
Non-local operators and applications

Cyril Imbert (CEREMADE, université Paris-Dauphine),
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1 Introduction
One of the main objectives of this workshop was to present a state of the art of current research on non-local
operators. Over the last few years, there has been a lot of interests for such operators, and much progress
have been made by mathematicians working in many different areas. The goal of this workshop was thus to
bring together those mathematicians and encourage interactions between different areas of mathematics.

Our interest for such models is motivated by the wide range of applications, and the flourishing of new
mathematical tools and results, stimulated by the theory of (local) elliptic operators. This workshop has
permitted to bring together mathematicians to present the most recent trend on this topic.

2 Scientific activities
We now wish to present the scientific activities that took place during this meeting. In the first subsection, we
explain how those activities were organized. In the remaining of the section, we describe the results presented
by speakers in their talks. Six main topics were treated: non-local moving fronts, fractal Burgers equations,
non-linear stochastic differential equations, mean-field and kinetic equations, non-linear elliptic equations,
reaction-diffusion equations. Several talks also discussed problems coming from applications such as oil
extraction and genetic evolution.

2.1 Organization
Scientific activities consisted in 21 talks and 10 informal discussion sessions. There were two one hour talks
and a 25 minute talk in the morning and two or three 25 minute talks in the afternoon. There were also two
informal discussion sessions in the afternoon, one before the talks and another one after them. See the tabular
below.
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Monday Tuesday Wednesday Thursday
09:00 - 10:00 Vasseur Méléard Souganidis Perthame
10:30 - 11:30 Cardaliaguet Woyczynski Roquejoffre Dolbeault
11:30 - 12:00 Peirce Jourdain Informal discussion Mouhot
01:30 - 02:30 Informal discussion Informal discussion Free afternoon Informal discussion
02:30 - 03:00 Informal discussion Silvestre Informal discussion
03:00 - 03:30 Droniou Gentil Alibaud
04:00 - 04:30 Sire Schwab Karch
04:30 - 05:00 Informal discussion Monteillet Margetis
05:00 - 06:00 Informal discussion Informal discussion Informal discussion

One hour talks were given by senior researchers and short talks were given by either senior researchers
or younger mathematicians. Two PhD students (Schwab and Monteillet) and two young mathematicians1

(Sire and Alibaud) gave short talks. We would like to mention that several PhD students had planed to come
and finally could not make it because of job interviews in France or difficulties with visa (Coville, El Hajj,
Forcadel).

2.2 Non-linear elliptic equations
• A. Vasseur. Regularity of solutions to drift-diffusion equations with fractional Laplacian.

• L. Silvestre. Some regularity results for integro-differential equations.

• R. Schwab. Periodic Homogenization of Nonlinear Integro-Differential Equations

Non linear elliptic and parabolic equations involving nonlocal operators arise naturally in various frame-
works. A well known example of such an equation is the so called quasi geostrophic equation which was
presented in A. Vasseur’s talk. These equations enjoy many properties of the usual elliptic and parabolic
equations, though the nonlocal character of the problem introduces new, sometime unexpected difficulties. In
his talk, L. Silvestre generalize the notion of fully nonlinear equation to the nonlocal setting. This is a work
in collaboration with L. Caffarelli, who has been one of the main actor in the recent trend in studying the
properties of nonlocal elliptic equation. They are able to extend the usual definition of Extremal operators
and viscosity solutions to integro-differential equations and establish the main properties of these equations.
R. Schwab, is then interested in the homogenization of such equations. His result extends the recent result of
L. Caffarelli, P. Souganidis and L. Wang to the nonlocal framework.

The quasi geostrophic equation was introduced by Constantin and Wu in 1999 as a toy model for the
study of possible blow-up in 3D fluid dynamics. It is a non-local non-linear equation for the temperature
θ : R2 → R:

∂tθ + u · ∇θ = −Λθ,

u = R⊥θ
(1)

with the operator Λ = (−∆)1/2 is defined by Λ̂θ = |ξ|θ̂ and where R⊥ denotes the orthogonal of the Riesz
transform. Other nonlocal operators can be consider, the most natural choices being other powers of the
Laplace operator: Λ = (−∆)α with α ∈ (0, 1). The case α = 1/2 is usually refer to as the critical case.

Together with Luis Caffarelli, A. Vasseur proves that the solutions of the drift-diffusion equation

∂tθ + u · ∇θ = −Λθ

are locally Holder continuous for L2 initial data and under minimal assumptions on the drift u. As an
application they show that solutions of the quasi-geostrophic equation (1) with initial L2 data and critical
diffusion (−∆)1/2, are locally smooth for any space dimension. The main difficulty is to obtain Hölder
regularity. The method is inspired by the celebrated proof of E. De Giorgi for Cα regularity of the solutions
of elliptic equation with bounded measurable coefficients.

1They had a position less than two years ago.
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Over recent years, there has been a lot of interest from the mathematical community for non-local op-
erators, and many of the well known properties of standard elliptic and parabolic equations have been ex-
tended to non local ones. In that direction, Luis Caffarelli and Luis Silvestre study fully nonlinear integro-
differential equations. These are the non local version of fully non-linear elliptic equations of the form
F (D2u,∇u, u, x) = 0. Typical examples are the ones that arise from stochastic control problems with jump
processes.

We first recall that linear integro-differential operators have the form

Lu(x) =
∫

Rn
(u(x+ y)− u(x)− χB(y)∇u(x) · y)K(y)dy

where the most typical case is

K(y) =
1

|y|n+σ

corresponding to the fractional Laplacian. In stochastic control problems with jumps processes it is classical
to deal with nonlinear equations of the form

0 = lu(x) := sup
α
Lαu(x).

From two-player stochastic games we would get even more complicated equations of the form

0 = lu(x) := inf
β

sup
α
Lαβu(x).

These equations form basic examples of fully nonlinear integro-differential equations.
In order to study these equations, we need to generalized of the notion of uniformly ellipticity for fully

nonlinear nonlocal equations. This, as explained in L. Silvestre’s talk, can be done using the Pucci extremal
operators M±σ defined by

M+
σ u(x) = sup

λa(y)≤Λ a(y)=a(−y)

(2− σ)
∫

(u(x+ y)− u(x))
a(y)
|y|n+σ

dy

and a similar definition for M−σ .
Then, a nonlocal operator l is said to be uniformly elliptic of order σ if

M−σ v(x) ≤ l(u+ v)(x)− lu(x) ≤M+
σ v(x)

(σ is always in (0, 2)).
L. Caffarelli and L. Silvestre are then able to obtain results analogous to the Alexandroff estimate,

(Krylov-Safonov) Harnack inequality and C1,α regularity for uniformly elliptic equations. Interestingly,
as the order of the equation approaches two, in the limit the estimates become the usual regularity estimates
for second order elliptic partial differential equations.

Since those nonlocal equations have similar properties as the local ones, it seems natural to investigate
their behavior under various classical perturbation limits. In his PhD thesis work, R. Schwab investigate the
homogenization limit of such equations. The recent work of L. Caffarelli, P. Souganidis and L. Wang for
the homogenization of fully non-linear equations of elliptic and parabolic type introduced a new approach
to obtain homogenization result in stationary ergodic media. In his talk, R. Schwab shows that the method
can be adapted to a somewhat general class of nonlinear, nonlocal uniformly ”elliptic” equations. Motivated
by the techniques of the homogenization of fully nonlinear uniformly elliptic second order equations by L.
Caffarelli, P. Souganidis and L. Wang, he shows how a similar obstacle problem can be used to identify the
effective equation in the nonlocal setting.
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2.3 Reaction-diffusion equations
• J.-M. Roquejoffre. Free boundary problems for the fractional Laplacian.

• Y. Sire. Rigidity results for elliptic boundary reaction problems.

Reaction-diffusion equations are important in many area of applied mathematics involving phase tran-
sition. In view of the recent progress in understanding the behavior of nonlocal elliptic operators, it seems
natural to extend to such operators some of the well known results of the theory of elliptic equations. This
is one of the goal of J.-M. Roquejoffre and Y. Sire in their respective talks. Both of them rely heavily on the
extension formula of L. Caffarelli and L. Silvestre which allows us to rewrite fractional Laplace operators as
boundary operator for degenerate (local) elliptic operators. This formula, which first appeared in 2005 has
generated a lot of new development in the field and the works presented below are good examples.

One of the most studied stationary free boundary problem is Bernoulli problem, which consists of a
elliptic equation sets in the positivity set of the solution:

∆u = 0 in {u > 0}

and a free boundary condition
|∇u|2 = 1 on ∂{u > 0}

where the unknown function u is non-negative.
This problem arises in the modeling of flame propagation as the limit of the singular reaction problem

∆u = βδ(u)

where βδ is an approximation of the Dirac mass. The same free boundary problem also appears in heat flux
minimization, as the Euler Lagrange equation for the minimization of the non continuous functional∫

|∇u|2 + χ{u>0}dx.

The study of such problems is very delicate because of the lack of a priori regularity or the free boundary
∂{u > 0}. The first regularity results go bak to the early 80’s with the works of Alt-Caffarelli and Alt-
Caffarelli-Friedman.

In his talk, J.-M. Roquejoffre presented some recent work with L. Caffarelli and Y. Sire concerning a
non-local version of this famous problem. In this problem, the Laplace equation is replaced by a fractional
Laplace equation:

(−∆)su = 0 in {u > 0}.

In that case, the appropriate free boundary condition (which correspond to the natural Neuman condition for
fractional Laplace operators) is

u(x) ∼ A[(x− x0) · ν(x0)]s

for any x0 ∈ ∂{u > 0}, where ν(x0) denotes the inward unit normal vector to ∂{u > 0}. This problem can
be seen as the limit for equations of the form

(−∆)su = −βδ(u)

which arise in physic as a first attempt to take into account non local effects in the modeling of reaction-
diffusion phenomena.

L. Caffarelli, J.-M. Roquejoffre and Y. Sire investigates the variational formulation of this problem and
strongly rely on the extension formula of Caffarelli-Silvestre. They are able to obtain the main result in
the theory, namely the optimal regularity of the minimizer (u ∈ Cs)), the hölder growth away from the free
boundary and the positive density of {u > 0} and {u = 0} along the free boundary. This implies in particular
that blow-up limits have non-trivial free boundaries and that free boundaries cannot form cusps. However,
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it leaves as an open question a very classical property of the free boundary for the usual Bernoulli problem:
Does the free boundary have finite (n− 1)−Hausdorff measure?

Finally, they investigate the behavior of minimizers in the neighborhood of the regular free boundary
points (differentiability points) and show that indeed, u satisfies

u(x) ∼ A[(x− x0) · ν(x0)]s

where A is a universal constant. The set of differentability points can be proved to be dense in the free
boundary, but further regularity results, as in the usual Bernoulli problem are still, for the most part, open
problems.

De Giorgi’s famous conjecture concerns some symmetry properties of the solution of equations of the
form

(−∆)u = f(u) in Rn

with f(u) = u3 − u. The conjectures claims that if u is an entire solution such that

|u| ≤ 1

and
∂u

∂xn
> 0

(where x = (x, xn) ∈ RN ), then, at least for n ≤ 8, the level sets of u must be hyperplanes.
The problem originates in the theory of phase transition and is so closely connected to the theory of

minimal hypersurfaces that it is sometimes referred to as the ”version of Bernstein problem for minimal
graphs”.

Since the work of Nassif Ghoussoub and Changfeng Gui in 1998, which proved the conjecture in dimen-
sion 2, there has been a lot of activity trying to establish the conjecture in all dimensions.

E. Valdinocci and Y. Sire attempted to investigate a similar conjecture for boundary phase transition
problems, which can easily be reformulated as a nonlocal reaction-diffusion problem:

(−∆)su = f(u) in Rn.

Following the extension formula established by Caffarelli and Silvestre, this equation can be rewritten as

− div (ya∇u) = 0 in Rn+1

and
−ya∂yu = f(u) at y = 0.

Y. Sire describes a technique based on a geometric Poincare-type inequality which allows to get some
symmetry results for bounded stable solutions of boundary reaction problems in low dimension.

This technics relies on the use of the second variation and the notion of stable solutions. The idea to use
the second variation to get fine control on the level sets of the solution goes back to Steinberg-Zumbrum and
was used, in particular, by Farina-Scienzi and Valdinocci for the usual E. Valdinocci and Y. Sire show how
to apply this technique to elliptic degenerate quasi-linear equations set in the half-space. As a consequence
of Caffarelli-Silvestre formula, one gets some rigidity properties of solutions for the corresponding nonlocal
equations involving fractional powers of the laplacian.

2.4 Non-local moving fronts
• P. Cardaliaguet. Front propagation with non-local terms.

• A. Monteillet. Convergence of approximation schemes for non-local front propagation equations.

• P. E. Souganidis. Non-local approximations of moving interfaces.
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Three speakers presented results concerning non-local moving interfaces: P. Cardaliaguet, A. Monteillet
and P. E. Souganidis. Contributions of P. E. Souganidis to the field of moving interfaces are fundamental.
The reader is referred to his survey paper [32] which contains many important references on this topic.
P. Cardaliaguet [15] is one of the first mathematician who developed tools for studying in a very general
setting interfaces whose geometric law is non-local. A. Monteillet is a PhD student of P. Cardaliaguet.

P. E. Souganidis presented results concerning non-local approximations of moving interfaces. A moving
interface can be defined by considering a family K = {K(t)}t∈[0,T ] of compact subsets of RN :

∀x ∈ ∂K(t),∀t ≥ 0, V (x, t) = f(x, t, νx,t, Ax,t,K) (2)

where

• V (x, t) is the normal velocity of a point x of ∂K(t) at time t

• νx,t is the unit exterior normal to K(t) at x ∈ ∂K(t)

• Ax,t =
[
∂νi(x,t)
∂xj

]
ij

is the curvature matrix of K(t) at x ∈ ∂K(t)

• K 7→ f(x, t, νx,t, Ax,t,K) is a non-local dependence in the whole front K (up to time t).

Equation (2) is referred to as the geometric law of the moving interface. Such evolution equations appear in
several areas: cristal growth, elasticity, biology, finance, shape optimization design, image processing... For
these problems, existence and uniqueness of classical solutions can be obtained by methods of differential
geometry (Huisken, Escher-Simonnet, ...) However the front (often) develops singularities in finite time.
Hence, two important problems are: on one hand, to define the front after the onset of singularities and, on
the other hand, to study its properties.

P. E. Souganidis explained that when one expects the geometric inclusion principle to hold true, general-
ized moving interfaces {K(t)}t∈[0,T ] can be defined in several ways. In particular, it can be defined

• either by using the level set method which consists in representing the set K(t) as the zero level set of
a function u(t, ·). The geometric law (2) is translated into a geometric partial differential equation and
this equation is studied by using viscosity solution theory;

• or by using a geometric formulation such as in [7]; loosely speaking, this approach consists in consid-
ering a smooth test front that is contained in (resp. contains) the generalized front. If this test front
evolves with a speed that is smaller (resp. greater) than the one of the generalized front, then it has to
stay inside (resp. outside) the generalized front as time increases.

For local evolutions of the form

∀x ∈ ∂K(t),∀t ≥ 0, Vx,t = f(x, t, νx,t, Ax,t)

Evans and Spruck [23], Chen, Giga and Goto [17] have defined notion of generalized solution by using the
level set approach and techniques of viscosity solutions. Similar but more geometric approaches have been
developed by Soner [31], Barles, Soner and Souganidis [5], Belletini and Novaga [8], Barles and Souganidis
[7]...

After recalling these definitions and classical results, P. .E. Souganidis considered two non-local ap-
proximations of moving interfaces: Bence-Merriman-Osher (BMO) schemes and rescalings of solutions of
reaction-diffusion equations. He presented results corresponding to two working papers, one with L. Caf-
farelli and one with C. Imbert. As far as BMO schemes are concerned, he explained that if the Gaussian
kernel is replaced with kernels which decay slowly at infinity (as a proper power law), then either mean
curvature flow or “fractional” mean curvature flow are obtained at the limit, depending on the decay rate of
kernels. He explained that classical BMO schemes can be seen as Trotter-Kato approximation of rescaled
reaction-diffusion equations in the classical case. Hence, it can be proved that mean field equations associated
with stochastic Ising models with long range interactions can be rescaled in order to prove that, on one hand,
mean curvature flows can be obtained at the limit [22, 5] and on the other hand, fractional mean curvature
flows can be obtained (working paper).
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P. Cardaliaguet presented results related to flows with and without inclusion principle. We recall that a
geometric flow satisfies the inclusion principle if, at initial time, a front O1 is included in another front O2,
this inclusion is preserved by the flow. A typical example of inclusion preserving flows is the one associated
with the following geometric law

Vx,t = 1 + λ|∇u|2

where u is the solution to  −∆u = 0 in K(t) \ S
u = 1 on ∂S
u = 0 on ∂K

Cardaliaguet explained that this flow can be interpreted as a gradient flow for the Bernoulli problem. In
[16], a notion of sub- and super-flow is defined by using (smooth) test fronts. Such an idea first appeared
in [7] where a geometric formulation of moving interfaces is developed in order to be able to solve singular
perturbation problems arising in the phasefield theory of reaction-diffusion equations. Moreover, an inclusion
principle is proved in [16] and a generic uniqueness result is obtained. Moreover, a link with the energy of
the problem is presented; it is related to the definition of minimizing movements in the spirit of the seminal
paper of De Giorgi, Marino and Tosques [18]. As far as flows without inclusion principle are concerned,
Cardaliaguet presented a general existence result obtained with G. Barles, O. Ley and A. Monteillet [4].
Precisely, a generalized moving interface is constructed here by the level set method (see above). He also
presented the first uniqueness result for a Fitzhugh-Nagumo type system [4]. Finally, he presented existence
result for dislocation dynamics (see Figure 2.4).

Figure 1: Dislocation line

A. Monteillet presented results about approximation schemes for computing the weak solution con-
structed in [4]. More precisely, he considered a general class of stable, monotone and consistent schemes
in order to be able to apply the fundamental result of Barles and Souganidis [6] which can be adapted to the
non-local geometric equation studied in [4] by using a new stability result of Barles [3].

2.5 Mean-field and kinetic equations
• J. Dolbeault. Mean field models in gravitation and chemotaxis.

• I. Gentil. A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium.

• C. Mouhot. Some properties of non-local operators from collisional kinetic theory.

Dolbeault’stalk was intended to provide an overview of some results of mean field theory, mostly in case
of an attractive Poisson law. He first presented some stability results for stationary solutions of the gravi-
tational Vlasov-Poisson model [20]. Connection with drift-diffusion equations were obtained in a diffusion
limit. As a side result, he presented some results and conjectures on the two-dimensional Keller-Segel model,
which share properties which are similar to gravitational models, but for which the mass is a critical parameter
[14]. He then presented some results for a three-dimensional flat model of gravitation, showed the existence
of solutions stationary with high Morse index and state some conjectures about their stability [19].
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Gentil presented results related to a Lévy-Fokker-Planck equation{
∂tu = I[u] + div(u∇V ) x ∈ Rd, t > 0,
u(0, x) = u0(x) x ∈ Rd

where u0 is non-negative and in L1(Rd) and V is a given proper potential for which there exists a nonnegative
steady state. The operator I is a Lévy operator

I[u](x) = div (σ∇u)(x)− b · ∇u(x) +
∫

Rd
(u(x+ z)− u(x)−∇u(x) · zh(z))ν(dz)

with parameters (b, σ, ν) where b = (bi) ∈ Rd, σ is a symmetric semi-definite d× d matrix σ = (σi,j) and ν
denotes a nonnegative singular measure on Rd that satisfies

ν({0}) = 0 and
∫

min(1, |z|2)ν(dz) < +∞;

h is a truncature function and we fix it on this article: for any z ∈ Rd, h(z) = 1/(1 + |z|2).
The starting point of this work is a paper by Biler and Karch [10] where an exponential decay towards

the equilibrium u∞ in Lp norm is proved by assuming, loosely speaking, that σ 6= 0. Moreover, the rate of
convergence seemed not to be optimal. In order to get such an exponential decay, they study the following
family of entropies: for any nonnegative function f ,

EntΦ
u∞ (f) :=

∫
Φ (f)u∞dx− Φ

(∫
fu∞dx

)
.

where Φ is a convex function. In particular they prove that the equilibrium state u∞ is an infinite divisible
law and that entropies are Lyapunov functions for the Lévy-Fokker-Planck equation.

Gentil explained that the main contributions of [24] are the following results:

• if
∫
|z|≥1

ln |z|ν(dz) < +∞, there exists an equilibrium state u∞ (even if σ = 0); it is also proved that
it is an infinite divisible law;

• the energy associated with the Φ-entropy is explicitely computed; it looks like the Dirichlet form asso-
ciated with I with respect to the measure u∞(x)dx;

• under additional assumptions on Φ and ν, the entropy decays exponentially fast; in particular, an opti-
mal exponential rate is obtained.

C. Mouhot presented results related to collisional kinetic (integro)-differential equation

∂tf + v∇xf + F · ∇vf = Q(f, f) (3)

where Q is the collision operator; it is local in t, x.
The operator Q is local for linear Fokker-Planck equations, but it is bilinear and integral for collisional

dilute gases (Boltzmann) or plasmas (Landau). There are many interesting issues involving these non-local
operators (Cauchy, regularity, asymptotic behavior, derivation, hydrodynamic limit,...). Here the speaker
focused on the case of Boltzmann collision operators with singular kernel (long-range interactions) (with
Landau operator as a limit) in the linearized setting.

The spatially homogeneous non-linear case has be studied a lot see the papers of Funaki, Goudon, Villani,
Lions, Méléard, Desvillettes, Graham, Fournier, Guérin,... about the Cauchy problem, the regularity of
solutions, the study of grazing collision limit etc. But there are fewer works in the spatially inhomogeneous
case and the linearized problem; see the papers of Alexandre, Alexandre-Villani (and Chen-Desvillettes-He
for the Landau equation). The linearized study is crucial for stability issues.

Mouhot next recalled the definition of the linearized operator. The normalized Maxwellian equilibrium is
the function M(v) = e − |v|2. If now f in (3) is chosen under the form M + Mh, the following linearized
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Boltzmann operator appears: L(h) = M−1[Q(Mh,M) + Q(M,Mh)] with h(v) ∈ L2(M). An explicit
formula of L is given now

Lh(v) =
1
4

∫
Rd×Sd−1

(h(v′) + h(v′∗)− h(v)− h(v∗))B(|v − v∗|, σ)M(v∗)dv∗dσ

where v′ = v+v∗
2 + |v−v∗|

2 σ and v′∗ = v+v∗
2 − |v−v∗|2 σ. The physical important case is the case where

B = Φ(|v − v∗|)b(cos θ) with b a power-law and cos θ = σ · (v − v∗)/|v − v∗|.
Here are the important properties of this operator.

• L is symmetric on the Hilbert space L2(M).

• It is non-positive (linearized H theorem):

D(h) = −(h, Lh) =
1
4

∫
v,v∗,σ

|h′ + h′∗ − h− h∗|BMM∗ ≥ 0 .

• Its null space N(L) is (d+ 2)-dimensional and spanned by the collisional invariants 1, v1, ..., vd, |v|2.

Therefore important question of the existence of a spectral gap: positive distance isolating 0 from the
remaining part of the spectrum. After recalling a lot of previous results (Hilbert 1912, Carlman 1957, Grad
1962, Wang-Chang and Uhlenbeck 1970, Bobylev 1988, Pao 1974, Caflisch 1980, Degond-Lemou 1997,
Lemou 2000, Guo 2002 etc), the speaker stated the main theorem of his talk.

Theorem 1 ([30]) Assume B = Φ(|v − v∗|)b(cos θ) with

Φ(z) ≥ CΦz
γ , b(cos θ) ≥ b0(sin θ/2)−(d−1)−α for θ ∼ 0 .

Then

• ∀ε > 0, there exists CB,ε > 0 (constructive proof) such that

D(h) ≥ CB,ε‖h−Π(h)‖L2
γ+α−ε

(M)

where Π denotes the orthogonal projection on N(L).

• There exists CB,0 > 0 (non constructive proof) such that

D(h) ≥ CB,0‖h−Π(h)‖L2
γ+α

(M) .

2.6 From non-linear stochastic differential equations to non-linear non-local evolu-
tion equations

• B. Jourdain. Non-linear SDEs driven by Lévy processes and related PDEs.

• S. Méléard. Stochastic approach for some non-linear and non-local partial differential equations.

• W. A. Woyczynski. Non-linear non-local evolution equations and their physical origins.

In Woyczynski’stalk, the physical and biological problems leading to non-linear and non-local evolution
equations were reviewed and the outstanding problems in this area discussed.

His talk was divided into five parts. In the first one, he presented a model for describing the growth of
an interface. This model involves a non-linear non-local diffusion equation. He also presented numerous
examples from physical sciences where distributions associated with α-stable Lévy processes appear. For
instance, “at the atomic level, there is no reason to assume automatically that surface diffusion is Gaussian”;
he illustrated this point by showing some molecular dynamics calculations [29].

The third part of his talk was devoted to fractal conservation laws and fractal Hamilton-Jacobi-KPZ
equations. Results concerning fractal conservation laws are presented Subsection 2.7 below. The results for
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fractal Hamilton-Jacobi-KPZ equations were obtained with G. Karch [28]. The equation at stake in this paper
is the following one

∂tu = (−∆)α/2u+ λ|∇u|q

where λ is a real number. As a matter of fact, more general Lévy operators are considered in the paper but
we present the results in this framework for the sake of clarity. The case λ > 0 corresponds to the deposition
case; indeed, it is proved that if λ > 0, then the total massM(t) =

∫
Rd u(t, x)dx increases as time t increases.

In the case λ < 0, M(t) decreases and we say that we are in the evaporation case. In the deposition case,
the existence of a limit of M(t) as t→ +∞ is discussed; it depends on the non-linearity exponent q. In any
case, as long as M(t) has a finite limit M∞ as t → +∞, it is proved that u(t) behaves like the fundamental
solution of the fractional heat equation times M∞.

The case of the strongly non-linear problems analogous to the classical porous medium equation re-
quires further attention here. Some limitations, such as nonexistence of global solutions for general non-local
diffusion-convection mean field models will be indicated.

Recent results on the interplay between the strength of the ”anomalous” diffusive part and ”hyperbolic”
non-linear terms will be presented in the case of fractal Hamilton-Jacobi-KPZ equations (see [28] and the
joint working paper with B. Jourdain, S. Meleard, G. Karch, and P. Biler).

Méléard’s talk was a survey describing various stochastic approaches for non-linear and non-local equa-
tions, in terms of interpretation, existence and uniqueness, regularity and particle approximations of the
solution of the equation. She explained why it is in a certain sense easier, in a probabilistic point of view, to
study non-local non-linearity.

In the first part of the talk, she briefly recalled the link between some non-linear Fokker-Planck partial
differential equations and stochastic differential equations which are non-linear in the sense of McKean and
are driven by a Brownian motion. Jourdain developed this part in his talk; see below. S. Méléard recalled the
particle approximation result deduced from this stochastic interpretation. she generalized this approach to a
non-linear partial differential equation with fractional Laplacian and show how it is related with a non-linear
jump process.

In a second part, she considered kinetic equations known as (spatially homogeneous) Fokker-Planck-
Landau equations [25] (see also J. Fontbona). She showed that the probabilistic interpretation involves a
non-linear stochastic differential equation driven by a space-time white noise. She used this interpretation
to define an easily simulable stochastic particle system and prove its convergence in a pathwise sense, to the
solution of the Landau equation.

B. Jourdain first recalled how existence for a stochastic differential equation (SDE for short) non-linear
in the sense of McKean implies existence for the associated non-linear Fokker-Planck partial differential
equation. In the case where the driving Lévy process is square integrable and the diffusion coefficient is
Lipschitz continuous, B. Jourdain explained how to prove existence and uniqueness for the SDE by a fixed-
point approach. He also exhibited strong rates of convergence of approximations by interacting particle
systems as the number of particles tends to infinity. When either the integability properties of the Lévy
process or the smoothness assumption on the diffusion coefficient are relaxed, weak existence for the SDE is
obtained by weak convergence of the particle systems.

2.7 Fractal conservation laws
• N. Alibaud. Fractional Burgers equation.

• J. Droniou. A numerical approximation of the solutions to fractal conservation laws.

• G. Karch. Large time asymptotics of solutions to the fractal Burgers equation.

Four talks (the three previous ones and the one of W. A. Woyczynski, see above) were related to the study
of Fractal conservation laws in one space variable{

∂tu+ ∂x(f(u)) + (−∆)α/2u = 0 t > 0, x ∈ R ,
u(0, x) = u0(x) x ∈ R , (4)
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where f is a non-linear flux function and (−∆)α/2u is the fractional Laplacian.
We recall that the fractional Laplacian is defined as follows: for all Schwartz function φ,

(−∆)α/2φ = F−1(|ξ|αFφ)

where F denotes the Fourier transform. There also exists an integral representation of the fractional Lapla-
cian: for all φ ∈ C1,1 ∩ L∞, x ∈ R,

(−∆)α/2φ(x) = −c(α)
∫

(u(x+ z)− u(x)−Du(x) · z1B(z))
dz

|z|1+α

where 1B(z) denotes the indicator function of the unit ball of R and c(α) > 0 is a constant which only
depends on α.

An important special case of (4) is the fractal Burgers equation which corresponds to the case f(u) =
u2/2.

ut + uux + (−∆)α/2u = 0 (5)

with α ∈ (0, 2).

Before reviewing the results presented during the workshop about (4), we would like to mention that
all the important results known for this equation were proved by people attempting the workshop. As far
as existence and uniqueness of a solution is concerned, a first study was done in a framework of fractional
Sobolev spaces and Morrey spaces [9, 11]. Next, solutions were studied in a L∞ framework in [21]. In
particular, it is proved in the case α > 1 that there exists a smooth solution of (4) as soon as f is Lipschitz
continuous and u0 is bounded.

As far as fractal conservation laws are concerned, W. A. Woyczynski focused on results about the asymp-
totic behavior of solutions are obtained in [12, 28] in the case where f(u) = |u|r−1u and the physical origin
of the equation [26]. He explained that rC = 1+(α−1)/d is a critical non-linearity exponent. When r > rC ,
then the solution u of (4) for such f ’s behaves the one where f ≡ 0 (with the same initial datum). It is even
possible to get second-order asymptotics. When r = rC , there exists a unique source solution U and the long
time behaviour of u can be described by using U [28].

Alibaud explained that in the case α ≤ 1, the analyis developed in [21] in a L∞ framework do not apply.
In particular, shocks can occur even with smooth initial data u0 [2] and weak solutions are not unique; see
the working paper by Alibaud and Andreianov (Besançon, France). This is the reason why it is necessary to
define entropy solutions [1] by using the integral representation of the fractional Laplacian.

Karch presented results about the large time behavior of solutions of the Cauchy problem for (5) supple-
mented with the initial datum of the form

u0(x) = c+
∫ x

−∞
m(dy)

with c ∈ R, m being a finite (signed) measure on R. If α ∈ (1, 2), the corresponding solution converges
toward the rarefaction wave i.e. the unique entropy solution of the Riemann problem for the nonviscous
Burgers equation [27]. On the other hand, using a standard scaling technique one can show that equation
(5) with α = 1 has self-similar solutions of the form u(x, t) = U(x/t). These profiles determine the large
time asymptotics of solutions to the initial value problem with α = 1. If α ∈ (0, 1), the Duhamel principle
allows us to show that the non-linear term is asymptotically negligible and the asymptotics is determined by
the linear part of equation (5). These results will be contained in a working paper by C. Imbert and G. Karch.

Droniou presented a method to compute numerical approximations of solutions of (4). The conservation
law is discretized using classical monotone upwind fluxes (either 2-points fluxes, or higher order methods
such as MUSCL), and the discretization of the fractal operator is based on its integral representation. He
gave a few elements on the analysis of this scheme, and he provided numerical results showing behaviors of
the solution (such as shock or speed of diffusion) which have been predicted in the literature on theoretical
study of fractal conservation laws. See for instance Figure 2.7 for a numerical simulation of the appearence
of shocks [2].
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Figure 2: Initial condition (in green) and solution (in red) at time T = 0.5 and α = 0.3

2.8 Applications
• A. Peirce. Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions.

• B. Perthame. Adaptive evolution; concentrations in parabolic PDEs and constrained Hamilton-Jacobi
equations.

Some of the talks more directly described direct applications of nonlocal operators. This is in particular
the case of A. Peirce’s talk, in which he describe a model for studying propagation of hydraulic cracks. After
introducing the problem of Hydraulic Fracture and providing examples of situations in which Hydraulic Frac-
tures are used in industrial problems, A. Peirce presented some numerical method for solving the governing
equations, for which very few rigorous properties are known.

Hydraulic fractures (HF) are a class of tensile fractures that propagate in brittle materials by the injection
of a pressurized viscous fluid. Natural examples of HF include the formation of dykes by the intrusion of
pressurized magma from deep chambers. HF are also used in a multiplicity of engineering applications,
including: the deliberate formation of fracture surfaces in granite quarries; waste disposal; remediation of
contaminated soils; cave inducement in mining; and fracturing of hydrocarbon bearing rocks in order to
enhance production of oil and gas wells.

The governing equations in 1-2D as well as 2-3D models of Hydraulic Fractures involve a coupled system
of degenerate nonlinear integro-partial differential equations as well as a free boundary Namely, the width of
the fracture w(x, t) satisfies

∂tw = ∂x(w3∂xp)

where the pressure p is given by
p− σ0 = (−∆)1/2(w).

This equation is satisfied inside the fracture itself, i.e. for |x| ≤ l(t). It is a non local diffusion equation
(the pressure law is nonlocal) of order 3. At the tip of the fracture (x = ±l), we must have

w(±l, t) = 0 w3∂xp = 0.

A. Peirce then demonstrates, via re-scaling the 1-2D model, how the active physical processes manifest
themselves in the HF model and show how a balance between the dominant physical processes leads to
special solutions.

He then discussed the challenges for efficient and robust numerical modeling of the 2-3D HF problem
including: the rapid construction of Greens functions for cracks in layered elastic media, robust iterative
techniques to solve the extremely stiff coupled equations, and a novel Implicit Level Set Algorithm (ILSA)
to resolve the free boundary problem. The efficacy of these techniques with numerical results can be demon-
strated.

Living systems are subject to constant evolution through the two processes of mutations and selection, a
principle discovered by Darwin. In a very simple, general and idealized description, their environment can
be considered as a nutrient shared by all the population. This alllows certain individuals, characterized by a
’phenotypical trait’, to expand faster because they are better adapted to the environment. This leads to select
the ’best fited trait’ in the population (singular point of the system). On the other hand, the new-born popula-
tion undergoes small variance on the trait under the effect of genetic mutations. In these circumstances, is it
possible to describe the dynamical evolution of the current trait?
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In a work based on collaborations with O. Diekmann, P.-E. Jabin, S. Mischler, S. Cuadrado, J. Carrillo, S.
Genieys, M. Gauduchon and G. Barles, B.Perthame study the following mathematical model which models
such dynamics: 

∂tn = d∂xxn+ n(1− φ ? n), 0 ≤ x ≤ 1,

n(t, 0) = n(t, 1), ∂xn(t, 0) = ∂xn(t, 1)

n(0, x) = n0 ≥ 0

where the convolution kernel φ satisfies

φ ≥ 0,
∫
φ = 1, φ = 0 in R \ [−b, b].

Then it can be showm that an asymptotic method allows them to formalize precisely the concepts of
monomorphic or polymorphic population. Then, we can describe the evolution of the ’best fitted trait’ and
eventually to compute various forms of branching points which represent the cohabitation of two different
populations.

The regime under investigation correspond to letting the small parameter ε go to zero in
∂tn = ε∂xxn+ 1

εn(1− φ ? n), 0 ≤ x ≤ 1,

n(t, 0) = n(t, 1), ∂xn(t, 0) = ∂xn(t, 1)

n(0, x) = n0 ≥ 0

This leads to concentrations of the solutions and the difficulty is to evaluate the weight and position of the
moving Dirac masses that desribe the population. It can be shown however, that a new type of Hamilton-
Jacobi equation, with constraints, naturally describes this asymptotic.

3 Outcome of the meeting
This meeting brought together mathematicians with a common interest for nonlocal operators to present
their latest results on the topic. Besides the great quality of the talks (see above), this meeting has also
given the opportunity for people to meet and exchange ideas on this subject. Many participants have taken
advantages of the informal discussion sessions to work together. We know that several new collaborations
were started during the meeting, and we think that this is an indication that BIRS is extremely important to
the mathematical community.
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