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The focused research group on Stochastic Differential Equations driven by Fractional Brownian Motion
as Random Dynamical Systems met from around 9:30am to around 5pm from Monday September 29 to
Saturday October 4, 2008. It included 8 participants and one observer.
The goal of the group was to exchange ideas between two largely distinct aspects of differential systems

driven by self-similar stochastic processes: the stochastic analysis angle and the theory of random dynamical
systems. Each of the 9 people gave talks on various topics in each of these aspects. These talks were not
aimed at presenting individual research results, rather they were meant to introduce the audience to the general
theory, and to present the most current tools being used. Thereafter, the 9 met in smaller groups to discuss
ways of exploiting synergies within the collective expertise, de�ning strategies for solving major problems in
stochastic differential equations with fractional Brownian motion.
The expository talks covered the following topics on fractional Brownian motion (fBm) and random

dynamical systems:

� Ciprian A. Tudor (U. Paris 1 Pantheon-Sorbonne, France): fBm as a Gaussian process, Malliavin
calculus for fBm, including the divergence (Skorohod) integral.

� Fabrice Baudoin (Purdue University, USA): Rough path theory for integration with respect to fBm,
limits of the integration theory for small Hurst parameter.

� David Nualart (University of Kansas, USA): Fractional calculus and fBm, Stochastic differential equa-
tions driven by fBm, solutions in the rough path sense, estimates of the solutions using a fractional
calculus reinterpretation of the rough path theory.

� Ivan Nourdin (U. Paris 6 Jussieu, France): Gubinelli's version of rough path theory; integration against
fBm via regularization and via Riemann-sum approximations, limits of this integration theory.

� Maria-Jose Garrido-Atienza (U. Sevilla, Spain): random dynamical system property for stochastic
differential equations driven by fBm, �nite-dimensional cases.

� Björn Schmalfuß (U. Paderborn, Germany): random dynamical system property for stochastic differ-
ential equations driven by fBm, in�nite-dimensional cases: results and questions.

� Jinqiao Duan (Illinois Institute of Technology, USA): application of fBm-driven stochastic partial
differential systems to climate modeling and other physical systems with colored noise, long memory,
or self-similarity.
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� Frederi Viens (Purdue University): Wiener chaos calculus, characterization of normal convergence
via Malliavin derivatives, and application to Hurst (self-similarity) parameter estimation.

� Kening Lu (Brigham Young University): Formulation of linearized or linear-multiplicative random
dynamical systems as products of random matrices, and in�nite-dimensional version of the Oseledets
theorem for Lyapunov exponents.

All participants used the expository talks to ask many questions of the expositors, in order to enhance
their understanding of areas with which they were less familiar. One main topic of investigation that came
out of these discussions early on was to seek to prove that the solution of a nonlinear stochastic differential
equation driven by fBm in the rough-path sense, with Hurst parameter between 1/4 and 1/2, is in fact a random
dynamical system in the sense that the solution satis�es a cocycle property that holds for all starting points
simultanously, almost surely (and not merely almost surely for a �xed starting point). This can be done
for �nite-dimensional systems with Hurst parameter larger than 1/2, working �omega-wise� via standard
estimates from the pathwise (Young-type) integration theory; a similar effect should exist when using rough
paths. At the moment, the consensus appears to be that the new explicit estimates for rough-path integrals
discovered and used by David Nualart and Yaozhong Hu, may provide the best hope for completing this
initial problem. Using rough path estimates from Gubinell's theory may also be useful, although this was
less clear in our minds. There was a general agreement that the divergence-integral interpretation of fBm-
driven stochastic differential equations would not lead to new developments in the study of random dynamical
systems.
Other discussions pertained to more speci�c questions on random dynamical systems for fBm, includ-

ing existence of stable manifolds, and random attractors, for non-trivial systems, such as those in�nite-
dimensional ones driven by fBm. We speculate that many fBm-driven systems in in�nite dimensions should
have �nite-dimensional random attractors, a very desirable property from the standpoint of quantitative analy-
sis. Some of us also discussed extensions of the ergodic property to non-Gaussian self-similar and long-
memory processes, as well as the question of how to determine statistically the long-memory parameter for
such processes, in the non-Gaussian contexts of Wiener chaos or of non-linear time series.
FBm, long-memory processes, self-similar processes, and other colored noises are becoming very popular

in the applied sciences. We have had several discussions along these lines on several models. In climate
modeling, the atmospheric advection-diffusion-condensation equation is shown empirically to contain long
memory; we have discussed estimating the humidity parameter or function via variations methods similar to
those that can yield the long-memory parameter itself. Joint estimation of these two parameters should also
be possible. Other real-world problems we discussed addressed long memory and self-similarity in �nancial
econometrics, internet traf�c, DNA sequencing, and polymers.
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