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1 Overview

Combinatorial design theory is the study of arranging elements of a finite set into
patterns (subsets, words, arrays) according to specified rules. Probably the main ob-
ject under consideration is a balanced incomplete block design, or BIBD. Specifically,
a (v, k, λ)-BIBD is a pair (V,B), where V is a set of v elements and B is a collection
of subsets, or blocks, of V such that

• every block contains exactly k points; and

• every pair of distinct elements is contained in exactly λ blocks.

Variations on this definition are commonly considered, and the term ‘design’ includes
these similar contexts.

Design theory is a field of combinatorics with close ties to several other areas of
mathematics including group theory, the theory of finite fields, the theory of finite
geometries, number theory, combinatorial matrix theory, and graph theory, and with
a wide range of applications in areas such as information theory, statistics, computer
science, biology, and engineering. Like most areas of combinatorics, design theory
has grown up with computer science and it has experienced a tremendous amount of
growth in the last 30 years. The field has developed subfields and groups depending on
the main techniques used: combinatorial, algebraic, and algorithmic/computational.
There are also groups primarily involved with applications such as in coding theory,
cryptography, and computer science. As design theory has grown, researchers have
become increasingly specialized and focussed in subfields. In recent years, design
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theory has also become quite interdisciplinary with researchers found in both math-
ematics and computer science departments as well as occasionally in engineering or
applied mathematics groups and in industrial groups. The primary objective of this
workshop was to gather together researchers of all levels from different groups and
from several different areas of design theory in one place with the goal of exchanging
ideas and techniques from different areas.

In a time when the internet and electronic mail dominate our research communi-
cation, people forget how much the casual conversations and comments at workshops
and conferences add to our research. The excitement generated at our BIRS workshop
in November reminded us all how much we have to gain from spending time together
and far away from our usual distractions and responsibilities. We were successful
at gathering a diverse group of researchers from all levels and from several different
areas of design theory. The talks spanned the field of design theory and included
applications in computer science and information theory. One of the younger par-
ticipants, a post-doctoral fellow, commented at the start of his talk that he’d never
before had the opportunity to hear talks in so many different areas of design theory
and he was really enjoying it. Each participant was given the opportunity to speak
and present new research. For the new researchers and some of our foreign visitors,
the talks served as an introduction to their research and interests. Many of the senior
researchers used this opportunity to present the state of the art on a problem followed
by a number of open problems. There were also two focused discussion sessions on
open problems and conjectures - one on decompositions of graphs and the other on
one-factorizations. The heart of this workshop was very much the open problems
from the talks and the two discussion sessions. It was these problems that sparked
the continued discussions into the evenings, on the hikes, and occasionally late into
the night. Most people left for home excited about new work and projects.

2 Presentation Highlights and Open Problems

2.1 Graph decompositions

Decompositions of graphs were the focus of one of our discussion sessions as well as
some of the talks. A large number of combinatorial design problems can be described
in terms of decompositions of graphs (sometimes endowed with an edge-coloring) into
prespecified subgraphs. In [18] in 1975, Rick Wilson proved necessary and sufficient
conditions on n for the existence of a G-decomposition of Kn where G is a simple
digraph on k vertices and Kn denotes the complete directed graph on n vertices. He
also described applications and connections in design theory. It soon became clear
that there were nice applications of a more colorful version of his theorem.

Consider finite edge-r-colored directed graphs where edge-r-colored means that
each edge has a color chosen from a set of r colors. Let K

(r)
n be the complete di-

rected graph on n vertices with exactly r directed edges, one of each color, between
any ordered pair of vertices. A family F of subgraphs of a graph K will be called
a decomposition of K if every edge e ∈ E(K) belongs to exactly one member of
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F . Given a family G of edge-r-colored digraphs, a G-decomposition of K is a de-
composition F such that every graph F ∈ F is isomorphic to some graph G ∈ G.
In 2000, Esther Lamken and Rick Wilson established a very general result for the
more colorful case, [12]. They proved necessary and sufficient conditions on n for G-

decompositions of K
(r)
n where G is a family of simple edge-r-colored digraphs. They

provided new proofs for the asymptotic existence of resolvable designs, near resolv-
able designs, group divisible designs, and grid designs and proved the asymptotic
existence of skew Room-d-cubes and the asymptotic existence of (v, k, 1)-BIBDs with
any group of order k − 1 as an automorphism group. More recently, edge-r-colored
decompositions and the main result from [12] have been used to establish existence
results for Steiner systems that admit automorphisms with large cycles [19], designs
with mutually orthogonal resolutions [10], resolvable graph designs [5], group divisible
designs with block sizes in any given set K [16], and {k}-frames of type gu [16].

The first talk in this area was by Amanda Malloch on joint work with Peter Dukes
on the asymptotic existence of equireplicate G-decompositions. These are graph
decompositions in which every point appears as a vertex of exactly the same number
of G-blocks. Although BIBDs trivially enjoy this property, where G is regarded as
the complete graph Kk, graphs G which are not regular require additional necessary
conditions to admit equireplicate G-decompositions. Extending this work to a family
of graphs, or to edge-colored graphs, remain interesting open problems. Several of
Wilson’s techniques were revisited in this talk, providing a good introduction to the
first discussion session.

To start off that discussion session, Rick Wilson recalled a problem of interest
to many of us: finding a proof of ‘Gustavsson’s Theorem’. Gustavsson’s result, [9],
says the following: Let H be a graph with h edges. There exists N = N(H) and
ε = ε(H) such that for all n > N if G is a graph on n vertices and m edges with
δ(G) ≥ n(1 − ε), gcd(H)|gcd(G), and h|m, then G has an H-decomposition. This
result appeared in a 1991 thesis from Stockholm University; it has not been published
in a refereed journal and the author has long since left the academic world. Thus far,
no one who has looked at the thesis has been convinced that it contains a detailed
proof of this main result. Unfortunately, the result, which has nice applications, has
made its way into the literature. It is important that either a detailed and complete
proof be found or a flaw exposed in the thesis. As a result of our discussions, several
of us discussed perhaps organizing a focused small research group to try and settle
the problem. In the meantime, Peter Dukes has volunteered to put the thesis in .pdf
form so that it is available to everyone. All of us hope that this added attention will
lead to a solution to the problem of ‘Gustavsson’s Theorem’.

The talk by Rick Wilson was motivated by applications of edge-r-colored graphs
where the graphs in G are no longer simple; one came from a problem on perfect
cycle systems [15] and the second from nested balanced designs [17]. Rick Wilson
described joint work with Anna Draganova and Yukiyasu Mutoh on the most general
result for decompositions. They prove necessary and sufficient conditions for n for
G-decompositions of K

(r)
n where G is a family of edge-r-colored digraphs. As of the

end of the workshop, there were no examples of applications which required this full
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generality. One of the open questions was to find such applications. At the end of
Rick’s talk on the last day, Charlie Colbourn asked him if it was possible to determine
necessary and sufficient conditions for the existence of a PBD with block sizes in a
finite set K where the proportion of blocks of given sizes is specified. Rick has now
been able to settle this problem by using a special case of the work in [12]. Perhaps
generalizing this work will give us an application that requires the full generality of
the new work by Draganova, Mutoh, and Wilson.

The above topics consider general graphs G and therefore results are limited to
asymptotic existence. Some of the other talks dealt with concrete graph decomposi-
tions and their connections to design theory. Alex Rosa described the state of the art
for decompositions of the complete 3-uniform hypergraph into Hamiltonian cycles.
The problem of decomposing the complete k-uniform hypergraph into Hamiltonian
cycles remains open. Curt Lindner discussed his favorite open problem on embedding
partial odd cycle systems. Recently, Darryn Bryant and Daniel Horsley were able
to settle Curt’s conjecture on the best possible embedding for partial Steiner triple
systems, [1]. The problem of finding the best possible embedding for partial odd cycle
systems for cycle length greater than or equal to 5 is completely open. Curt discussed
his work on the case for 5-cycles and pointed out it was unlikely to be close to the
density bound.

2.2 Applications

There are numerous applications of combinatorial design theory. At the workshop,
new applications were discussed in computer science, codes, networks, and informa-
tion theory.

A (k, v)-hash function is a function from a domain of size k to a range of size
v. An (N ; k, v)-hash family is a set of N (k, v)-hash functions. A perfect hash fam-
ily PHF(N ; k, v, t) (of strength t) is an (N ; k, v)-hash family with the property that
for every t-subset of the domain, at least one of the N functions maps the subset
onto t distinct elements of the range. Hash functions have long been of interest in
computer science and cryptography. In a recent development, Charlie Colbourn and
Alan Ling have discovered that perfect hash families provide one of the best explicit
constructions for covering arrays. Covering arrays are of interest in the design of ex-
periments and in areas such as software/hardware testing and circuit testing. Charlie
Colbourn described their work showing that forbidding certain sets of configurations
in classical constructions for orthogonal arrays produces new perfect, separating, and
distributing hash families. For fixed parameters, each forbidden configuration leads
to solving a set of linear equations, and therefore, computational techniques can be
used. Charlie listed several new results for the existence of covering arrays. A great
deal of work remains to be done in this area to find good covering arrays. As we
left BIRS, Charlie and Alan were discussing joint work with Aiden Bruen using some
of his techniques from finite geometry and coding theory for constructing covering
arrays and hash families. Aiden’s talk was on connections between designs and codes
and he described some new geometric ways of looking at the generator matrices of
codes.
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There are close connections between design theory and coding theory. For exam-
ple, techniques from design theory are useful in constructing families of codes. Two
of the talks mentioned connections between designs and optimal codes. Alan Ling de-
scribed new work on constructing perfect-deletion-correcting codes that are optimal.
He discussed constructions for q-ary 2-deletion- correcting codes of length 4 and q-ary
3-deletion-correcting codes of length 5 that are both perfect and optimal. As Alan
noted, there are a number of open questions in this area for finding optimal codes.

Esther Lamken also mentioned that one of the motivations for constructing designs
with orthogonal resolutions is some very new connections, due to Etzion [7], between
these designs and optimal doubly constant weight codes.

Quantum information theory is presently making use of mutually unbiased bases,
an application discussed in Hadi Kharaghani’s presentation. A Hadamard matrix H
is a matrix with entries in {±1} such that distinct rows are orthogonal. For m ×m
Hadamard matrices, one has HH> = mI. Two Hadamard matrices H, K of order
m = n2 are called unbiased if HKt = nL, where L is another Hadamard matrix of
order m. From a set of mutually unbiased Hadamard matrices, one can deduce the
existence of mutually unbiased bases in Rm. This application of design theory was
very nicely received, with several interesting questions and discussions following the
talk.

2.3 Existence of designs with various conditions

The central problem in design theory is determining the existence of designs. De-
termining the full spectrum for a class of designs usually requires a combination of
techniques, combinatorial, algebraic/geometric, and computational. Existence prob-
lems and questions were described in several of the talks.

One of the most powerful techniques for determining the existence of combina-
torial designs is the idea of PBD-closure, introduced by Rick Wilson in the early
1970’s, [20]. The main idea is to break up blocks of a pairwise balanced design, using
small examples of designs to create larger ones. Often, properties are inherited in the
resultant design from the ingredients. PBD-closure underlies many existence results
including the asymptotic results mentioned above on edge-colored graph decomposi-
tions. One of the highlights for constructions at the workshop was a novel – though
possibly bizarre – application of PBD-closure by Peter Dukes [4] to the existence of
adesigns. An adesign is a set system (V,A), where V is a set of v points and A is a
collection of blocks of size k, having the condition that all unordered pairs of points
have a different frequency. Peter showed that by making use of ‘padding by BIBDs’
he can use PBD-closure to construct adesigns.

Difference sets afford another pervasive method for construction of combinatorial
designs. In his talk, Qing Xiang included an update on some conjectures on difference
sets. Let G be an additively written group of order v. A k-subset D of G is a
(v, k, λ)-difference set of order n = k − λ if every nonzero element of G has exactly
λ representations as a difference d − d′ of distinct elements from D. In the early
1980s, Lander conjectured the following, [13]. Let G be an abelian group of order v
and D a (v, k, λ)-difference set in G. If p is a prime dividing both v and k − λ, then
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the Sylow p-subgroup of G is not cyclic. This conjecture implies another well known
conjecture due to Ryser that a cyclic (v, k, λ)-difference set can only exist if v and
k − λ are co-prime. Qing noted that Lander’s conjecture is now known to be true
when k − λ = p` where p > 3; this is due to work by Leung, Ma, and Schmidt [14].
Qing also described new work on the existence of skew Hadamard difference sets. Due
to the speaker’s unique expertise in this area, the talk was a very helpful survey for
participants at the workshop. Much discussion was generated following the talk.

Broadly, several of the other talks fall into the category of constructive design
theory.

Jeff Dinitz described joint work with Alan Ling and Adam Wolfe on N2 resovable
latin squares where they completely settled the existence of these designs. An N2

resolvable latin square is a latin square with no 2 × 2 subsquares that also has an
orthogonal mate. They used several different types of techniques to show that they
could establish the existence of N2 resolvable latin squares for all orders n with n 6=
2, 4, 6, 8.

Don Kreher also described joint work with Melissa Keranen, William Kocay, and
Ben Li on problems for the existence of partial Steiner triple systems; they investi-
gated resolvable, cyclic, and arbitrary regular Steiner triple systems. Don also relayed
an interesting problem for triple systems. He asked whether it is possible to decom-
pose the triples on 13 points not covered by a projective plane into nine Steiner
triple systems. Alex Rosa extended the question to i projective planes and 11 − 2i
Steiner triple systems, while Peter Dukes and Charlie Colbourn discussed preliminary
approaches to the computation.

In 1989, Ron Graham asked if the 1-block intersection graphs of Steiner triple
systems are Hamiltonian. This question has led to an investigation of the more general
problem of ordering the blocks of designs to meet specified properties. Other ways of
ordering the blocks of designs include Gray codes and universal cycles. Megan Dewar
described her thesis work investigating the existence of Gray codes and universal
cycles for twofold triple systems and cyclic BIBDs. She presented several new results
and noted a number of open problems in this area. Her thesis has been submitted to
the Canadian Mathematics Society for publication as a monograph. It represents the
definitive survey on these problems.

Esther Lamken gave a survey on the state of the art for designs with sets of d mutu-
ally orthogonal resolutions. Techniques in this area include combinatorial recursions
combined with direct constructions as well as using edge-r-colored decompositions
of graphs. The majority of the known existence results are for balanced incomplete
block designs. There are a large number of open questions in this area particularly
for t-designs (t ≥ 3) and for all designs with d mutually orthogonal designs and d ≥ 3.
Her survey will include a list of open problems in this area, [11]. At the end of her
talk and during the discussion sessions, Alex Rosa added several nice open problems
in this area such as the generalized Room square problem. Many of these problems
were investigated over 30 years ago without success. Jeff Dinitz and Esther Lamken
have already started to investigate one of the problems Alex mentioned: finding a
doubly resolvable analogue to Baranyai’s theorem or a generalized Room square. One
of the most intriguing open questions in this area came up again in the discussion
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session on 1-factorizations.
What is the upper bound for the size d of a largest set of mutually orthogonal

resolutions? The current known upper bounds all come from very straightforward
counting arguments. In many cases, there are constructions to show that these upper
bounds can be met. However, in the case of 1-factorizations or orthogonal resolutions
for (v, 2, 1)-BIBDs (also known as Room d-cubes), the simple counting upper bound
gives us d ≤ v − 3. Despite a great deal of work, no one has ever succeeded in
constructing more than v−2

2
mutually orthogonal resolutions for a (v, 2, 1)-BIBD. The

best construction in this area is due to Dinitz from 1980, [2]. In the early 1970’s, Gross,
Mullin, and Wallis conjectured that the bound for d for Room d-cubes of order v− 1
was v−2

2
, [8]. However, in the 1980’s Luc Teirlinck pointed out a connection between

these designs and some nice structures in finite geometry. His work led him to believe
that the bound should really be the counting bound of v − 3 for v sufficiently large.
Settling these conjectures is one of the most interesting problems in this area.

The discussion session on 1-factorizations was started by Jeff Dinitz. He described
new work on perfect 1-factorizations and in particular on perfect Room squares. A
perfect Room square is one where both the row and column 1-factorizations are
perfect; so it contains a pair of orthogonal perfect 1-factorizations. Jeff showed us
the first new perfect Room square constructed in the last 20 years - a perfect Room
square on 52 elements. This design was constructed by Adam Wolfe and was done
with a considerable amount of computational work, [21]. He gave us a list of the
known perfect Room squares and noted that the full existence problem remains open.

2.4 Existence and structural results for t-designs

Whereas classical design theory is generally concerned with arrangements of objects
subject to pairwise constraints, t-designs extend this notion to t-wise constraints. A
t-(v, k, λ) design is a pair (V,B) where V is a set of v points and B is a family of
k-subsets, called blocks, of V such that each distinct t-subset of V occurs in precisely
λ blocks.

Masa Jimbo described new work on constructing cyclic Steiner quadruple systems.
A Steiner quadruple system SQS(v) is a 3-(v, 4, 1) design. If an SQS(v) admits a cycle
of length v as an automorphism, it is said to be cyclic. He presented new recursive
constructions and produced a number of new designs using computational techniques.
In fact, the constructed designs enjoy the property that all units in the ring Z×

v act
by multiplication as automorphisms. Along with the cyclic structure, these SQS have
a very rich automorphism group.

Another existence result for t-designs was presented by Niranjan Balachandran. In
his talk, and in informal discussions following, Niranjan discussed a large λ theorem
for candelabra systems. These are especially useful in recursive constructions, where
various holes can be filled with known small designs.

To complement the above existence results, there was also discussion of structure
in t-designs. Two talks stand out along these lines.

Şule Yazıcı discussed defining sets in her talk. A set of blocks that is a subset of
a unique t-(v, k, λ) design D = (V,B) is a defining set of that designs. A defining set
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is minimal if it does not properly contain a defining set of D. Şule described several
new algorithms and computational work on finding defining sets for t-designs.

Peter Dukes spoke on extensions of his doctoral thesis [3], where convexity is used
to obtain additional structure on t-designs. Specifically, the approach considers the(

v
t

)
×

(
v
k

)
zero-one inclusion matrix Wt of t-subsets versus k-subsets of a v-set V . The

convex cone generated by columns of Wt is shown to be useful in ruling out various
configurations in t-designs. Roughly speaking, this illustrates structure which does
not even depend on using ‘integral’ weights for blocks. This is one nice example where
our workshop touched upon techniques from pure mathematics.

3 Outcome

The workshop was very successful for a number of reasons. It goes without saying
that each attendee benefited from the presence of others, perhaps working in im-
portant related areas but with limited opportunity for collaboration. Indeed, design
theory is spread quite thinly across the world. It is also a fairly specialized field
of research. Consequently, the workshop offered us a rare opportunity for detailed
in-person collaboration.

Despite having limited numbers, the consensus from our participants is that we
struck a good balance bringing together a variety of researchers from a variety of
locations. Although pairs of researchers occasionally meet, a workshop of this kind is
especially helpful for larger collaborations. For example, Peter Dukes, Esther Lamken
and Alan Ling discussed possible approaches to the construction of resolvable group
divisible designs. As indicated previously, several participants expressed interest in
investigating ‘Gustavsson’s Theorem’. Whether motivated by applications or theory,
we left the workshop feeling that this problem of decomposing of ‘almost complete’
graphs is one of the next major directions in design theory. We are hopeful that the
workshop’s varied slate of topics, methods and applications can help initiate research
on this (and the other open problems we identified).

Another benefit was the inclusion of a few young researchers, including Niranjan
Balachandran, Megan Dewar and Amanda Malloch. They were given a chance to
present in an informal atmosphere, yet at the same time in a focused setting populated
by area experts. Obviously, this rare combination can serve as an important boost
in one’s career development. For instance, Amanda Malloch received positive and
helpful feedback on her Master’s thesis work from Rick Wilson, on whose articles the
thesis is based. Charlie Colbourn pointed out potential applications of the work.

A nice additional surprise was the mention of work of various other young re-
searchers not in attendance. This included reference to the research of Robert Bailey,
Mariusz Meska, and Adam Wolfe, among others. More generally, the workshop indi-
rectly affected (or felt the effects of) the research of many who were not present.

Perhaps most importantly, we are confident that in time this workshop will con-
tinue to have important reverberations in design theory, as new collaborations are
fostered and new ideas mature.
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