̄ = R/

√
pR (resp. R+ = R+/

√
pR+). Then

(i) H1
m(R+) = 0, and

(ii) every part of a system of parameters {a, b} of R̄ of length 2 is a regular sequence on R+.
This theorem suggests the following.
Question. Let (R,m) be a Noetherian local excellent domain of mixed characteristic. Is R+ a big Cohen-

Macaulay R̄-algebra, i.e.
(i) is Hi

m(R+) = 0 for all i < dimR̄, and
(ii) is every system of parameters of R̄ a regular sequence on R+? !

3 Integral Dependence and Integral Closures
The concepts of integral dependence and integral closure are central to Commutative Algebra, and their con-
nections with Algebraic Geometry are, at present, very active fields of research. Their study is closely related
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to singularity theory, Rees algebras, and multiplier ideals, all of which were discussed at this conference.
The talk by Brian Harbourne (on symbolic powers) is also related to these topics. Harbourne uses, in an

imaginative way, previous work on “fat point ideals” , a very geometric idea.

Comparing powers of ideals with their symbolic powers
Brian Harbourne, University of Nebraska–Lincoln

This talk presents work done jointly with Cristiano Bocci (arXiv:0706.3707v1). Consider a homogeneous
ideal I ⊂ k[PN ] = R, where R is the polynomial ring in N + 1 indeterminates over an algebraically closed
field k of arbitrary characteristic. The underlying question is: for which m and r do we have I(m) ⊂ Ir,
where I(m) denotes the m-th symbolic power of I? Our approach to this question is to define a quantity, the
resurgence ρ(I) of I , this being the supremum of all ratios m/r such that Ir does not contain I(m), and to
give bounds on ρ(I) in terms of Hilbert function invariants of I . In particular, if, for any homogenous ideal
J , α(J) denotes the least degree t such that Jt #= 0 (i.e., α(J) denotes the M -adic order with respect to the
maximal homogeneous ideal M of R), we show that limm→∞ α(Im)/α(I(m)) ≤ ρ(I), and, if I defines a
0-dimensional subscheme, we show that ρ(I) ≤ reg(I)/(limm→∞ α(I(m))/m). We obtain these bounds by
applying two principles. The first is that if α(Ir) > α(I(m)), then Ir does not contain I(m). The second,
which holds if I defines a 0-dimensional subscheme, is that if reg(Ir) ≤ α(I(m)), then I(m) ⊂ Ir.

As a consequence, among all homogeneous ideals I for which R/I has Krull dimension N − d + 1 for
a given d, we show that the minimum c such that m ≥ cr guarantees I(m) ⊂ Ir is c = d. This shows that
the well known results of Ein-Lazarsfeld-Smith and Hochster-Huneke are optimal for every dimension and
codimension. We also show that I(3) ⊂ I2 whenever I = I(S) is an ideal of a finite set S ⊂ P2 of generic
points. This partially answers a still open question of Huneke: if I = I(S) for a finite set S of points in the
plane, is it true that I(3) ⊂ I2? !

3.1 Multiplier ideals and cores
The presentation of Claudia Polini discussed the cores of rings and gives a characterization of certain types
of schemes in terms of them. The important interplay between algebra and geometry was also evident in this
talk as one of the principal ingredients was the Cayley-Bacharach theorem on finite point sets of projective
n-space.

Cayley-Bacharach Schemes and their Cores
Claudia Polini, University of Notre Dame

In the first part of this talk we discuss when the known formulas for cores of ideals are valid in arbitrary
characteristic. The core of an ideal I , core(I), is the intersection of the minimal reductions of I . Being an a
priori infinite intersection the core is difficult to compute, and in the last ten years there has been considerable
effort to find explicit formulas. There are many reasons to study the core: one is its ties with adjoints and
multipliers ideals, another is its connection with Briançon-Skoda type theorems, and last but not least a better
understanding of cores could lead to a solution of Kawamata’s conjecture on the non-vanishing of sections of
line bundles.

In the second part of the talk we study the annihilators of some graded components of the canonical
module of a graded ring. We relate them to cores of powers of homogeneous maximal ideals of standard
graded reduced Cohen-Macaulay k-algebras. An application of our results characterizes Cayley-Bacharach
schemes in terms of the structure of the core of the maximal ideal of their homogeneous coordinate ring,
denoted by core(X). Recall that a set of s points in Pn is called a Cayley-Bacharach scheme if every subset
of s− 1 points has the same Hilbert function. In particular, we show that a scheme X is Cayley-Bacharach if
and only if core(X) is a power of the maximal ideal. !

The subject of the talk by Dale Cutkosky is pathological behavior of local cohomology; he shows that
this can occur even for Rees algebras.
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Rees algebras with non tame local cohomology
Steven Dale Cutkosky, University of Missouri–Columbia

Suppose that R0 is a local ring, I ⊂ R0 is an ideal, and R = R0[It] is the Rees algebra of I . Let
R+ = ItR be the irrelevant ideal of R.

The local cohomology module Hi
R+

(R) is tame if either Hi
R+

(R)j #= 0 for all j ( 0 or Hi
R+(R)j = 0

for all j ( 0.
Brodmann, Hellus, Lim, Rotthaus and Sega have shown that if dim(R0) ≤ 2, then the local cohomology

modules of R are tame.
It has recently been shown by Cutkosky and Herzog that tameness can fail for local cohomology of finitely

generated modules over standard graded algebras R with dim(R0) = 3.
Chardin, Cutkosky, Herzog and Srinivasan have found examples showing that tameness of local coho-

mology fails for Rees algebras. We describe some of their examples below. In all of the examples, R0 is
normal, generalized Cohen Macaulay, and is essentially of finite type over a field k.

The first example has dim(R0) = 3, and shows periodic failure of tameness. For j > 0, dimk(H2
R+

(R)−j)
is 2 if j is even, and is 0 if j is odd.

The second example shows failure of tameness of local cohomology which is not periodic, and is not even
a quasi polynomial (in −j) for large j. Specifically, we have for j > 0,

dimk(H2
R+

(R)−j) =






1 if j ≡ 0 (mod)(p + 1),
1 if j = pt for some odd t ≥ 0,
0 otherwise,

where the characteristic of k is p. We have pt ≡ −1 (mod) (p+1) for all odd t ≥ 0. A third example is tame,
but

lim
j→∞

dimk(H2
R+

(R)−j)
j3

= 54
√

2,

so dimk(H2
R+

(R)−j) is far from being a quasi polynomial in −j for large j. !

Lawrence Ein gave a talk about current problems in Algebraic Geometry that are related to multiplier
ideals.

Inversion of Adjunction
Lawrence Ein, University of Illinois at Chicago

We discuss the numerical invariant minimal log-discrepancy as a measurement of complexity for sin-
gularities occuring in higher dimensional birational geometry. The conjecture of Kollár and Shokurov on
inversion of adjunction gives a precise comparison between the minimal log-discrepancies of the variety and
its hyperplane sections. We discuss how the recent important work of Birkar, Cascini, Hacon and McKernan
on the existence of log-minimal models can be applied to the conjecture. We also discuss the approach using
the space of arcs introduced by Ein, Mustata and Yasuda. We state a recent theorem of Ein and Mustata on
a precise version of the inversion of adjunction for non-local complete intersection Q-Gorenstein varieties.
The theorem is also independently proved by Kawakita. Finally, we discussed an application of these re-
sults to bounding regularities of Q-Gorenstein varieties in the projective space defined by degree d equations.
!

4 Intersection Theory and Homology
One of the areas of Algebraic Geometry that has had a strong impact on Commutative Algebra is Intersection
Theory, in particular the homological definition of intersection multiplicities given by Serre in the 1950’s. On
the one hand, this led to a set of conjectures that have been a central part of the subject for many years. In
addition, they started an interest in homological methods that is very active today.
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The first two abstracts in this section deal with Intersection Theory. This subject has connections to K-
theory as well as Algebraic Geometry. The talk by Srinivas had its origin in attempts to study projective
modules using invariants from these fields.

Oriented Intersection Multiplicities
V. Srinivas, Tata Institute

Barge and Morel defined a graded “oriented Chow group” of a smooth variety X over a field, which may
be viewed as a quotient of a group of “oriented algebraic cycles” modulo a suitable equivalence relation.
More formally, they considered certain complexes of abelian groups GMW p

• (X), the Gersten-Milnor-Witt
complexes, and defined the p-th oriented Chow group to be Hp(GMW p

• (X)). The terms in the complexes
are obtained by putting together Milnor K-groups, and powers of the fundamental ideal in the Witt rings, of
function fields of subvarieties of X . The complexes are modelled after the Gersten complexes in K-theory.

A precursor was the idea of an oriented 0-cycle, suggested by M. Nori, which led to the Euler class group,
considered in works of several mathematicians.

J. Fasel constructed an intersection product on the oriented Chow groups of Barge and Morel, leading to an
“oriented Chow ring”, which admits a graded ring homomorphism to the “usual” Chow ring of (unoriented)
cycles.

In this lecture, I’ll give an introduction to this emerging area, and discuss joint work with Fasel, about
the idea of intersection multiplicities in this context. This leads to the formulation of an oriented analogue of
Serre’s vanishing conjecture for intersection multiplicities. I’ll also discuss results of Morel, and further joint
work with Fasel, on bundles with vanishing Euler class (taking values in the oriented Chow group of points).
!

The next results were on the map to the completion of a rings. There had been several questions of
whether this was injective on the functors described. The following example of Kurano was also inspired by
intersection properties of rings and their behavior under completion.

An example of a local ring R such that G0(R)Q → G0(R̂)Q is not injective
Kazuhiko Kurano, Meiji University

This is a joint work with V. Srinivas from Tata Institute, India.
For a Noetherian local ring R, let G0(R) be the Grothendieck group of finitely generated R-modules.

Since the completion R → R̂ is injective, it induces the map G0(R) → G0(R̂).
In 2001, Kamoi and Kurano proved that the map G0(R) → G0(R̂) is injective if R is an excellent local

ring that satisfies one of the following 3 conditions, (1) R is henselian, (2) R = SS+ , where S is a standard
graded ring over a field S0, (3) R has only an isolated singularity.

However, Hochster gave an example that the map is not injective. In Hochster’s example, the ring is non-
normal and the kernel is torsion. Recently, Dao gave a new example. In Dao’s example, the ring is normal,
but the kernel is still torsion.

We constructed an example of a two dimensional (non-normal) ring, that is essentially of finite type over
the complex number field such that the map G0(R)Q → G0(R̂)Q is not injective.

Using the example, we can construct a Noetherian local ring R′ such that R′ is a Roberts ring, but R̂′ is
not. !

The talk by Sean Sather-Wagstaff relates the completeness of a ring to vanishing of Ext modules.

Ext-vanishing and ascent of module structures
Sean Sather-Wagstaff, Kent State University

Let (R,m, k) be a noetherian local commutative ring. Jensen, Buchweitz and Flenner, and Frankild and
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Sather-Wagstaff have shown that the m-adic completeness property for an R-module M is related to the
vanishing of the modules Extn

R(R̂,M). Here R̂ is the m-adic completion of R, viewed as and R-module
via the natural local ring homomorphism R → R̂. The results presented in this talk extend these ideas to
include other flat local ring homomorphisms, e.g., the map from R to its henselization Rh or any pointed
étale neighborhood R → S.
Theorem. (AJF-SSW-RAW, ’07) Let ϕ : (R,m, k) → (S, mS, k) be a flat local homomorphism and M a
finitely generated R-module. The following conditions are equivalent:

(i) The R-module structure on M ascends along ϕ.

(ii) The evaluation map HomR(S, M) → M is bijective.

(iii) Exti
R(S, M) is finitely generated over R for each i ≥ 1.

(iv) Ext!1
R (S, M) = 0.

The speaker presented several consequences of this result and discussed examples showing the necessity
of the hypotheses on the homomorphism ϕ.

This is joint work with Anders J. Frankild (University of Copenhagen) and Roger A. Wiegand (University
of Nebraska-Lincoln). !

One topic that has become classical by now is the notion of finite Cohen-Macaulay type. The talk by Lars
Christensen and Janet Striuli investigates a related concept and its relation to properties of singularities.

Finite Gorenstein representation type implies simple singularity
Lars Winther Christensen and Janet Striuli, University of Nebraska-Lincoln

Let R be a commutative noetherian local ring with maximal ideal m and residue field k. Remarkable
connections between the module theory of R and the character of its singularity emerged in the 1980s. They
show how finiteness conditions on the category of maximal Cohen–Macaulay R-modules (the finitely gener-
ated modules whose depth equals the Krull dimension of R) characterize particular isolated singularities. We
report on developments of these connections in several directions.

A local ring with only finitely many isomorphism classes of indecomposable maximal Cohen–Macaulay
modules is said to be of finite Cohen–Macaulay (CM) representation type. By work of Auslander, every
complete Cohen–Macaulay local ring of finite CM representation type is an isolated singularity.

Specialization to Gorenstein rings opens to a finer description of the singularities; it centers on the simple
hypersurface singularities identified in Arnol′d’s work on germs of holomorphic functions. By work of Buch-
weitz, Greuel, and Schreyer, Herzog, and Yoshino, a complete Gorenstein ring of finite CM representation
type is a simple singularity.

In the talk we show how to avoid the a priori condition that R is Gorenstein by replacing finite CM
representation type with a finiteness condition on the category G of modules of Gorenstein dimension 0.
Over a Gorenstein ring, these modules are precisely the maximal Cohen–Macaulay modules, but they are
known to exist over any ring, unlike maximal Cohen–Macaulay modules.

Our proof of this result employs a new notion of G-approximations, which is close kin to the CM-
approximations of Auslander and Buchweitz. Every module over a Gorenstein ring has a G-approximation,
and our proof goes via a strong converse: Assume there is a non-free module in G; if the residue field k has a
G-approximation, then R is Gorenstein. !

Another talk on homological properties of rings was given by Hailong Dao, who presented new results
on some classical homological questions.

On some homological questions over local rings
Hailong Dao, University of Utah
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Consider the following classical results:
Theorem. Let (R,m, k) be a regular local ring and M,N be finite R-modules.

1. (Serre 1965) If l(M ⊗R N) < ∞, then dimM + dimN ≤ dimR.

2. (Auslander 1961, Lichtenbaum 1966) For any integer i ≥ 0, TorRi (M,N) = 0 implies TorRj (M,N) =
0 for all j ≥ i.

3. (Auslander-Goldman 1960) Assume that M is a reflexive R-module. If HomR(M, M) is free then M
is free.

4. (Auslander 1962) Assume that M is a reflexive R-module. If HomR(M,M) ∼= M⊕t then M is free.

5. (Huneke-Wiegand 1997) Assume that M is a reflexive R-module. If HomR(M, M) satisfies (S3) then
M is free.

In this talk we will discuss some recent attempts to generalize these results to non-regular local rings.
We will focus our attention on hypersurfaces and complete intersections, where the questions reveal some
surprising connections. One particular result will be discussed:

Theorem. Let R be an admissible hypersurface (meaning R̂ is a quotient of an unramified or equichar-
acteristic regular local ring by a nonzero element) with an isolated singularity. Assume that dimR > 2 and
is even. If M is a reflexive R-module such that HomR(M,M) satisfies (S3), then M is free. !

One of the places where Algebraic Geometry and Commutative Algebra are most closely related is in the
study of Castelnuovo-Mumford regularity for resolutions of graded modules. Marc Chardin discussed this
topic for Tor modules.

The regularity of Tor over non-regular rings
Marc Chardin, Institut Mathematiques de Jussieu

In this lecture M. Chardin presented results about the behavior of Castelnuovo-Mumford regularity with
respect to the functor Tor. One of the first motivations was to provide estimates on the regularity in a geometric
context. This is for instance the content of the following result :
Theorem. Let k be a field, Z1, . . . ,Zs be closed subschemes of a closed subscheme S ⊂ Pn

k . Assume that S
is irreducible with a singular locus of dimension at most 1. If Z := Z1∩ · · ·∩Zs ⊂ S is a proper intersection
of subschemes of S that are Cohen-Macaulay locally at points of Z , then setting r′S := max{reg(S)− 1, 0},
one has

reg(Z) ≤
s∑

i=1

max{reg(Zi), r′S} + .(dimS − 1)/2/r′S .

In particular, if reg(S) ≤ 1, then reg(Z) ≤
∑s

i=1 reg(Zi).
Another motivation is the estimates obtained by Eisenbud, Huneke and Ulrich on the regularity of Tor

modules over a polynomial ring, and their application to estimate the regularity of powers of an ideal. Their
work was inspired by previous results on the regularity of products of ideals and of tensor products of mod-
ules by Conca and Herzog, Sidman and Caviglia. They have proved an upper bound for the regularity of
TorR

i (M,N) in terms of reg(M) and reg(N), when R is a polynomial ring and TorR
1 (M,N) is supported

in dimension at most 1. M. Chardin presented the following extension :
Theorem. Let S be a standard graded ring over a Noetherian local ring (S0, m0) and M, N be finitely

generated graded S-modules. If M or N has finite projective dimension and TorS
i (M,N) ⊗S0 S0/m0 is

supported in dimension at most one for i ≥ 1, then

max
i
{reg(TorS

i (M, N))− i} = reg(M) + reg(N)− reg(S).

An independent proof of this result in the case where N = S0 is a field was given by Römer in the more
general setting of positively graded algebras over a field. The hypothesis on the dimension of the support of
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all positive Tor modules (in place of only the first, in the polynomial case) is needed since Tor is not rigid
when S is singular.

Some properties of multiple Tor modules are presented, in particular the rigidity of multiple Tor modules
over a regular ring containing a field and a geometric condition for the vanishing of TorR

1 (M1, . . . ,Ms).
When I is a homogeneous ideal in a polynomial ring R over a field such that dimR/I is of dimension

at most 1, it has been proved by Chandler and Geramita, Gimigliano and Pitteloud that reg(Ij) ≤ jreg(I)
for any j. This has been refined by Eisenbud, Huneke and Ulrich who proved that in this situation reg(Ij) ≤
reg(I) + (j − 1)(e− 1) if I is generated in degrees at most e− 1 and related in degrees at most e. A second
refinement of the initial estimate, which holds for a homogeneous ideal I of a Noetherian standard graded
ring S is presented :

Theorem. Let I be an homogeneous S-ideal such that dim(S/I)⊗S0 S0/m0 ≤ 1 for any maximal ideal
m0 ∈ Spec(S0). Set ai(M) := max{j | Hi

S+
(M)j #= 0}. Then, for any m ≥ 0,

reg(S/Im+1) ≤ max{a0(S/I) + bS
0 (I), (a1(S/I) + 1) + regS

1 (I)} + (m− 1)bS
0 (I).

Notice that a1(S/I) + 1 is the regularity of S/Isat, where Isat is the saturation of I with respect to the
positive part of S. !

We include in this section two talks that were on the connections of Algebraic properties with continuous
and analytic properties. The talk by Hal Schenk discusses algebraic properties of polyhedral complexes.

Splines on polyhedral complexes
Hal Schenck, Texas A&M University

In mathematics it is often useful to approximate a function f on a region by a “simpler” function. A
natural way to do this is to divide the region into simplices, and then approximate f on each simplex by
a polynomial function. A Cr-differentiable piecewise polynomial function on a d-dimensional simplicial
complex ∆ ⊆ Rd is called a spline. Splines play a key role in geometric modeling, the finite element method
for solving PDE’s, and in approximation theory.

It is possible to use polyhedra, rather than simplices, to subdivide a region. Splines on a polyhedral
complex P have received relatively little attention (compared to the simplicial case), partly because the
simplicial case fits very naturally into a homological framework. Billera and Rose observed that for any
polyhedral complex, the splines occur as the kernel of a map between free modules; from this they obtain a
bound on the Hilbert polynomial; other work on the polyhedral case has been done by Rose, Schumaker, and
Yuzvinsky.

This talk describes an approach to the study of splines on a polyhedral complex which uses a certain
specialized version of the dual graph of P ; in particular, we show that the study of the first three coefficients
of the spline module can be reduced to the study of certain subgraphs of the dual graph of P ; these subgraphs
arise from codimension two linear spaces which arise as intersections of the (linear hull) of the facets of P .
This is joint work with Terry McDonald. !

Holger Brenner discussed finding continuous solutions to problems where classically one had looked for
algebraic ones. An interesting point is that the solution can be given in terms of algebraic conditions.

Continuous solutions to algebraic forcing equations
Holger Brenner, University of Sheffield

We ask for a given system of polynomials f1, ..., fn and f over the complex numbers C when there exist
continuous functions g1, ..., gn : Cn → C such that g1f1 + ... + gnfn = f . This condition defines the
continuous closure of an ideal in a polynomial ring and more generally in any ring of finite type over C. This
closure sits inside the (weak sub) integral closure. We give inclusion criteria and exclusion results for this
closure in terms of the algebraically defined axes closure. Conjecturally, continuous and the algebraically
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defined axes closure are the same, and we prove this in the monomial case by giving a combinatorial criterion
which holds for both. !

5 Secant Varieties, Statistics, and Classical Projective Geometry
One of the most unexpected applications of Algebraic Geometry, in recent years, has been to the field of
Statistics. There are many old and unsolved problems about the secant varieties of Segre varieties, and
recently a new impetus for studying these problems has come from the realization that there would be exciting
applications for solutions. In this conference we brought together mathematicians working on various aspects
of these problems.

We present two talks that deal with the main topics of this section.
The talk by Seth Sullivant gave a striking example of the applications of Classical Geometry, and in

particular of Secant Varieties, to Statistics.

Algebraic Geometry of Gaussian Bayesian Networks
Seth Sullivant, Harvard University

Given a directed acyclic graph G, the Bayesian network associated to G is the family of probability
density functions that have a factorization of the form

f(x1, . . . , xn) =
n∏

i=1

fi(xi|xpa(i))

where pa(i) is the set of parents of the vertex i in the directed acyclic graph G. In the case where we assume
that the random vector X = (X1, X2, . . . , Xn) has a multivariate normal distribution (i. e., is a Gaussian
random vector) the set of covariance matrices that can arise for this Bayesian network is a rational algebraic
variety in the cone of positive definite covariance matrices. We provide an in-depth study of the vanishing
ideal IG ⊂ C[σij : 1 ≤ i ≤ j ≤ n] of this rationally parametrized set of covariance matrices. The
parametrization of the set of covariance matrices turns out to be combinatorial in nature and is known in
statistics as the trek rule.

Contained in the vanishing ideal of the model IG, is the subideal CIG which is generated by polynomial
consequences of the conditional independence statements that any distribution in the Bayesian network as-
sociated to G must satisfy. The conditional independence ideal CIG is generated by subdeterminants of the
symmetric matrix Σ, that are determined by a combinatorial characterization called d-separation. A basic
question is whether or not the conditional independence ideal CIG is always equal to the vanishing ideal IG.
It turns out that there are already small graphs with only five vertices for which the inclusion CIG ⊂ IG is
strict.

Among the results discussed in this presentation is that for any tree T , it is always true that IT = CIT .
The proof exploits the fact that for any tree IT is a toric ideal and uses tools from the general theory of toric
ideals.

The rest of the talk concerns the study of the models and graphs that arise when some of the random
variables are hidden. One basic result shows that IG has a 2-dimensional multigrading induced by a collection
of upstream random variables. This, in turn, implies that generators of the ideal of the hidden variable model
can be easily related to generators of the ideal IG.

Finally, it is shown how classical varieties arise as special cases of hidden variable Gaussian Bayesian
networks. In particular, it is shown how joins and secant varieties arise when the underlying directed acyclic
graph has a partitioned structure in its hidden variables. Among the secant varieties that arise are secant
varieties of toric degenerations of the Grassmannian of 2 planes G2,n, and secant varieties of the squarefree
Veronese variety. !

The topic of Secant Varieties was further discussed later that afternoon by Jessica Sidman, who dealt with
them from a computational point of view.



11

Prolongations and computational algebra
Jessica Sidman, Mt. Holyoke University

In the late ’90’s Landsberg and Manivel drew intriguing connections between prolongation, a notion
which first arose in the context of differential geometry, and the equations vanishing on secant varieties.
Work of Sturmfels, Sullivant, et al in algebraic statistics, where secant varieties can be interpreted as statistical
models, has renewed interest in secant varieties and their defining equations. Questions of Sturmfels provided
the impetus for the work discussed in the talk.

The simplest form of the definition of prolongation follows: Let A be a vector space of homogeneous
forms. The r-th prolongation of A, denoted A(r), is the space of all homogeneous forms of degree d + r
whose partial derivatives of order r are all contained in A.

The focus of the talk is to explain the connection between secant varieties and prolongation. In particular,
we will see how the definition of prolongation can be reformulated algebraically in terms of polarization and
how this version of the definition is related to forms vanishing on a secant variety.

This is joint work with Seth Sullivant.
A preprint can be found online: arXiv:math/0611696v2. !

In addition to the statistical applications, there has been a lot of work on the classical problems themselves.
The group headed by Chiantini and Ciliberto (and mostly centered in Italy) has reexamined the work of the
Italian ‘masters’ of the late 19th and early 20th century. They have recast the main classical results in modern
terms and pushed them to unforseen levels. This Workshop was a perfect opportunity to have these ideas
explained and discussed by experts.

The talk by Luca Chiantini considered the question of finding certain types of subvarieties in a general
hypersurface and had, as its main ingredient, the study of secant and join varieties to the varieties of reducible
forms.

Complete intersection subvarieties in hypersurfaces
Luca Chiantini, University of Siena

Which subvarieties Y does one find in a general hypersurface X of the complex projective space? The
Noether-Lefschetz theorem describes the situation when codim(Y,X) = 1 < dim(X). For higher codimen-
sion, the problem is wide open.

In a joint research with E. Carlini and A. Geramita, we consider the problem of finding, in a general
hypersurface X of degree d, a subscheme which is complete intersection of type a1, . . . , as (the only rele-
vant case being clearly ai < d for all i). Since complete intersections are arithmetically Gorenstein, when
codim(Y, X) = 2 the problem is related with the theory of rank 2 vector bundles without intermediate coho-
mology on X , as well as to the pfaffian representation of general forms.

The problem has a nice interpretation in terms of secants and joins of some subvarieties of the variety of
forms, namely the varieties of reducible forms. Using Terracini’s lemma, the problem is then translated in a
problem on the structure of certain Artinian algebras.

With this reduction, we are able to prove results on the subject. For example, we prove that for any choice
of positive integers a, b < d, a general plane curve of degree d contains a complete intersection set of points
of type a, b. The case of surfaces in the projective space turns out to be completely different. In general,
one has no complete intersection of type a, b, c in a general surface of high degree. We are able to classify
completely the (few) triples (a, b, c) such that a general surface of any degree d > a, b, c contains a complete
intersection set of points of type a, b, c. !

Another classical topic that has had impact in both Algebra and Geometry is that of varieties defined by
determinantal ideals. Winfried Bruns described the variety defined by exterior powers.
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The variety of exterior powers of linear maps
Winfried Bruns, University of Osnabrück

The lecture is based on joint work with Aldo Conca.

Let V and W be vector spaces of dimension m and n over a field K of characteristic 0. We investigate
the Zariski closure Xt of the image Yt of the map HomK(V,W ) → HomK(

∧t V,
∧t W ), φ 2→

∧t φ. In the
case t = min(m, n), Yt = Xt is the cone over a Grassmannian, but for 1 < t < min(m, n) one has Xt #= Yt.
We analyze the G = GL(V ) × GL(W )-orbits in Xt. It turns out that they are classified by two numerical
invariants, one of which is the rank and the other a related invariant that we call small rank. Surprisingly, the
orbits in Xt \ Yt arise from the images Yu for u < t and simple algebraic operations.

The classification of the orbits is based on explicit normal forms on the one hand, and a determination of
the G-stable prime ideals in the coordinate ring At of Xt, the algebra generated by the t-minors of a generic
m×n-matrix in the polynomial ring K[X] generated by the entries of the matrix. We investigate this algebra
by means of its standard monomial basis.

In previous work with Conca we have shown that At is always normal and Cohen-Macaulay. For t = 1,
one has the trivial case At = K[X]. The algebra At is also well-understood in the Grassmannian case
t = min(m, n). If t = m− 1 = n− 1, then At is again isomorphic to a polynomial ring over K. Apart from
these exceptional cases, in which At is a factorial domain, it has class group Z and is Gorenstein if and only
if 1/t = 1/m + 1/n. The singular locus of Xt is then formed by all elements of rank ≤ 1. !

The talk by Kuroda was on another very classical problem: the finite generation of algebras defined in
certain ways. The original problem due to Hilbert asked whether certain subrings of polynomial rings, which
included rings of invariants of algebraic groups, were finitely generated. The first counterexample was due
to Nagata and was an application of Algebraic Geometry to this problem in Algebra. Since then there have
been attempts to get simpler examples, of which the following talk is a culmination.

How to construct counterexamples to Hilbert’s 14th problem easily
Shigeru Kuroda, Tokyo Metropolitan University

Let R be the polynomial ring in n variables over a field k for n ∈ N, and K the field of fractions
of R. Then, Hilbert’s 14th problem asks whether the k-algebra L ∩ R is finitely generated whenever L is
a subfield of K containing k. In 1950’s, Zariski showed that the answer to this problem is affirmative if
trans.degk(L) ≤ 2, while Nagata gave the first counterexample in case of trans.degk(L) = 4 and n = 32.
Here, trans.degk(L) denotes the transcendence degree of L over k. In 1990, Roberts found a different kind
of counterexample. Following Roberts, we have made various kinds of new counterexamples. For example,
we gave one having trans.degk(L) = 3, one for which K/L is an algebraic extension, and a variety of
derivations whose kernels are counterexamples to Hilbert’s 14th problem.

In the talk, we give a simple method of converting a graded k-subalgebra of R with some conditions
into a counterexample to Hilbert’s 14th problem. As an application, we demonstrate how to construct (i) a
counterexample with [K : L] = d for each d ≥ 3 when n = 3; (ii) a counterexample which is realized as the
invariant field for an action of Z/2Z on K for n = 4; (iii) a counterexample which is realized as the kernel
of a derivation of K for n = 4. There commonly exist graded k-subalgebras which satisfy our conditions, so
that we can get a large number of counterexamples by this method. !

Another active topic in this area is the existence of curves with given multiplicities through given points.
Rick Miranda talked about his recent advance in that field. This study is strongly related to open problems
involving secant varieties of the classically studied Segre and Segre-Veronese varieties.

Curves of degree 174 with ten points of multiplicity 55

Rick Miranda, Department of Mathematics, Colorado State University
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Fix general points p1, . . . , pn in the plane, and multiplicities m1, . . . ,mn. Let

L = Ld(m1, . . . ,mn)

be the linear system of plane curves of degree d having multiplicity at least mi at pi for each i. The virtual
dimension of L is v(L) = d(d+3)/2−

∑
i mi(mi+1)/2 and the expected dimension is e(L) = max{−1, v}.

It is easy to see that if there exists a (−1)-curve C (on the blowup of the plane) such that L ·C ≤ −2 and
dim(L) ≥ 0, then L does not have the expected dimension.

Gimigliano-Harbourne-Hirschowitz Conjecture: This is if and only if: If no such (−1)-curve exists,
then L has the expected dimension.

Gimigliano-Harbourne-Hirschowitz is true for n ≤ 9. (Castelnuovo, 1891; Nagata, 1960; Gimigliano,
Harbourne, 1986)

The virtual dimension of Ld(m10) is equal to −1 (the most delicate case) for (d, m) in the following
table:

d m empty
3 1 easy: cubic through ten general points
19 6 posed by Dixmier, solved by Hirschowitz early 80s
38 12 Gimigliano’s thesis
174 55 ?
778 246 ?
1499 474 ?
6663 2107 ?

...
... ?

For these linear systems, one expects there to be no such curves (H0 = 0) and because v = −1, this is
equivalent to having H1 = 0 (for the line bundle on the ten-fold blowup of P2).

In this talk, the author explained the proof of the following:

Theorem: L174(5510) is empty.

Theorem: Ld(m10) has the expected dimension if d ≥ (174/55)m.

The proof is by an explicit degeneration of the plane to a configuration of nine surfaces. The degeneration
is constructed by a sequence of blowups and blowdowns related to (−1)-curves on the components in the
central fiber. !

Finally, we present two talks on Hilbert schemes. First, Greg Smith described some geometric properties
of multi-graded Hilbert schemes, a generalization of the classical singly graded Hilbert schemes.

Multigraded Hilbert schemes
Greg Smith, Queens University

There is a parameter space for all ideals in the polynomial ring S := C[x1, . . . , xn] with a fixed Hilbert
function. What are the geometric properties of these spaces?

To be more precise, fix an abelian group A. An A-grading of S is induced by a group homomorphism
deg : Zn → A. This map provides a decomposition S =

⊕
a∈A Sa where Sa is the span of all the monomials

of degree a in S. A homogeneous S-ideal I is admissible if dimC(S/I)a < ∞ for all a ∈ A; its Hilbert
function hS/I : A → N is hS/I(a) := dimC(S/I)a. M. Haiman and B. Sturmfels construct a quasiprojective
scheme Hilbh parametrizing all admissible S-ideals with Hilbert function h : A → N.

In general, the geometry of a multigraded Hilbert scheme Hilbh is complicated. For example, R. Vakil
shows that every singularity type appears in certain Hilbh and F. Santos shows that there exists disconnected
Hilbh. In contrast, J. Forgarty proves that Hilbh is smooth and irreducible when n = 2 and A = 0. Similarly,
L. Evain proves that Hilbh is smooth and irreducible when n = 2, A = Z, both deg(x1) and deg(x2) are
positive integers and h has finite support. Building on these results, M. Haiman and B. Sturmfels conjecture
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that Hilbh is smooth and irreducible when n = 2. By extending L. Evain’s methods, D. Maclagan and
G. Smith prove this conjecture. !

The talk by Irena Peeva was also on the topic of Hilbert schemes and their relation to homological prop-
erties of rings.

Hilbert schemes and maximal Betti numbers
Irena Peeva, Cornell University

Throughout, S stands for the polynomial ring k[x1, . . . , xn] over a field k of characteristic 0. The ring S is
graded by deg(xi) = 1 for each i. If J is a graded ideal, then the Hilbert function h : N −→ N defined by
i 2→ dimk Ji is an important numerical invariant. Lex ideals are special monomial ideals, defined in a simple
combinatorial way. They play an important role in the study of Hilbert functions and syzygies.

Theorem 1.1. (over the polynomial ring S)

1. (1) (Macaulay) For every graded ideal J in S there exists a lex ideal LJ with the same Hilbert function.

2. (2) (Hartshorne) The Hilbert scheme Hh
S , that parametrizes all graded ideals in S with a fixed Hilbert

function h, is connected. More precisely, every graded ideal in S with Hilbert function h is connected
by a sequence of deformations to the lex ideal with Hilbert function h.

3. (3) (Bigatti, Hulett, and Pardue) Every lex ideal in S attains maximal Betti numbers among all graded
ideals with the same Hilbert function.

Analogues of these results are proved over an exterior algebra by Kruscal-Katona, Peeva-Stilman, Aramova-
Herzog-Hibi, and Mermin-Peeva-Stilman. Gasharov and Peeva prove the following analogues over a class of
projective toric rings, which has received a lot of interest in Commutative Algebra and Algebraic Geometry:
Veronese rings.

Theorem 1.2. Let R = S/I be a Veronese toric ring.

1. (1) For every graded ideal J in R there exists a lex ideal LJ with the same Hilbert function.

2. (2) The Hilbert scheme Hh
R, that parametrizes all graded ideals in R with a fixed Hilbert function h, is

connected. More precisely, every graded ideal in R with Hilbert function h is connected by a sequence
of deformations to the lex ideal with Hilbert function h.

3. (3) Every lex ideal in R attains maximal Betti numbers among all graded ideals with the same Hilbert
function.

4. (4) Every lex-plus-I ideal in S attains maximal Betti numbers among all graded ideals containing I
with the same Hilbert function. !

The abstract by Adam Van Tuyl is in the area of classical geometry but discusses a purely algebraic idea,
the property of being Arithmetically Cohen-Macaulay.

ACM sets of points in multiprojective space
Adam Van Tuyl,Lakehead University

Let R = k[x1,0, . . . , x1,n1 , . . . , xr,0, . . . , xr,nr ] with deg xi,j = ei denote the Nr-graded coordinate ring
associated to Pn1 × · · ·×Pnr . If X is a finite set of reduced points in Pn1 × · · ·×Pnr , and if IX is the multi-
homogeneous ideal of forms vanishing at X, then it can be shown that the coordinate ring of X, that is R/IX,
has the property that dimR/IX = r, but 1 ≤ depthR/IX ≤ r. A set of points X is called arithmetically
Cohen-Macaulay (ACM) when R/IX is Cohen-Macaulay, or in other words, when depthR/IX = r. When
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r = 1, then a set of points X in Pn is always ACM. However, when r ≥ 2, it is possible that a set of points
may fail to be ACM, so one is naturally lead to ask whether ACM sets of points can be classified.

For sets of points in P1 × P1, three such classifications exist. The first classification, due to S. Giuffrida,
R. Maggioni, and A. Ragusa (1992), classified ACM sets of points in P1 × P1 via their Hilbert functions. A
second classification, based upon the geometry of the points, was later developed independently by the author
(2003) and E. Guardo (2001). More recently, L. Marino (in progress) has shown how to use the notion of
a multihomogeneous separator of a point (a multihomogeneous form F that pass through all but one of the
points of X) to classify ACM points in P1 × P1.

In this talk, I will begin by recalling each classification. I will then show that the natural extension of each
classification in P1 × P1 to a general multiprojective space no longer holds. However, some new necessary
and sufficient conditions for a set of points to be ACM will be presented. This talk is based upon joint work
with Elena Guardo (University of Catania). !

6 Outcome of the Meeting
As we had intended, the meeting brought together researchers in many areas that connected Commutative
Algebra with Algebraic Geometry, with the hope of promoting interaction between researchers in various
different but related fields. The results were even better than we had hoped. There is a tremendous amount
of research being carried out in these areas, and the participants profited greatly from hearing about and
discussing the interactions between them. We expect this to lead to new developments and further expansion
of the field.


