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1 A brief historical introduction
In the early 19th century a young French mathematician E. Galois laid the foundations of abstract algebra by
using the symmetries of a polynomial equation to describe the properties of its roots. One of his discoveries
was a new type of structure, formed by these symmetries. This structure, now called a “group”, is central to
much of modern mathematics. The groups that arise in the context of classical Galois theory are finite groups.

Galois died in a duel at the age of 20; his work was not understood or recognized during his lifetime.
It took much of the rest of the 19th century for his ideas to be rediscovered, absorbed and applied in other
contexts. In the context of differential equations, these ideas were advanced by E. Picard, who, following a
suggestion of S. Lie, assigned a Galois group to an ordinary differential equation. This group is no longer fi-
nite. It naturally acts on the n-dimensional complex vector space V of holomorphic solutions to the equation.
In modern language, the Galois groups that arose in Picard’s theory are algebraic subgroup of GL(V ).

This construction was developed into differential Galois theory by J. F. Ritt and E. R. Kolchin in the
1930s and 40s. Their work was a precursor to the modern theory of algebraic groups, founded by A. Borel,
C. Chevalley, J.-P. Serre, T. A. Springer, and J. Tits starting in the 1950s. From the modern point of view
algebraic groups are algebraic varieties, with group operations given by algebraic morphisms. Linear alge-
braic groups can be embedded in GLn for some n, but such an embedding is no longer a part of their intrinsic
structure. Borel, Chevalley, Serre, Springer and Tits used algebraic geometry to establish basic structural
results in the theory of algebraic groups, such as conjugacy of maximal tori and Borel subgroups, and the
classification of simple linear algebraic groups over an algebraically closed field. Considerations in number
theory, among others, require the study of algebraic groups over fields that are not necessarily algebraically
closed. This more general setting was the primary focus for much of the work discussed in the workshop.

In the 1960s J. Tate and J.-P. Serre developed a theory of Galois cohomology. Serre published his influen-
tial lecture notes on this topic in 1964; they have been revised and reprinted several times since then. Galois
cohomology can be viewed as an important special case of étale cohomology,

In the 1970s the work of H. Bass, J. Tate and Milnor, established connections among Milnor K-theory,
Galois cohomology, and graded Witt rings of quadratic forms. In particular, Milnor asked whether (in modern
language) Milnor K-theory modulo 2, is isomorphic to Galois cohomology with F2 coefficients. A more
general question, with 2 replaced by an odd prime, was posed in subsequent work of Bloch and Kato and
became known as the Bloch-Kato conjecture.

Since the 1980s there has been rapid progress in the theory of algebraic groups due to the introduction
of powerful new methods from algebraic geometry and algebraic topology. This new phase began with the
Merkurjev-Suslin theorem which settled a long-standing conjecture in the theory of central simple algebras,
using a combination of techniques from algebraic geometry and K-theory. The Merkurjev-Suslin theorem
was a starting point of the theory of motivic cohomology constructed by V. Voevodsky. Voevodsky developed
a homotopy theory in algebraic geometry similar to that in algebraic topology. He defined a (stable) motivic
homotopy category and used it to define new cohomology theories such as motivic cohomology, K-theory and
algebraic cobordism. Voevodsky’s use of these techniques resulted in the solution of the Milnor conjecture
for which he was awarded a Fields Medal in 2002. For a discussion of the history of the Milnor conjecture
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and some applications, see [46]. The Bloch-Kato conjecture was recently proved by Rost and Voevodsky;
see [51, 58, 59, 60, 61, 62, 63].

2 Recent Developments
2.1 Quadratic forms
In the last 20 years there has been a virtual revolution in the theory of quadratic forms. Using motivic meth-
ods and Brosnan’s Steenrod operations on Chow groups, Merkurjev, Karpenko, Izhboldin, Rost, Vishik and
others have made dramatic progress on a number of long-standing open problems in the field. In particu-
lar, the possible values of the u-invariant of a field have been shown to include all positive even numbers
(by A. Merkurjev, disproving a conjecture of Kaplansky), 9 by O. Izhboldin, and every number of the form
2n + 1, n ≥ 3 by A. Vishik. (Vishik’s result was first announced at our 2006 BIRS workshop.) Another
breakthrough was achieved by Karpenko, who described the possible dimensions of anisotropic forms in the
nth power of the fundamental ideal In in the Witt ring, extending the classical theorem of Arason and Pfister.

In [45] R. Parimala and V. Suresh settled the open question of whether the u-invariant of function fields of
p-adic curves is 8 affirmatively if the p-adic field is non-dyadic. Their work relies upon the previous work of
D. Saltman on Galois cohomology and on the work of Kato on certain unramified cohomology groups. In a
completely different way using patching methods in Galois theory, D. Harbater, J. Hartmann, and D. Krashen
reproved this result in [21]. Recently R. Heath-Brown used analytical methods to obtain sufficient conditions
for common zeros of systems of quadratic forms over p-adic fields and this result was used by D. Leep to
show in particular that the u-invariant of Qp(t1, . . . , tn) is 2n+2. This extends the work of [45] and [21] in
two significant ways: the transcendence degree need not be 1, and the prime p can be 2. Leep’s work is not
yet available in the preprint form.

2.2 Algebraic surfaces
An important development in the theory of central simple algebras is the proof by A. J. de Jong, of the long
standing period-index conjecture; see [14]. This conjecture asserts that the index of a central simple algebra
defined over the function field of a complex surface coincides with its exponent. Previously this was only
known in the case where the index of a central simple algebra had the form 2n ·3m (this earlier result is due to
M. Artin and J. Tate). In a subsequent paper de Jong and J. Starr found a new striking solution of the period-
index problem by constructing rational points on families of Grassmannians. Yet another geometric approach
for the index-period problem was developed by M. Lieblich. Lieblich’s approach is based on constructing
compactified moduli stacks of Azumaya algebras and studying their properties. Using his geometric methods,
M. Lieblich in particular was able to prove a variant of the period-index conjecture for a Brauer group of a
field of transcendence degree 2 over Fp. (See [35].)

Similar methods were used by A. J. de Jong, X. He, and J. Starr to establish Serre’s conjecture II in the
geometric case by showing that every G-torsor over the function field of a complex surface is split. (Here the
linear algebraic group G is assumed to be connected and simply connected.) For details, see [15].

The methods they used and their refinements are likely to play an important role in future research on
currently open problems in the theory of algebraic groups.

2.3 Cohomological invariants
Many fundamental questions in algebra and number theory are related to the problem of classifying G-torsors
and in particular of computing the Galois cohomology set H1(k,G) of an algebraic group defined over an
arbitrary field k. In general the Galois cohomology set H1(k,G) does not have a group structure. For
this reason it is often convenient to have a well-defined functorial map from this set to an abelian group.
Such maps, called cohomological invariants have been introduced and studied by J-P. Serre, M. Rost and A.
Merkurjev. Among them, the Rost invariant plays a particularly important role. This invariant has been used
by researchers in the field for over a decade but the details of its definition and basic properties have not
appeared in print until the recent publication of the book [17] by S. Garibaldi, A. Merkurjev and J.-P. Serre.
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This book, together with the previous book of M. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol ([29])
have become standard reference sources for current research in algebraic groups.

2.4 Galois theory
Let F be a field containing a primitive p-th root of 1. D. Benson, N. Lemire, J. Mináč and J. Swallow recently
gave a complete classification of the non-trivial pro-p-groups G with a maximal closed subgroup which is
abelian and of exponent p which are realizable as GF /Gp

E [GE , GE ] where GF is an absolute Galois group
and GE is a subgroup of index p in GF , was obtained (see [2]).

They also used the Bloch-Kato conjecture to produce new examples of pro-p-groups which cannot be
realized as absolute Galois groups.

Consider the p-descending central series GF = G(1)
F ⊃ G(2)

F ⊃ G(3)
F ⊃ . . . , where G[i+1]

F = (G(i)
F )p

[GF , G(i)
F ], and set G[i]

F = GF /G(i)
F .

In the recent paper [11] it is shown that G[3]
F is a Galois-theoretic analogue of Galois cohomology.

This group controls Galois cohomology (as a subring of its cohomology ring generated by one-dimensional
classes) and G[3]

F can be constructed using Galois cohomology and Bockstein elements in H2(G[2]
F , Fp). This

is used in obtaining examples of interesting families of pro-p-groups which cannot be realized as absolute
Galois groups. The group G[3]

F is interesting. On the one hand, it controls important arithmetic information
about the field F , including all non-trivial valuations and orderings. On the other hand, the structure of this
pro-p-group appears to be fairly accessible and should be studied further.

2.5 Essential dimension
Essential dimension is a numerical invariant of an algebraic group G, which, informally speaking, measures
the complexity of G-torsors over fields. It is is usually denoted by ed(G).

For finite groups the notion of essential dimension was introduced in 1997 by Buhler and Reichstein in [8,
9] as a natural byproduct of their study of classical questions about simplifying polynomials by Tschirnhaus
transformations and algebraic variants of Hilbert’s 13th problem. There is also an interesting connection with
generic polynomials and inverse Galois theory; see [8], [24, Section 8].

Essential dimension was then defined and studied for (possibly infinite) algebraic groups by Reich-
stein [49] and Reichstein–Youssin [50]. In this context the theory of essential dimension is a natural extension
of the theory of “special groups” initiated by J.-P. Serre in [56]. Over an algebraically closed field k special
groups are precisely those of essential dimension 0; these groups were classified by A. Grothendieck [20].
The essential dimension may thus be viewed as a numerical measure of how far a given algebraic group
G is from being special. Another such measure is the related invariant of the canonical dimension of G;
see [4, 28, 64].

Between 2000 and 2007 the essential dimension has been computed for a number of algebraic groups,
using a variety of techniques. One interesting connection is with the notion of cohomological invariant,
previously studied by Rost, Serre and others (see Section 2.3): if G has a cohomological invariant of degree d
then ed(G) ≥ d. Another highly fruitful connection is with the existence of non-toral finite abelian subgroups
in G; every such subgroup gives a lower bound on the essential dimension of G; see [50] and [19].

Initially these results were obtained over an algebraically closed base field of characteristic 0, many were
then proved under milder assumptions on k; see [3, 13]. On the other hand, even over the field of complex
numbers, for many groups G, the problem of computing the essential dimension of G remains wide open. For
example, for all but finitely many values of n the projective linear group PGLn, or the symmetric group Sn

are in this category; in this cases the problem of computing ed(G) is closely related to classical questions in
Galois theory and the theory of central simple algebras, respectively. Even for finite cyclic groups G = Z/nZ
viewed as algebraic groups over the field of rational numbers, the exact value of ed(G) is not known for most
n.

Merkurjev [39] and Berhuy–Favi [3] have further extended the notion of essential dimension to a covariant
functor. In this setting the essential dimension of an algebraic group is recovered from its Galois cohomology
functor H1(∗, G).
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Important developments in this subject have occurred over the past 3 years. The first breakthrough was
due to Florence [16] who computed the essential dimension of cyclic p-groups Z/prZ over a field containing
a primitive pth root of unity.

Next came a key idea, due to Brosnan, to study essential dimension in the context of algebraic stacks. To
a stack X defined over a field k one associates the functor

K $→ isomorphism classes of K-points of X

for any field extension K/k. The essential dimension of X is then defined as the essential dimension of this
functor. The class of functors of this form turns out to be broad enough to include virtually all interesting
examples, yet geometric enough to be studied by algebro-geometric techniques. There are many important
stacks in algebraic geometry, e.g., the moduli stacks of smooth (or stable) curves of genus g or moduli stacks
of principly polarized abelian varieties, and it is natural to ask what essential dimensions of these stacks are.
These questions are answered in [7].

What is perhaps, more surprising is that stack-theoretic methods have led to strong new lower bounds
in the “classical” situation, for some algebraic groups G. Note that in the language of stacks the essen-
tial dimension of an algebraic group G is the essential dimension of the classifying stack BG. A key role
in establishing this connection is played by the above-mentioned notion of canonical dimension and an in-
compressibility theorem of Karpenko for p-primary Brauer-Severi varieties [25]. Brosnan, Reichstein and
Vistoli [5, 6] recovered Florence’s results from this point of view and computed the essential dimension of
the spinor group Spinn for most values of n. Surprisingly, ed(Spinn) increases exponentially in n, while
previous lower bounds were linear in n.

Karpenko and Merkurjev [28] refined the techniques of [5] and combined them with new results on
Brauer-Severi varieties to give a simple formula for the essential dimension of any finite p-group G over a
field containing a primitive pth root of unity. This is a far-reaching extension of the work of Florence [16]. A
key ingredient of the proof is an extension of Karpenko’s incompressibility theorem to products of p-primary
Brauer-Severi varieties.

The Karpenko-Merkurjev theorem and its methods of proof have greatly influenced the research in the
area over the past two years. In particular, it led to the solution of several previously open questions about
essential dimension; see [42]. There has also been much work on extending Karpenko’s Incompressibility
Theorem to other classes of varieties, e.g., Hermitian spaces [55] or generalized Brauer-Severi varieties [26].
In [38] the techniques used in the proof of the Karpenko-Merkurjev theorem are further refined to give a
general formula for the essential dimension of a larger class of groups, which include twisted p-groups and
algebraic tori.

The latter formula was recently used by Merkurjev, in combination with the techniques developed in [40],
to give striking new lower bounds on the essential dimension of PGLn, where n = pr is a prime power. He
shows that ed(PGLn) ≥ (r − 1)pr + 1. For r = 2 this was shown in [40] (and for r = p = 2 in [52]). For
r ≥ 3 the best previously known bound was ed(PGLn) ≥ 2r.

3 Lectures delivered at the workshop
For the purpose of this report we have grouped the 27 lectures presented in the workshop into seven sections
as follows. Note that work of the participants is quite interlocked, and some of the talks relate to more than
one of these topics.

1. Quadratic forms,

2. Algebraic surfaces,

3. Galois theory and Galois cohomology,

4. Essential dimension,

5. K-theory, Chow groups and Brauer-Severi varieties,
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6. Structure of algebraic groups,

7. Representation theory of algebraic groups.

We will now briefly report on the content of each lecture.

3.1 Quadratic forms
Asher Auel: “A Clifford invariant for line bundle-valued quadratic forms”.

Line bundle-valued quadratic forms on schemes were first implicitly considered in the early 1970s by
Geyer, Harder, Knebusch, and Scharlau to study residue theorems, and by Mumford to study theta charac-
teristics. Motivated by the triangular Witt and Grothendieck-Witt groups introduced by Balmer and Walter,
and by the investigation of Azumaya algebras with involution on schemes by Knus, Parimala, Sridharan, and
Srinivas, the theory of line bundle-valued quadratic forms has only recently taken on its own significance.

A line bundle-valued quadratic form (E , q,L) on a scheme X (where 2 is invertible) is the data of a locally
free OX -module (vector bundle) E of finite rank, an invertible OX -module (line bundle) L, and a symmetric
OX -module morphism q : E ⊗ E → L. A classical quadratic form on X is a line bundle-valued quadratic
form with values in the trivial line bundle OX . A line bundle-valued quadratic form may be thought of as
a family, over the points of X , of vector spaces with a quadratic forms taking values in a one dimensional
vector space without a fixed choice of basis. Important examples arise from the middle exterior powers of
cotangent bundles of smooth varieties of dimension divisible by 4.

The first natural cohomological invariant of a quadratic form, the discriminant, generalizes to line-bundle
valued quadratic forms of even rank by the work of Parimala and Sridharan. This current work concerns
the construction of the second natural invariant, the Clifford invariant, to line bundle-valued quadratic forms.
The classical construction of the Clifford invariant (of an even rank quadratic form) as the Brauer class of
the full Clifford algebra does not generalize to line bundle-valued quadratic forms. By the work of Bichsel
and Knus, there is no full Clifford algebra of a line bundle-valued form with values in a nonsquare line
bundle. This can be interpreted as the nonexistence of a natural “spin” cover of the group of orthogonal
similitudes. In its place we have constructed a natural four-fold cover of the group of proper orthogonal
similitudes by the even Clifford group. This yields an étale cohomological invariant of line bundle-valued
forms of trivial discriminant and rank divisible by 4. This invariant has the novel feature of residing in the
2nd étale cohomology group with µ4-coefficients H2

ét(X, µ4) and interpolating between the classical Clifford
invariant and the 1st Chern class modulo 2 of the value line bundle. In low dimensional cases, this invariant
recaptures the classifications of line bundle-valued quadratic forms in terms of reduced norms and pfaffians.

The work of Parimala and Scharlau on the Witt groups of curves over local fields provides examples of
2-torsion Brauer classes that are not represented by the Clifford invariants of quadratic forms. This seems to
contradict Merkurjev’s theorem over schemes. To the contrary, we conjecture that in the case of curves over
local fields, all 2-torsion Brauer classes are represented by Clifford invariants of line bundle-valued quadratic
forms.

Eva Bayer-Fluckiger: “Hasse principle for automorphisms of lattices”.

An integral lattice is a pair (L, b), where L is a free Z-module of finite rank, and b : L×L → Z is a non-
degenerate symmetric bilinear form. Over R we can write b in the diagonal form form 〈1, . . . , 1,−1, . . . ,−1〉.
The signature of (L, b) is then defined as (r, s) where r is the number of 1’s and s is the number of −1’s.
We say that b is definite if r or s is 0. Otherwise b is indefinite. (L, b) is called even if b(x, x) ∈ 2Z, for all
x ∈ L.
Fact: (r − s) is divisible by 8.

Assume that t ∈ SO(L, b) and r + s = rank(L) is even. Then the characteristic polynomial f(x) ∈ Z[x]
of t is reciprocal, i.e., f(x) = xdegff(x−1). Conversely, given a reciprocal polynomial f(x) ∈ Z, we define:
Definition (L, b) is an f -lattice if (L, b) is even, unimodular, and there exists t ∈ SO(L, b) whose character-
istic polynomial equals f .
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Questions. 1) For which f ∈ Z[x] does there exist an f -lattice? 2) For which f ∈ Z[x] does there exist an
f -lattice with a prescribed signature (r, s)?

These questions are solved in the definite case. In the indefinite case, D. Gross and C. McMullen provided
the necessary conditions on f . These conditions are conjecturally also sufficient if f is irreducible. D. Gross
and C. McMullen proved this conjecture if |f(1)| = |f(−1)| = 1.

Bayer-Flückiger’s main result is the following Hasse Principle for Question 1) above.
Theorem. (Eva Bayer-Fluckiger) There exists an f -lattice over Z iff there exists an f -lattice over Zp.

Bayer-Flückiger also briefly discussed a similar but somewhat more complicated Hasse Principle for
Question 2). She concluded her lecture with several examples.

Detlev Hoffmann: “Differential forms and bilinear forms under field extensions”.

The behaviour of algebraic objects such as Galois cohomology groups, Milnor K-groups or quadratic
forms under field extensions is an important problem in the study of these objects. For example, a crucial part
in the proof of the Milnor conjecture by Orlov-Vishik-Voevodsky relating Milnor K-groups modulo 2 and the
graded Witt ring was the determination of the kernel of the map KM

n (F )/2 → KM
n (E)/2 between Milnor

K-groups modulo 2, where E = F (q) is the function field of a particular type of quadric (given by a certain
Pfister neighbor) over a field F of characteristic not 2. In the proof of the Bloch-Kato conjecture, such kernels
are again important for field extensions given by function fields of so-called norm varieties as defined by Rost.
Another example that has been studied extensively is the behaviour of Witt rings (in characteristic not 2) under
field extensions. In general, determining such kernels is very difficult, and only few results are known. For
instance, in characteristic not 2, a complete determination of Witt kernels W (E/F ) = ker(WF → WE) for
arbitrary algebraic extensions of degree [E : F ] = n is only known for n odd (where the kernel is trivial due
to Springer’s theorem), for n = 2 (easy and well known) and n = 4 (proved by Sivatski only in 2008).

Here, we consider the case of a field F of characteristic 2 and the Witt ring WF of symmetric bilinear
forms over F . It turns out that in this situation, Witt kernels W (E/F ) can be determined explicitly for
a large class of field extensions going far beyond what is known in the case of characteristic not 2. Let
X = (X1, . . . , Xn) be an n-tuple of variables (n ≥ 1), and let g(X) ∈ F [X] be irreducible. The function
field E = F (g) is defined to be the quotient field of the integral domain F [X]/(g). If n = 1, E is nothing
else but a simple algebraic extension. For n ≥ 2, one obtains function fields of hypersurfaces. We derive a
complete and explicit description of W (E/F ) in terms of the coefficients of the polynomial g(X). The proof
relies heavily on the use of differential forms. More precisely, let F now be a field of positive characteristic
p > 0 and let Ωn(F ) denote the Kähler differentials in degree n over F (with respect to the prime field
Fp). We compute the kernel Ωn(E/F ) for function field extensions E = F (g) for arbitrary irreducible
g(X) ∈ F [X]. In the case p = 2, one can then use a famous theorem by Kato and results by Aravire-Baeza
to compute the kernels In/In+1(E/F ) for the graded Witt ring, from which the result on W (E/F ) follows
by some standard arguments.

3.2 Algebraic surfaces

Mark Blunk: “del Pezzo surfaces of degree 6 and derived categories”.

M. Blunk’s thesis focuses on an explicit description of certain geometrically rational surfaces, del Pezzo
surfaces of degree 6. He relates del Pezzo surfaces of degree 6 over an arbitrary field F to the following
algebraic information: a triple (B, Q,KL), consisting of a separable algebra B of constant rank 9 with
center K étale quadratic, a separable algebra Q of constant rank 4 with center L étale cubic, such that B and
Q contain KL := K ⊗F L as a subalgebra, and the corestrictions corK/F (B) and corL/F (Q) are split, i.e,
isomorphic to matrix rings. The main result is:
Theorem 0.1. There are bijections, inverse to each other, between the following two sets: The set of iso-
morphism classes of del Pezzo surfaces of degree 6 over F , and the set of triples (B, Q,KL), modulo the
relation: (B, Q,KL) ∼ (B′, Q′, K ′L′) if and only if there are F -algebra isomorphisms φB : B → B′ and
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φQ : Q → Q′ such that φB and φQ agree on their restriction to the subalgebra KL. This restriction is then
an isomorphism of F -algebras from KL to K ′L′.

B and Q can be realized as the global endomorphism rings of two vector bundles I and J on S. M. Blunk
is able to use these vector bundles to give an explicit description of the K-theory of the surface S.
Theorem 0.2. Kn(S) ∼= Kn(F )⊕Kn(B)⊕Kn(Q), where Kn is the nth Quillen K-functor.

Similarly, the vector bundles I and J can be used to relate the derived category of coherent sheaves
on S to the derived category of finitely generated modules over the ring A = EndOS (OS ⊕ I ⊕ J ), a
finite dimensional F -algebra with semi-simple quotient F ×B ×Q. In particular, the functor Hom(T ,−) :
Coh(S) → mod A induces a natural equivalence RHom(T ,−) : Db(Coh(S)) ∼→ Db( mod A).

Daniel Krashen: “Patching topologies and local global principles”. (Joint work with D. Harbater and
J. Hartmann.)

Patching methods were successfully used by D. Harbater in Galois theory. He proved in particular that
every finite group is a Galois group of a regular extension of Qp(t). Recently some other exciting results
in patching theory and its applications to u-invariants in quadratic forms and Brauer groups were obtained
by D. Krashen, D. Harbater and J. Hartman. This talk is a preliminary report on the further development
of patching theory. Its aim is twofold: to pay a special attention to the relationship between factorization
and local-global principles and second, to extend the basic factorization result to the case of retract rational
groups, thereby answering a question posed by Colliot-Thélène.

Broadly speaking, for a given field F the patching method is a procedure for constructing new fields
Fξ which will be in certain ways simpler than F and to reduce problems concerning F to problems about
various Fξ. The focus of Krashen’s talk was the function field F of a p-adic curve X and different kind of
geometric objects associated to it. Using geometric methods Krashen introduced a kind of ”completions” Fξ

of F and using patching technique he talked about local-global principles for Brauer groups, quadratic forms,
homogeneous varieties and etc. The details, references and some examples are in [31].

Raman Parimala: “Degree three Galois cohomology of function fields of surfaces”. (Joint work with
V. Suresh.)

A few years ago Parimala and Suresh proved a long standing conjecture that the u-invariant of the function
field of a curve over a p-adic field where p .= 2 is 8. Their proof heavily depends on properties of degree
three Galois cohomology of function fields of curves. In her talk Parimala discussed local-global principle
for degree three Galois cohomology of function fields of surfaces.
Theorem. (Parimala and Suresh). Let X is a regular 2-dimensional, excellent integral scheme, F = F (X),
l ∈ O∗x, µl ∈ F . Let Ω be the set of discrete valuations of F associated to the points of x ∈ X1 of
codimension 1. Suppose H3

nr(F (X), µl) = 0, and H2
nr(k(x), µl) = 0,∀x ∈ X1. Then an element ξ ∈

H3(F, µl) is divisible by α = (a)(b) ∈ H2(F, µl) if and only if it is divisible locally for all v ∈ Ω.
Parimala also explained several applications of this local-global principle in computing u-invariant, study-

ing properties of a conic fibration Y → X where X is a smooth projective surface over a finite field and
describing 0-cycles of varieties over global fields.

David Saltman: “Ramification in bad characteristic”.

In the past, Saltman obtained important results on central simple algebras over function fields of p-adic
curves, by carefully examining ramifications. These results were used by R. Parimala and V. Suresh in show-
ing that a u-invariant over a non-dyadic p-adic function field, is 8, and they are also clearly of independent
interest. One particularly interesting motivation is the long-standing problem of whether each division algebra
of degree p is cyclic.

In his talk, D. Saltman examined the most difficult case of mixed characteristic. Let S be a nonsingular
surface with a field of fractions K = F (S). For every curve C ⊂ S consider the stalk Os,c. Then
Br(S) = ∩ C⊂S Br (OS,c) ≤ Br(F (S)).



8

The key problem is to describe ways to split a central simple algebra α over F (S) where the order of α
in the Brauer group is not a unit in the residue field. In order to focus on the main difficulty, the following
case investigated by K. Kato, was discussed.

K = a fraction field of R,R is a discrete valuation ring, char K = 0, char R̄ = p .= 0, K is complete,
[R̄ : R̄p] = p, e = v(p) = ramification index, N = ep

p−1 , K contains a primitive pth-root of unity. (Hence
(p− 1)/e) br(K) = elements in the Brauer group of K of order p.

The filtration on units induces filtration on br(K): br(K)0 ⊇ br(K)1 ⊇ · · · ⊇ br(K)N+1 = {0}. Kato
proved: a) br(K)0/br(K)1 = k∗/k∗p (k = R̄ = residue field of R), b) br(K)i/br(K)i+1 = Ωk if p !
i, c) br(K)i/br(K)i+1 = k+/k+p if p | i, d) br(K)n

∼= H1(k, Q/Z).
Moreover, every element in a), b), c) can be represented by a single symbol and can be split by a pth-root

of some unit. Saltman discussed several ideas, conjectures and examples in this setting.

Jason Starr: “Rational simple connectedness and Serre’s “Conjecture II” ”.

Starr’s lecture was devoted to the ideas surrounding his recent work with de Jong on the existence of
rational sections to fibrations X → B over an algebraic surface B and its application to Serre’s Conjecture
II. Recall that this conjecture says that the Galois cohomology set H1(F,G) = {1} for any semisimple
simply connected algebraic group G defined over a perfect field F of cohomological dimension at most 2.
Equivalently, the question is whether every G-torsor over Spec (F ) is trivial. For history and details we refer
to the survey [18].

The proof of the geometric case of Serre’s Conjecture II (i.e. when F is the function field of a surface
over an algebraically closed field k) in [15] is an outgrowth of a project of finding an algebro-geometric
analogues of the topological notion of “r-connectedness”. The notion of 1-connectedness (also known as
rational connectedness) is well understood; the existence of a rational section of X → B where B is a
curve over k and fibers are geometrically connected varieties is a celebrated theorem of Graber, Harris and
Starr. The definition of 2-connectedness (also known as rational simple connectedness) is considerably more
complicated, but it also implies the existence of a rational section of φ : X → B under some natural mild
conditions on X , B and φ.

In his talk Starr explained how these results are used to complete the proof of Serre’s Conjecture II over
function fields using P. Gille’s inductive strategy.

3.3 Galois Theory and Galois Cohomology

Sanghoon Baek: “Cohomological invariants of simple algebras”.

Let A : Fields/F → Sets be a functor. J.-P. Serre defined an invariant of A with values in a cohomology
theory H (viewed as a functor from Fields/F to Sets) to be a morphism of functors A → H . All the
invariants of A with values in H form a group Inv(A, H). When A = H1(−, G) for an algebraic group
G, we simply write Inv(G, H) for the group Inv(A, H). In particular, the cases A = H1(−,PGLn) and
A = H1(−,GLn/µm) with m dividing n, i.e., the problems of classifications of invariants of central simple
algebras of degree n and central simple algebras of degree n and exponent dividing m, respectively, are still
wide open.

Let D be a central simple algebra over a field F . Denote by qD the quadratic form on D defined by
qD(x) = Trd(x2) for x ∈ D, where Trd is the reduced trace form for D. Let en : In(F ) → Hn(F ) be
the cohomological invariant for the quadratic form, where Hn(F ) := Hn(F, Z/2Z). Recently, M. Rost, J.-
P. Serre and J.-P. Tignol showed that qD decomposes in the W (F ) as the sum of a 2-fold Pfister form q2 and
a 4-fold Pfister form q4 for D ∈ H1(−,PGL4) over a base field F such that char(F ) .= 2 and −1 ∈ F×2.
This provides cohomological invariants e2 and e4 given by D $→ e2(q2) and D $→ e2(q4) respectively.
Another type of cohomological invariants for central simple algebras is from the divided power operation:
γn : Ki(F )/p → Kni(F )/p defined by γn(

∑r
j=1 αj) =

∑
1≤j1<···<jn≤r αj1 · . . . · αjn , where the αj are

symbols of degree i. In particular, for p = 2 and i = 2, we have γn : Br2(F ) 4 k2(F ) → k2n(F ) 4
H2n(F ). Restricting the divided powers on the subfunctor H1(−,GL2k/µ2) ⊂ Br2 we view the γn as
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invariants of GL2k/µ2. Baek discussed his joint work with A. Merkurjev on the invariants of GL2k/µ2 for
1 ≤ k ≤ 3. They proved that Inv(GLn/µ2, H) is free H(F )-module with basis {1 = γ0, γ1, . . . , γk} for
n = 2k and 1 ≤ k ≤ 3. Furthermore, for any D ∈ H1(−,GL8/µ2), the form qD is a 6-fold Pfister form
such that e6(qD) = γ6(D). As a consequence, we get 6 ≤ ed(GL8/µ2) ≤ 8. At the end of the lecture Baek
showed that similar result holds for an upper bound of ed(GL8/µ2) if the base field F is of characteristic 2.

Skip Garibaldi: “Applications of the degree 5 invariant of E8”.

Recently Nikita Semenov discovered a new degree 5 cohomological invariant for E8-torsors. (Invariants
of torsors appeared also in the talk by Sanghoon Baek.) The construction of this invariant used motives
(the technology underlying the proof of the Bloch-Kato conjecture), and unfortunately this does not give an
explicit formula for the invariant. S. Garibaldi spoke on his joint work with Semenov where they produce
a formula for the invariant for those torsors that appear in Tits construction and gave several applications.
Specifically, they constructed new cohomological invariants for curtain groups of type E7; constructed new
examples of anisotropic groups of E8; constructed new cohomological invariants of Spin16-torsors; computed
the essential dimension of the kernel of the Rost invariant on Spin16 (connecting his talk with other talks on
essential dimension by A. Meyer, R. Lötscher, and M. MacDonald), and used the invariant of E8-torsors to
give concrete criteria for embedding certain finite simple groups in the split form of E8, filling in a question
mark from a 1998 note by Serre.

Arturo Pianzola: “Applications of Galois cohomology to infinite dimensional Lie theory”. (based on
joint projects with B. Allison, S. Berman, P. Gille, V. Kac, and M. Lau.)

Pianzola’s talk focused on surprising connections between of non-abelian Galois cohomology of Laurent
polynomial rings and extended affine Lie algebras (a class of infinite dimensional Lie algebras which, as
rough approximations, can be thought off as higher nullity analogues of the affine Kac-Moody Lie algebras).

Though the algebras in question are in general infinite dimensional over the given base field (say the
complex numbers), they can be thought as being finite provided that the base field is now replaced by a ring
(in this case the centroid of the algebras, which turns out to be a Laurent polynomial ring). This leads us to
the theory of reductive group schemes as developed by M. Demazure and A. Grothendieck. Once this point of
view is taken, the language of torsors arise naturally. This novel geometrical approach has lead to unexpected
interplays between infinite dimensional Lie theory and the theory of algebraic groups, such as the work of
Raghunathan and Ramanathan on torsors over the affine space, isotriviality questions for Laurent polynomial
rings, Azumaya algebras, and Serre’s Conjecture I and II.

This new language is so flexible and powerful that can be adapted also to the study of Differential Con-
formal Superalgebras. This involves, at the very least, rewriting the descent formalism for the case when a
base scheme is replaced by a differential scheme. Concrete application have already been found that relate to
the classification of the ”affine” N -conformal superalgebras, and work of Schwimmer and Seiberg.

Andrew Schultz: “The first Galois cohomology group as a Gal(E/F )-module, and applications”.
(Joint with Ján Mináč and John Swallow.)

The talks of A. Schultz and J. Swallow are surveys of recent results on the Galois module structure of
Galois cohomology and their applications to Galois theory. A. Schultz began by considering how certain
Galois embedding problems related to Kummer theory could be interpreted in terms of the Galois structure
of E×/E×p, where E× represents the multiplicative group of E. Investigations into the structure of this
module began with work of Borevič and Faddeev in the case that E is a local field. Schultz presented the
following result for extensions satisfying Gal(E/F ) 4 Z/pnZ; in the following result, Ei is the extension
of degree pi of F within E/F .
Theorem. If p > 2 and ξp ∈ F , and if Gal(E/F ) 4 Z/pnZ, then E×/E×p 4 X⊕Y0⊕Y1⊕ · · ·⊕Yn where
each Yi is a free Fp[Gal(Ei/F )]-module, and X is cyclic module of dimension pi(E/F ) + 1. The invariant
i(E/F ) comes from the set {−∞, 0, 1, · · · , n− 1}, where p−∞ is defined to be 0.
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One can interpret i(E/F ) in terms of embedding problems: i(E/F ) = −∞ if E/F can be embedded
in a cyclic, Z/pn+1Z extension E′/F , and otherwise i(E/F ) represents the smallest number i such that
E/Ei+1 can be embedded in a cyclic Z/pn−iZ-extension E′/F .

This result has analogues in the cases p = 2 as well as when ξp .∈ E, but they weren’t discussed for
expository reasons. The full results are in [44].

Schultz explained how this theorem could be used to show that the appearance of certain Galois groups
over F can force the appearance of other Galois groups over F , corollaries in the vein of so-called automatic
realization results. The expectation is that the Galois structure of E×/E×p will be used in arithmetic and
geometric constructions beyond Galois theory, much in the same way that the structure of E×/E×2 can be
used to understand quadratic forms when E is a quadratic extension of F .

John Swallow: “Galois cohomology groups as Galois modules, and applications”. (Joint work with
D. Benson, J. Labute, N. Lemire and J. Mináč.)

Let p be prime and ξp a primitive pth root of unity. Let kmF denote the reduced Milnor K-theory of the
field F modulo p, and let Hm(F ) denote the cohomology group Hm(GF , Fp). The Bloch-Kato conjecture
(now the Rost-Voevodsky theorem) tells us that the norm residue map kmF → HmF is an isomorphism.
The purpose of this talk was to explicitly interpret this powerful theorem in terms of structural properties of
absolute Galois groups.

To begin, Swallow showed how this theorem forced a stratification in the Galois module structure of
certain Galois cohomology groups. Let U be an open normal subgroup of index p in GF . We write G :=
GF /U , with E the fixed field of U . Kummer theory shows that E = F ( p

√
a) for some a ∈ F×. We then

have the following
Theorem. [LeMS] When viewed as a Fp[G]-module, HmE is a direct sum of indecomposable submodules
of dimensions 1, 2 and p.

Indeed, one can be quite explicit in this decomposition. For instance, one can give the multiplicities
of each summand type in terms of arithmetic information related to (a), (ξp) and quotients of the filtration
Hm−1F ⊇ ann{a, ξp} ⊇ ann(a), where ann(·) denotes the annihilator of the given cohomology class.

The power of this result is exhibited by its applications. For instance, one can use this result to give
certain “hereditary” properties of Galois cohomology.

The Bloch-Kato conjecture also allows us to translate certain questions about pro-p groups to the context
of Galois cohomology; indeed, the inflation map gives an isomorphism inf : Hi(GF (p), Fp) → Hi(GF , Fp)
for all i ∈ N, where GF (p) is the maximal pro-p quotient of GF . One can then ask how standard cohomo-
logical properties are translated in terms of these Galois modules. The computed module structure then gives
Theorem. [LLMS] The cohomological dimension of GF (p) is at most n if and only if cor : HnE → HnF
is surjective for all E/F cyclic of degree p.

One can also give an interesting generalization of Schreier’s formula using the Galois module struc-
ture of Galois cohomology. Recall that Schreier’s formula tells us that if the cohomological dimension of
a pro-p group G is 1, then for all open subgroups H in G, h1(H) = 1 + [G : H](h1(G) − 1), where
dimFp Hi(H, Fp) = hi(H). Using the stratified decomposition of Galois cohomology in our case, we have
Theorem. Suppose hn(GF ) < ∞ and that cor : HnE → HnF is surjective. Then hn(GE) = an−1(E/F )+
p(hnGF − an−1(E/F )), where an−1(E/F ) = dimFp

Hn−1F
ann(a) .

One can further develop a formula for the partial Euler-Poincaré characteristic and classify certain small
quotients of absolute Galois groups. For details see [34] and [2].

3.4 Essential Dimension

Alexander Duncan: “Groups of essential dimension 2”.

Let G be a finite group and C be the field of complex numbers. A theorem of Buhler and Reichstein
asserts that edC(G) = 1 if and only if G is cyclic or dihedral. The proof is based on the fact that the only
rational complex curve is P1.
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Duncan spoke on his recent classification of finite groups of essential dimenson 2 over C. Here the
underlying geometry is considerably more difficult. The minimal rational surfaces with the action of a finite
group G were classified by F. Enriques, Yu. Manin, and V. A. Iskovskikh, but this classification is rather
involved, and it is not always clear which surfaces occur for a given G.

The starting point of Duncan’s work was a recent classification of finite subgroups of the 2-dimensional
Cremona group by I. Dolgachev and Iskovskikh, and the following recent results on the essential dimension
of finite groups.

• (H.-P. Kraft, R. Lötscher and G. W. Schwarz) Let G be a finite group whose center is non-trivial. Then
ed(G) = 2 if and only if G embeds into GL2(C).

• (N. Karpenko and A. Merkuriev) Let G be a finite p-group. Then edC(G) is the minimal value of
dim(ρ), where ρ ranges over the faithful complex linear representations of G.

Duncan’s main result is the following theorem.
Theorem Let G be a finite group. Then edC(G) ≤ 2 if and only if G is a subgroup of one of the following

groups:
1) T " D12 and |G ∩ T | is not divisible by 2 or 3,

2) T " D8 and |G ∩ T | not divisible by 2,

3) & 4) T " S3 and |G ∩ T | is not divisible by 3, (there are two such group up to isomorphism),

5) The general linear group GL2(C),

6) The finite projective linear group PSL2(F7);

7) The symmetric group S5.
The most intricate parts of Duncan’s proof are based on the results he obtained about the Cox ring of a

toric variety with a finite group action. These intermediate results are of independent interest.

Roland Lötscher: “A multihomogenization technique for the study of essential dimension of algebraic
groups”.

Let k be a field, and G be a finite group. A rational covariant of G is the G-equivariant map ϕ :
V !!" W , where V and W are G-modules. ϕ is called generically free if ϕ(V) is generically free.
dimϕ := dimension of ϕ(V). The essential dimension edk G can be expressed in terms of rational co-
variants: edk(G) = min{dimϕ

∣∣ ϕ is a generically free covariant of G over k} − dimG. The related
notion of covariant dimension covdimk(G) defined in a similar manner, using regular, rather than rational
covariants. It is easy to see that

edk(G) ≤ covdimk(G) ≤ edk(G) + 1 .

Reichstein asked for which groups edk(G) = covdimk(G).
Lötscher, H. Kraft, and G. W. Schwarz gave a complete answer to this question. Their main result is the

following theorem.
Theorem: Let G be a non-trivial finite group. Then edC(G) = covdimC(G) if and only if G has a

non-trivial center.
The proof relies on a multihomogenization technique pioneered by Florence [16] and further devel-

oped by Lötscher, H. Kraft, and G. W. Schwarz. The idea is to replace a faithful covariant ϕ : V → W
by a homogeneous (and more generally, a multihomogeneous) faithful covariant ϕh : V → W such that
dim(ϕ) ≥ dim(ϕh).

Lötscher has found other applications of this technique. In particular, it can be used to simplify the proof
of the theorem of Karpenko and Merkurjev [28] on the essential dimension of a finite p-group.
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Mark MacDonald: “Essential p-dimension of algebraic tori”.

MacDonald spoke on his recent joint work with Lötscher, Meyer and Reichstein. The starting point of
this project is the following theorem, due to Karpenko and Merkurjev.

Theorem 0: Let G be a finite p-group and k be a field containing a primitive pth root of unity. Then
edk(G; p) = edk(G) = min dim(V ) , where the minimum is taken over all faithful k-representations
G ↪→ GL(V ).

MacDonald and his collaborators proved similar formulas for for a broader class of algebraic groups G,
which includes all twisted p-groups and all algebraic tori. Their main result is as follows.

Theorem 1: Let k be a p-closed field of characteristic .= p. Suppose there exists an exact sequence
1 → T → G → F → 1 of algebraic groups over k, where T is a torus and F is a twisted finite p-
group. Then: (a) edk(G; p) ≥ min dim(ρ) − dimG, where the minimum is taken over all p-faithful linear
representations ρ of Gk over k. (b) If G is the direct product of T and F then equality holds in (a). Moreover,
ed(G) = edk(G; p).

Note that for the purpose of computing ed(G; p), the assumption that k is p-closed is harmless; the value
of ed(G; p) does not change if k is replaced by its p-closure.

If G a direct product of a torus and an abelian p-group, the value of edk(G; p) given in part (b) can be
rewritten in terms of the character module X(G). This often renders it computable by standard methods of
integral representation theory. In the case of a torus, this results in the following simple formula.

Theorem 2: Let T be an algebraic torus defined over a p-closed field k of characteristic .= p. Suppose
the absolute Galois group Γ = Gal(k) acts on the character lattice X(T ) via a finite quotient Γ. Then
edk(T ) = edk(T ; p) = min rank(L) , where the minimum is taken over all exact sequences of Z(p)Γ-
lattices of the form (0) → L → P → X(T )(p) → (0) . with P permutation. Here X(T )(p) stands for
X(T )⊗Z Z(p).

MacDonald outlined a proof Theorems 1 and 2 and discussed several applications. For details, see [38].
Other applications were suggested by workshop participants during the question period.

Aurel Meyer: “A bound on the essential dimension of central simple algebras”.

Given a central simple algebra A over a field K, one can ask whether A can be written as A = A0⊗K0 K
where A0 is a central simple algebra over some subfield K0 of K. In that situation we say that A descends
to K0. Let us assume that K contains a base field k, which is assumed to be fixed throughout. The essential
dimension of A, denoted ed(A), is the minimal transcendence degree over k of a field k ⊂ K0 ⊂ K such
that A descends to K0. It can be thought of as “the minimal number of independent parameters” required to
define A.

For a prime number p, the related notion of essential dimension at p of an algebra A/K is defined as
ed(A; p) = min ed(AK′), where K ′/K runs over all finite field extensions of degree prime to p. We also
define ed(PGLn) := max { ed(A) } , and ed(PGLn; p) := max { ed(A; p) } , where the maximum is taken
over all fields K/k and over all central simple K-algebras A of degree n. The appearance of PGLn in the
symbols ed(PGLn) and ed(PGLn; p) has to do with the fact that central simple algebras of degree n are in
a natural bijective correspondence with PGLn-torsors.

The problem of computing ed(PGLn) was first raised by C. Procesi in the 1960s in the context of his (and
S. Amitsur’s) pioneering work on universal division algebras. Procesi showed (using different terminology)
that in fact, ed(PGLn) ≤ n2 ; see [48, Theorem 2.1].

Meyer talked about the following new upper bounds on the essential p-dimension of the projective linear
group PGLpr : ed(PGLn; p) ≤ 2n2

p2 − n + 1. L. H. Rowen and D. J. Saltman [53] showed that if s ≥ 2
then there is a finite field extension K ′/K of degree prime to p, such that A′ := A ⊗K K ′ contains a field
F , Galois over K ′ with Gal(F/K ′) 4 Z/p× Z/p. The above bound is thus a consequence of the following
theorem.

Theorem: Let A/K be a central simple algebra of degree n. Suppose A contains a field F , Galois over
K and Gal(F/K) can be generated by r ≥ 1 elements. If [F : K] = n then we further assume that r ≥ 2.
Then ed(A) ≤ r n2

[F :K] − n + 1.
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Meyer explained how to prove this theorem. The construction of a suitable subalgebra A0 is based on the
theory of Gal(F/K)-lattices. For details, see [43].

3.5 K-theory, Chow Groups and Brauer-Severi Varieties

Mikhail Borovoi: “Extended Picard complexes and homogeneous spaces”. (Joint work with Joost van
Hamel.)

Inspired by a result of Kottwitz, for a smooth algebraic variety X over a field k of characteristic 0, Borovoi
and van Hamel introduce a certain complex of Galois modules UPic(X), which they call the extended Picard
complex of X . From UPic(X) one can compute the Picard group Pic(X) and the algebraic Brauer group
Bra(X). Borovoi and van Hamel compute UPic(G) (up to an isomorphism in the derived category), where G
is a connected linear algebraic group over k. Moreover, they compute UPic(X) (again up to an isomorphism
in the derived category) where X is a homogeneous space of a linear algebraic group over k (they do not
assume that X has a k-point). This permits them to compute Bra(X) for such X . In the course of the
proof they consider the equivariant Picard group PicG(X), where now k is an algebraically closed field of
characteristic 0 and X is any integral variety over k with any action of a connected k-group G. They compute
PicG(X) in terms of divisors and rational functions (on X and on X ×k G).

Baptiste Calmès: “Invariants, torsion indices and oriented cohomologies of flag varieties”. (Joint work
with Viktor Petrov and Kirill Zainoulline.)

After the work of M. Levine and F. Morel on algebraic cobordism, it is a natural program to try and lift the
calculations from specifically-oriented cohomology theories such as Chow groups, the Grothendieck group
K, and connective K-theory, to any oriented cohomology h in the sense of M. Levine and F. Morel. In joint
work with V. Petrov and K. Zainouilline, B. Calmès succeeded in adapting Demazure’s 1973 calculation of
the Chow ring of G/B, where G is a semisimple, simply connected linear algebraic group G over a field k,
and B is its Borel subgroup to such a calculation of h∗(G/B) where h∗ is any oriented cohomology.

As an application, they prove a generalization to all oriented cohomology theories, Borel’s description of
the singular cohomology of complete flags of type An in terms of symmetric polynomials. Also they provide
an algorithm to compute the ring structure of the algebraic cobordism of G/B.

Nikita Karpenko: “Incompressibility of quadratic Weil transfer of Severi-Brauer varieties”.

Recall that if X is a smooth complete irreducible variety X/F , then X is incompressible if any rational
map X !!" X is dominant. Equivalently, canonical dimension of X = dim X . Let K/F be a separable
quadratic extension, and let D/K be a 2-primary division algebra such that N(D) = a corestriction of D
from K down to F is Brauer-trivial. Let SB(D) be the Severi-Brauer variety of D and R(SB(D)) be its Weil
transfer.
Theorem. Then the variety R(SB(D)) is 2-indecomposable (hence 2-incompressible).

One can consider generalized Severi-Brauer varieties SB2i(D), i = 0, 1, . . . , n (where the degree of D is
2n). One can still prove that RSB2i(D) is 2-incompressible. The proof uses some very interesting motivic
decompositions of the motives of these varieties.

It is known that a non-hyperbolic orthogonal involution on a central simple algebra A remains non-
hyperbolic after passing to the function field of SB(A). J.-P. Tignol recently observed that the same is true
for unitary involutions on algebras of exponent 2. Karpenko’s work was motivated by trying to extend this
observation to unitary involutions on algebras of arbitrary exponent.

Max-Albert Knus: “Severi-Brauer varieties over the field with one element”. (Joint work with
Jean-Pierre Tignol.)
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A field F1 with one element may look humorous, but in fact it has recently attracted considerable attention
and inspiration.

The idea of a field F1 first showed up in a paper published by M. J. Tits in 1957. In that paper Tits
associated geometries to Dynkin diagrams. Let D be a Dynkin diagram. Let GF (D) be a Chevalley group
over a field F attached to D and let W (D) be a corresponding Weyl group. Tits showed that there exist
unique geometries ΓF (D) and Γw(D) such that the automorphism groups of the geometries are resp. GF (D)
and W (D). Tits called the geometries Γw(D) attached to Weyl groups, geometries over the field F1 of
characteristic 1.
Example. Geometry of type An−1 over F1. Pn−1F1

def= an n-element set X . The projective geometry of
dimension n − 1 over F1 is A = Sn. Observe that |Pn−1(Fq)| = qn−1

q−1 = 1 + q + · · · + qn−1. Hence if
q = 1 ⇒ |Pn−1(F1)| = n. This explains the “F1 terminology.”

Many properties of usual central simple algebras and central simple algebras with involutions in relation
with classical groups have direct analogues over F1. In particular, one can define exterior powers, Clifford
algebras and discriminants in this setting. For example if Γ is an absolute Galois group over F , the étale
algebras of dimension n correspond to Γ-projective spaces over F1 of dimension n − 1. Some interesting
connections between triality and étale algebras were discussed. For details see [30].

Alexander Vishik: “Rationality of integral cycles”.

Let k be a field of characteristic 0, Y is a smooth quasiprojective variety over k, F/k is a field extension.
Let Chm(Y ) → Chm(YF ) be the natural map of mth Chow groups of Y and Y ⊗k F . Elements in this
image are called k-rational. The motivation for this is the calculation of discrete invariants which lead to the
construction of fields with a u-invariant equal to 2s + 1, s ≥ 3.
mod 2 case. Q is a smooth projective quadric.
Theorem. Assume Ȳ ∈ Chm(Yk̄)/2, m < dimQ

2 . Then Ȳ is k-rational ⇔ Ȳ is k(Q)-rational. (Also it is
true in some special cases for m ≥ dimQ

2 .)
In this talk, A. Vishik discussed the proof of the following theorem.

Theorem. Assume ȳ ∈ Chm(Yk̄) and (1) m < dimQ
2 , and (2) The first Witt invariant i1(Q) > 1. Then

ȳ is k-rational⇔ it is k(Q)-rational.
The overall structure of the proof is similar to the mod 2 case, but there are some additional significant

additional complications. In particular one uses algebraic cobordism Ω∗, constructions by Levine and Morel,
and symmetric cohomological operations on Ω∗ introduced by A. Vishik.

3.6 Structure of Algebraic Groups

Philippe Gille: “Algebraic groups with few subgroups”. (Joint work with S. Garibaldi.)

If G is a reductive algebraic group G over C, using Dynkin’s work one can list all connected reductive
subgroups of G. One can also do it over local or global fields. But over “general fields” the situation is
significantly more difficult.

In the early 1990s, in his lectures at Collège de France J. Tits showed that ”generic” groups of type
E8 have no other connected subgroups than maximal tori. P. Gille’s talk was a variation on a theme of
Tits’ lectures (Gille attended Tits’ lectures in the early 1990s being a graduate student). In his talk he gave
an alternative proof of the Tits’ result based on Totaro’s computation of the torsion index of E8. He also
discussed the case of other exceptional groups, in particular the trialitarian case.

Note that in general case the problem of describing reductive subgroups of exceptional groups is still
open. Conjecturally all ”generic” simple groups of exceptional type have no proper semisimple subgroups.

Alex Ondrus: “Minimal anisotropic groups of higher real rank”.
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Motivation for A. Ondrus’s work is provided by E. Ghys’s conjecture which says that if G is a connected,
semisimple real Lie group with finite center, rank G ≥ 2 and Γ is any irreducible lattice in G(R), then Γ has a
non-trivial orientation-preserving action on R. The statement is equivalent to saying that Γ has no total order
≤ stable by left multiplication. If Γ has such an order then any subgroup also has such an order. Thus to prove
Ghys conjecture it suffices to consider almost minimal lattices of higher rank. By the Margulis arithmeticity
theorem every such lattice is isomorphic to the group of integer points of a minimal Q-simple algebraic group
of higher real rank; hence we arrive to necessity of classification of such groups.

In the isotropic case the classification of such minimal G up to isogeny, was achieved by V. Chernousov,
L. Lifschitz and D. W. Morris. They succeeded to do so over any algebraic number field F of higher real
rank. A. Ondrus obtained such a classification for anisotropic groups, as follows.
Theorem. If G is an absolutely simple, minimal anisotropic group over an algebraic number field F , then G
is isomorphic to one of the following groups (up to isogeny):

1) SU3(L, f) for L/F quadratic, f hermitian on L3 with at least one real place v such that
L⊗ Fv

∼= Fv × Fv, or
2) SU1(D, τ) a central division algebra of degree p ≥ 3 over L/F quadratic with involution
of the second kind τ such that either

A) L⊗ Fv
∼= Fv × Fv for some real place v, or

B) τ ⊗ 1 corresponds to a hermitian form of index ≥ 2 over Mp(C) for some real place v.

3) SL1(D), D is a division algebra with deg(D) = p odd.

Vladimir L. Popov: “Cross-sections, quotients, and representation rings of semisimple algebraic
groups”.

Let G .= {1} be a connected complex semisimple algebraic group. In 1965 Steinberg proved that if G
is simply connected, then there exists a closed irreducible cross-section S of the set of closures of regular
conjugacy classes. That is, every such orbit closure intersects S in exactly one point. Equivalently, there
exists a regular section of the categorical quotient map π : G → G//G. This section played an important role
in Steinberg’s celebrated solution of Serre’s Conjecture I.

In a letter to J.-P. Serre, dated January 15, 1969, A. Grothendieck asked whether there exists such a section
of π if G is not simply connected. He also asked for which G π has a rational section.

Both problems were solved within the last year. Popov showed that π has a regular section if and only if G
is simply connected, and J.-L. Colliot-Thélène, B. Kunyavskiı̌, Popov, and Reichstein, showed that a rational
section exists for any G. Moreover, Popov obtained similar results for groups defined over an algebraically
closed field of any characteristic. Here, once again, a rational section always exists and a regular section
exists if and only if the universal covering isogeny J : Ĝ −→ G is bijective on k-points.

Popov also discussed other related questions, such as: What is a minimal generating set of k[G]G? What
are the singularities of G//G? What is a minimal generating set of the representation ring of G? For details
and further references, see [47].

3.7 Representation theory of algebraic groups

Sunil Chebolu: “Freyd’s generating hypothesis and the Bloch-Kato conjecture”. (Joint work with Jon
Carlson, Ido Efrat, and Ján Mináč.)

The generating hypothesis (GH) is a famous conjecture in homotopy theory due to Peter Freyd. It states
that a map φ : X → Y between finite spectra that induces the zero map on stable homotopy groups is null-
homotopic. Motivated by this long-standing unsolved problem, the authors formulate and solve its analogue
in the stable module category stmod(kG) of a finite group. It is assumed that characteristic of k is p and
p divides |G|. Consider the thick subcategory thick (k) generated by k which is the smallest subcategory
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of stmod(kG) that is closed under exact triangles and retractions. The main theorem states that the Tate
cohomology functor Ĥ∗(G,−) : thick (k) → graded k-vector spaces is faithful if and only if the Sylow p-
subgroup of G is either C2 or C3. Motivated by the general failure of the generating hypothesis for the
stable module category, the authors define the ghost number of kG (for a p-group G) to be the smallest non-
negative integer l such that the composition of any l ghosts between finite-dimensional kG-modules is trivial
in stmod(kG). They obtain various bounds on these new invariants and compute them in specific groups.

A closely related question is the finite generation problem for Tate cohomology. For which finitely gen-
erated kG-modules M is the Tate cohomology Ĥ∗(G, M) finitely generated as a module over the Tate co-
homology ring Ĥ∗(G, k)? Motivated by many partial results they proved on finite generation for Tate coho-
mology, the authors conjecture that if Ĥ∗(G, M) is finitely generated over Ĥ∗(G, k) then the support variety
VG(M) of M is equal to the entire maximal ideal spectrum VG(k) of the group cohomology ring.

There was no time to cover the small Galois pro-p-groups which determine entire Galois cohomology and
their applications for investigating arithmetic of fields and structure of Galois groups of maximal p-extensions
of fields. For details see [11].

Eric Friedlander: “Restrictions to G(Fp) and G(r) of rational G-modules”. (Joint work with J. Carlson,
J. Pevtsova and A. Suslin.)

Standard modular representation theory considers as representation spaces, vector spaces over an alge-
braically closed field k of char(k) = p > 0,p

∣∣ |G|. Let G be a finite group scheme, G - a connected reductive
algebraic group defined over Fp. G(Fp) are points over Fp. Consider rational G-modules M (finite dimen-
sional vector spaces over k).

Frobenius kernel of G: Let F : G −→ G be the Frobenius map. Then set Ker{F r} = G(r) ↪→ G. Every
rational G-module restricts to give a G(r)-module.

Basic Question. Relate invariants of G(Fp) and G(r) for various r.
If M is a rational G-module we can consider Φ∗xM as a Ga-module. (Here xp = 1 and Φx : Ga −→ G

is a “1-parameter subgroup” such that Φx(1) = x and some further restrictions on the image of Φ. (This is
work of G. Seitz.)) Hence we obtain a map Φ∗xM −→ Φ∗xM ⊗ k[t].

s(M) is an important invariant, the least integer such that certain operators indexed by integers ≥ s(M)
act trivially on M .

Let G be a group scheme and consider Spec H•(G, k), where • = ∗ if p = 2 and • ranges over the even
non-negative numbers if p > 2. (Note that in both cases H•(G, k) is commutative.) A well-known theorem
of Quillen says that Spec H∗(G(Fr), k) = colim E ⊗ k, E < G(Fr), where E ⊗ k is an affine space of rank
t (E ∼= (Z/pZ)t). A. Suslin, E. Friedlander and C. Bendel showed that Spec H∗(G(r), k) ≈ V (Gr) where
k-points are the 1-parameter subgroups of G(r). E. Friedlander and J. Pevtsova further found a description of
Proj H•(G, k) using certain equivalence relations on some functions α : k[t]/tp −→ kG. For a given M one
can define the support variety of M . One way to do so is to set (ΠG)M = {[α] : α∗M is not free}.
Theorem (J. Carlson, Z. Lin, D. Nakano) For a large enough prime p (depending on G) there exists an
embedding ΠG(Fr) ↪→ ΠG(r)/G(Fr) for any r ≥ 1 and if pr ≥ SFr (M), then (Π(G(Fr))M

∼=(
ΠG(r)

)
M

/
G(Fr) ∩ΠG(Fr).
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