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1 Summary
The objective of this workshop was to bring together researchers with a strong interest in projection and first-
order fixed-point algorithms, both from mathematics and from the applied sciences, in order to survey the
state-of-the-art of theory and practice, to identify emerging problems driven by applications, and to discuss
new approaches for solving these problems.

Various monographs and conference proceedings on projection methods and their applications have been
published recently. The participants have not met before and it is very unlikely they will meet again at
ordinary optimization conferences. We expect this workshop to be the base for new innovative research and
collaborations by its unique mix of experts whose areas of applications are broad, ranging from variational
analysis, numerical linear algebra, machine learning, computational physics and crystallography.

2 Overview of the Field and Relationships with the Workshop
In this section, we highlight some of the recent developments and open problems discussed at the workshop.
In particular, we focus on recent scientific progress as well as contributions of participants to the workshop.
The topics are grouped into four distinct areas, but common themes that arose throughout the conference
are the potential of first-order methods for solving large-scale and/or nonconvex problems, and the need for a
theoretical foundation to explain their success. A remarkable aspect of the talks was the role that experimental
mathematics has played in the development of theoretical intuition. The use of experimental results on
benchmark problems has long been standard practice in research on numerical algorithms, however the use
of mathematical software to test theoretical hypotheses is a relatively recent phenomenon. The development
of this practice has been well-documented in the recent books by Bailey, Borwein and collaborators [5, 4, 6].
The prevalence of computer-aided mathematical discovery in the presentations at this conference indicates
that this methodology has matured to an established practice.
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2.1 Douglas-Rachford / Difference Map Algorithms
The Douglas-Rachford algorithm [38], which is a linear implicit iterative method, was originally developed
in 1956 for solving partial differential equations. In 1979, Lions and Mercier [56] extended the Douglas-
Rachford algorithm to an operator splitting method for finding a zero of the sum of two maximal monotone
operators (see [31] for an historical account and theoretical details).

The Douglas-Rachford algorithm was discussed in several talks and from different viewpoints [32, 44,
57, 63, 81, 97]. When applied to normal cone operators of two nonempty closed convex sets A and B, with
associated projectors PA and PB as well as reflectors RA = 2PA − Id and RB = 2PB − Id, the governing
iteration takes the form

x0 ∈ X, (∀n ∈ N) xn+1 =
Id +RBRA

2
xn, (1)

where Id denotes the identity operator of the Hilbert space X . Under appropriate assumptions, the so-
generated sequence (xn)n∈N has the remarkable property that (PAxn)n∈N converges to a solution of the
underlying feasibility problem, i.e., to a point in A ∩B.

As is the case with good algorithms and ideas in science, this method was rediscovered by different
people working in different disciplines. Noteworthy is the application of the Douglas-Rachford algorithm in
phase retrieval with a support constraint (as opposed to support and nonnegativity), where it is known as the
hybrid input-output (HIO) algorithm, pioneered by Fienup [47] in 1982. (See also [8] for a view from convex
optimization.) A very interesting development originates with Elser [42], who has recently very successfully
applied the Douglas-Rachford algorithm to various continuous and discrete, nonconvex problems [43, 50]. In
the physics community, the algorithm is now known as the difference map algorithm and its product space
version à la Pierra [77] as divide and concur. Novel applications were given in his talk [44], which is available
in video format [45]. The constraint sets that arise in the non-convex settings studied by physicists — e.g.
spaces of orthogonal or low-rank matrices — often have projections that can be computed efficiently and
yet are outside the scope of conventional, linear programming based methods. By including non-convex
constraints in the general formalism even NP-complete problems are open to these solution methods. In
such applications, where the iterates behave chaotically, the question of convergence shifts to mathematical
themes more closely linked to dynamical systems and ergodicity. Macklem [65] illustrated how the software
package Cinderella [55] is a visual aid in refuting conjectures and building intuition for the Douglas-Rachford
algorithm in low dimensions. The flexibility of the projection-based method in crystallographic applications
[58, 59, 89] was illustrated with the protein envelope reconstructions reported in the talk by Lo [57]. Finally,
Yedidia [97] reported on a recent modification of the belief propagation algorithm based on the difference
map algorithm, which led to a new decoder that is currently state-of-the-art.

2.2 Other Projection-type Algorithms
Ben-Israel [18] presented his very recent work [19] on the inverse of the classical Newton iteration, which
leads to a geometric interpretation of iterations and chaos. Cegielski [28] described general frameworks
for projection methods as well as his recent generalization [29] of the classical Opial Theorem, which is of
fundamental importance in algorithmic fixed point theory [73]. De Pierro [37] described his recent work
on gradient and subgradient methods [53] and provided applications to SPECT (Single Photon Emission
Computed Tomography). Ideas of self similarity were presented by Ebrahimi [39], who considered Banach
contraction-based techniques [40]. Based on a statistical multiscale criterion, Marnitz [66] proposed an
algorithm for solving linear ill-posed equations. His algorithm also employs Dykstra’s method for finding the
best approximation to the intersection of convex sets. Another new application of projection type methods
was reported by Mostafa Nasri [71]. Nasri combines an augmented Lagrangian scheme with projections, for
solving equilibrium problems whose feasible sets are defined by convex inequalities. This method finds first
an approximate solution of an unconstrained equilibrium problem, and then, either an extragradient-type step
or a projection onto a suitable hyperplane is performed.

2.3 Inverse Problems, Convex Analysis, Optimization
In the inverse problems community, a lot of work is currently focused on the development of effi-
cient numerical techniques for solving minimization problems under sparsity-promoting constraints, e.g.
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[33, 36, 88, 91, 27], as well as rank reducing constraints, e.g. [46, 75]. Plemmons [78] opened the workshop
with a presentation on spectral image analysis. He showed the importance of identifying and quantifying the
materials present in the object or scene being imaged. He described a variational fuzzy segmentation model
coupled with a denoising/deblurring model based on fast total variation regularized computations, [98]. Beck
[15] presented developments in the spirit of his recent work in image recovery [16, 17] that aim at improv-
ing acceleration techniques originally proposed by Nesterov [72]. Luke [63] described a dual-space method
developed with Jonathan Borwein in which the regularized dual problem is solved via a subgradient descent
method with exact line search [20]. The selection of the “best” subgradient is formulated as a best approxima-
tion problem, to which a relaxed Douglas Rachford algorithm [64] is applied. The problem of sensor network
localization was addressed by Henry Wolkowicz [92]. This problem can be modeled as a rank constrained
semidefinite programming problem. However, the special structure of the problem allows one to take advan-
tage of the NP-hard rank constraint and solve huge problems (of the order of a million sensors) in reasonable
time to machine precision, [54]. A new first order algorithm for a class of smooth constrained minimization
problems, called the moving balls approximation method, was presented by Marc Teboulle [86], see also
[2]. This relies on a simple geometric idea that approximates the constraint set by a sequence of balls, and
combines this with a fixed point approach. Another approach to nonsmooth optimization problems arising in
signal processing was proposed by Yamada [93], who employed the Moreau envelope to smooth the original
problem and used a fixed point model to represent the constraints in the spirit of [94, 95].

Another interesting development in the use of modern optimization tools in signal processing was pro-
posed by Modersitzki [68] in the context of regularized variational image registration (see also [69]).

Convex combinations of resolvents and the underlying potential (the “proximal average”) were considered
by Wang [90], with particular emphasis on applications in linear algebra, and by Moffat [70] for non-quadratic
kernels. (See [9, 11] for underlying theory.) Nonconvex variations were explored by Hare [52]. Bauschke
[7] described results on Chebyshev and Klee sets with respect to Bregman distances induced by Legendre
functions [13, 14, 10]. Lucet [61] described his implementation of graph-calculus for computational convex
analysis, based on a calculus introduced by Goebel [51]. Bot [21] surveyed recent work on the stability of
Fenchel duality [22, 23], which provide an answer to a problem posed by Simons. Corvellec [34] presented
new results [3, 35] on the error bound principle. Yao [96] provided two linear maximal monotone operators
that he used to show that the answer to a recent question by B.F. Svaiter [85] is negative [12]. Zinchenko [99]
reported on a cost-effective usage of GP-GPUs to accelerate linear-algebraic computations needed to solve
large scale optimization problems arising in intensity modulated radiation therapy treatment planning [30].
An application of augmented Lagrangian schemes for nonconvex and nonsmooth problems was presented by
Burachik [24]. She described the recently devised Inexact Modified Subgradient algorithm for solving the
(convex) dual of a nonconvex optimization problem. Even though the original problem is nonconvex, the
method presented enjoys both primal and dual convergence.

In honor of Rudolf Kalman being awarded the US National Medal of Science, Jim Burke presented an
interior point algorithm for computing Kalman-Bucy smoothers with constraints [25, 26]. The method obtains
the same decomposition that is normally obtained for the unconstrained Kalman-Bucy smoother, hence the
resulting number of operations grows linearly with the number of time points.

Scherzer [82] presented some theoretical results establishing the relationship between lower semi-
continuity and separate convexity for non-local functionals that have attracted attention in image denoising.
Extending his techniques further, Scherzer outlined novel characteristics of Sobolev spaces to derive approx-
imations of the total variation energy regularization and hence to recover existing numerical schemes for total
variation minimization in addition to novel numerical schemes.

2.4 Monotone Operator Theory
Algorithm (1) is the iteration of a firmly nonexpansive mapping. Eckstein in his thesis [41] noted that even
though the projection operators PA and PB are proximal mappings1, the operator iterated in (1) need itself not
be a proximal mapping, i.e., it may be the resolvent of a maximal monotone operator that is not a subdifferen-
tial of a convex function. As such, monotone operator theory appears to be critical for a proper understanding
of the Douglas-Rachford / difference map algorithm. The talks by Revalski [79] and by Simons [83] go in this
direction: Revalski [48, 49, 76, 80] surveyed extended and variational sums of monotone operators, which

1Schaad provided a simpler example where A and B are the x-axis and the diagonal in R2 [81], respectively.
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are believed to play a role in the analysis of algorithms featuring resolvents when the sum of the underlying
maximal monotone operators is not maximal, and Simons considered generalizations of maximal monotonic-
ity to more abstract settings [84], nowadays called Simons or SSD spaces. López [60] and Martı́n-Márquez
[67] explored monotone operator theory on Hadamard manifolds, including convergence results for a prox-
imal point algorithm. Another important aspect of monotone operators is duality [1, 74]. Combettes [32]
examined composite monotone inclusions in duality and proposed primal-dual proximal splitting algorithms
to solve them.

3 Outcome of the Meeting
The organizers will edit a Conference Proceedings volume entitled Fixed-Point Algorithms for Inverse Prob-
lems in Science and Engineering, part of the Springer-Verlag series “Optimization and Its Applications”. A
good number of the participants will contribute to this volume. In addition, several researchers who were
unable to attend the workshop have committed manuscripts as well, including: J. Borwein (Newcastle),
Y. Censor (Haifa), G.T. Herman (New York), and S. Reich (Technion).
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