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1 Overview of the Field

Dating back to Felix Klein’s Ernlangen’s program, mathematicians (and more recently physicists)
have used the interplay between a geometric structure and its group of automorphisms.

Some of the most interesting objects in group theory are Lie groups/ algebraic groups and the
related finite groups of Lie type. A unifying geometric approach for these groups was proposed by
J. Tits (see [25]) in the 60’s using combinatorial geometric objects called spherical buildings. The
approach was extremely successful and gave unifying results for all such groups.

Later Ronan and Tits generalized the notion of a spherical building and introduced the idea
of a twin building. These objects are more general than spherical buildings but not as general as
buildings. Moreover many of the abstract results about spherical buildings could be generalized to
twin buildings.

In an apparently unrelated development, Victor Kac [19] and Robert Moody[21] independently
considered a class of infinite dimensional Lie algebras that closely resemble the finite dimensional
semi-simple ones. These came to be known as Kac-Moody Lie algebras. The usual Chevalley game
of exponentiation gave rise to a new series of groups that were called Kac-Moody groups. These
objects found applications in various areas of theoretical physics.

In [26], Tits proved that the automorphisms groups of twin buildings are the Kac-Moody groups.
This provided a combinatorial framework to the newly discovered class of groups.

The last piece of the puzzle came from the classification of finite simple groups. An important
step of the classification of finite simple groups, announced in 1981, and of the ongoing Gorenstein-
Lyons-Solomon revision of the classification is the identification of the “minimal counterexample”
with one of the known simple groups. This step follows the local analysis step, when inside the min-
imal counterexample G one reconstructs one or more of the proper subgroups using the inductive
assumptions and available techniques. Thus the input of the identification step is a set of subgroups
of G that resemble certain subgroups of some known simple group Ĝ referred to as the target group.
The output of the identification step is the statement that G is isomorphic to Ĝ. Two of the most
widely used identification tools are the Curtis-Tits theorem (see [13]) and Phan’s theorem (see [23]).
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The Curtis-Tits theorem allows the identification of G with a simple Chevalley group Ĝ provided
that G contains a system of subgroups identical to the system of appropriately chosen rank-two Levi
factors from Ĝ. Phan’s theorem is very similar and allows one to identify the group G with a unitary
group provided that G contains a set of appropriately chosen rank 2 unitary subgroups. The relation
between the two theorems was explained in [1].

2 Recent Developments and Open Problems

One important result obtained using this point of view is Abramenko and Mühlherr’s generalization
of the Curtis-Tits theorem which assesses that both the twin building and the associated groups
can be recognized by local data. In the same manner the Phan theorem was generalized using
results of Devillers and Mühlherr [10]. Another series of important results is the large number of
generalizations of Phan’s result to many other groups of Lie type [1, 2, 4, 5, 14, 15, 16]

Several important classification results on Kac-Moody groups and twin-buildings have been
obtained recently. The classification of twin buildings as proposed by Mühlherr is under way but
not published. Criteria for a building to be twin-able have recently appeared in work by Devillers,
Mühlherr and Van Maldeghem [11], and Ronan [24]. Mühlherr and Caprace have described auto-
morphisms of twin buildings [7, 8] and Caprace and Remy proved abstract simplicity of non-affine
Kac Moody groups [9].

3 Scientific Progress Made

As put forth in our proposal for this RIT, the main question we have considered is whether the
“Curtis-Tits” amalgams determine the groups in the absence of the actual twin building.

A common and elegant way to describe an amalgam A uses a diagram similar to the Dynkin
diagram of a Lie algebra. Nodes represent the “rank 1” groups inA and edges represent the “rank 2”
groups containing the corresponding rank 1 groups in some prescribed way. In the case of spherical
and tree-shaped diagrams, this diagram uniquely determines the rank-2 Curtis-Tits amalgam and
hence its universal completion. The Curtis-Tits theorem can be interpreted to say that in fact this
diagram is equal to the Dynkin diagram of the group, where nodes now represent Levi components
rather than the full parabolic subgroups. Similar results are obtained for certain Phan-type amalgams
mentioned above. These results motivate the following fundamental question:

To what extent do diagrams for Curtis-Tits amalgams determine the amalgam?

We study diagrams for which non-isomorphic amalgams exist. This phenomenon can already be
studied in the following setting. As a diagram we consider an arbitrary simple graph without trian-
gles. The “rank 1” groups, corresponding to the vertices, are all isomorphic to SL2(k), where k is a
field. The “rank 2” groups are given by the graph as follows: two SL2(k)’s will generate an SL3(k)
(in the “standard” way) if the corresponding vertices are on an edge and an SL2(k)◦SL2(k) if they
are not. The first question is to classify such amalgams. That is, for any amalgam with a given
diagram, one needs to describe the universal completion. We do this by describing this completion
algebraically and, wherever possible, by describing a geometric object on which this completion
acts flag-transitively.

The RIT at BIRS was extremely successful. We managed to classify all amalgams in the case
of a loop graph and have devised a method to deal with the general case. It turns out that in the case
of a loop diagram the set of isomorphism classes of amalgams is in bijection with Aut(k)× Z. To
our surprise we realized that the classes of amalgams corresponding to twin buildings are just those
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in Aut(k). The others correspond to a new class of groups that generalize Kac-Moody groups that
we call Curtis-Tits groups.

We intend to publish three papers as a direct result of our collaboration in Banff. I will briefly
describe the results in each.

In the first paper we prove the classification of amalgams and consider the twin building amal-
gams. These were briefly described by Tits in [26] as groups of invertible matrices over a non-
commutative polynomial ring. We correct a small error in that paper and give an equivalent descrip-
tion of these twisted Kac-Moody groups as actual subgroups of untwisted Kac-Moody groups fixed
by certain automorphisms. On some abstract level, a result by Mühlherr [22] implies the existence
of such groups, but no complete classification like ours is available in the literature.

In the second paper we describe the non-orientable Curtis-Tits amalgams and the corresponding
groups. These groups are not Kac-Moody groups but they appear as fixed subgroups of Kac-moody
groups under a certain kind of type-changing automorphism. The automorphism resembles a Phan-
type flip as studied for the first time in [5]. The fixed-point result from [22] is not applicable here,
and our methods are based on the results of Devillers and Mühlherr [10].

Finally in the third paper we consider a particular example of the non-orientable Curtis-Tits
group. It is a unitary group for a non-symmetric sesquilinear form over k[t, t−1]. We construct a
Clifford-like super-algebra on which this group acts. This is a very interesting algebra. It can be
viewed as a generalization of Manin’s quantum plane and it is a sort of q-CCR algebra as defined
for example in [18]. Moreover if one specializes the group and the algebra at t = 1 we get an
orthogonal group and its usual Clifford algebra. If we do the same at t = −1 we get a symplectic
group and its corresponding Heisenberg algebra. In short, our group is related to those algebras that
are used by theoretical physicists to study elementary particles and quantum phenomena.

4 Outcome of the Meeting

The very fact that out of the material developed during the meeting we will be able to publish three
separate papers, made the meeting very productive. Scientifically speaking the meeting was very
productive in that we have been able to achieve the following goals:

(a) We have been able to give a complete answer to the fundamental question to what extent
a Curtis-Tits diagram can determine an amalgam in an important instance, namely that of
simply laced diagrams.

(b) We have discovered a new family of groups, namely the non-orientable Curtis-Tits groups.

(c) Although our study of non-orientable Curtis-Tits groups was motivated by pure mathematical
considerations, we find that there is a surprising connection between these and certain super-
algebras that are used by theoretical physicists to study elementary particles.

Encouraged by these results in (a) we are now in a position to extend our work field to amalgams
over other non-spherical diagrams as well as amalgams whose groups are different from SL2(k)’s
and SL3(k)’s. In particular, with these results in hand, one can begin to obtain Phan-type amalgams
for these groups of Kac-Moody and Curtis-Tits type. Our results in (c) encourage us to seek contact
and possible collaboration with colleagues interested in super-algebras and their groups.
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[10] A. Devillers and B. Mühlherr. On the simple connectedness of certain subsets of buildings,
Nov. 2007.
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Astérisque, (Numero Hors Serie):165–208, 1985. The mathematical heritage of Élie Cartan
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