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The notion of integrability is one of the central notions in mathematics. Starting from Euler and
Jacobi, the theory of integrable systems is among the most remarkable applications of geometric
ideas to mathematics and physics in general.

Discrete integrable systems is a new and actively developing subject, hundreds of new articles
in this field are written every year by mathematicians and physicists. However, geometric inter-
pretation of most of the discrete integrable systems considered in the mathematical and physical
literature is unclear.

The main purpose of this Workshop was to study one particular dynamical system called the
pentagram map. The interest in this map is motivated by its natural geometric meaning and aestet-
ical attractiveness. The pentagram map was introduced in [2], and further studied in [3] and [4].
Originally, the map was defined for convex closed n-gons. Given such an n-gon P , the correspond-
ing n-gon T (P ) is the convex hull of the intersection points of consequtive shortest diagonals of P .
Figure 1 shows the situation for a convex pentagon and a convex hexagon.
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Figure 1: The pentagram map defined on a pentagon and a hexagon

Computer experiments suggested that the pentagram map is a completely integrable systems.
Indeed, this was conjectured in [4].
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The goal of this Workshop was to prove the integrability conjecture, but first one had to develop
an adequate framework. Rather than work with closed n-gons, we worked with what we call twisted
n-gons. A twisted n-gon is a map φ : Z → RP 2 such that that

φ(k + n) = M ◦ φ(k); ∀k.

Here M is some projective automorphism of RP 2 called the monodromy.
It is a powerful general idea of projective differential geometry to represent geometrical objects

in an algebraic way. It turns out that the space of twisted n-gons is naturally isomorphic to a space
of difference equations. Given two arbitrary n-periodic sequences (ai), (bi) with ai, bi ∈ R and
i ∈ Z, such that ai+n = ai, bi+n = bi, one associates to these sequences a difference equation of
the form

Vi+3 = ai Vi+2 + bi Vi+1 + Vi,

A solution V = (Vi) is a sequence of numbers Vi ∈ R satisfying this equation. Such an interpreta-
tion provides a global coordinate system (ai, bi) on the space of twisted n-gons.

The main result obtained during and in the summer after the Workshop is as follows. It is proved
that there exists a Poisson structure on the space of twisted n-gons, invariant under the pentagram
map. The monodromy invariants Poisson-commute. This provides the classical Arnold-Liouville
complete integrability of the pentagram map.

The pentagram map is expressed in the coordinates (ai, bi) by a beautiful combinatorial for-
mula:

T : ai 7→ ai+2

m∏
k=1

1 + ai+3k+2 bi+3k+1

1 + ai−3k+2 bi−3k+1
, T : bi 7→ bi−1

m∏
k=1

1 + ai−3k−2 bi−3k−1

1 + ai+3k−2 bi+3k−1
.

The T -invariant Poisson bracket is defined on the coordinate functions as follows.

{ai, aj} =
m∑

k=1

(δi,j+3k − δi,j−3k) ai aj ,

{ai, bj} = 0,

{bi, bj} =
m∑

k=1

(δi,j−3k − δi,j+3k) bi bj .

It is also proved that the continuous limit of the pentagram map is precisely the classical Boussi-
nesq equation which is one of the most studied infinite-dimensional integrable systems. Moreover,
the above Poisson bracket is a discrete analog of the well known first Poisson structure of the
Boussinesq equation.

The results obtained during the Workshop and developed after led to a preprint [1].
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