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1 Overview

Combinatorics, sometimes also called Discrete Mathematics, is a branch of mathematics focusing on the study
of discrete objects and their properties. Although Combinatorics is probably as old as the human ability to
count, the field experienced tremendous growth during the last fifty years and has matured into a thriving area
with its own set of problems, approaches and methodology.

Extremal and Probabilistic Combinatorics are two of the most central branches of the modern combinatorial
theory. Extremal Combinatorics deals with problems of determining or estimating the maximum or minimum
possible cardinality of a collection of finite objects satisfying certain requirements. Such problems are often
related to other areas including Computer Science, Information Theory, Number Theory and Geometry. This
branch of Combinatorics has developed spectacularly over the last few decades. Probabilistic Combinatorics
can be described informally as a (very successful) hybrid between Combinatorics and Probability, whose main
object of study is probability distributions on discrete structures. Although probabilistic arguments have proven
to be extremely powerful when applied in problems from adjacent fields in Combinatorics and Theoretical
Computer Science, Probabilistic Combinatorics can undoubtedly considered an independent discipline with its
own methodology and objects of study, most notably random graphs.

Roughly speaking, Probabilistic Combinatorics comprises three main topics, for each of which we give a
short description. Naturally, there are considerable overlaps between these topics.

The first topic is the application of probability to solve combinatorial problems. Typical examples are
the ”existence” proofs in which one generating an appropriate probabilistic space to show existence of certain
object. The last twenty years or so have witnessed significant progress in this topic. The development of new
and powerful techniques, such as the semi-random method and various sharp concentration inequalities, has
enabled researchers to attack many famous open problems, which were considered intractable not so long ago,
with considerable success. The area in which this has been strikingly successful is Extremal Combinatorics.

The second topic is the analysis of properties of random structures, mainly random graphs and hypergraphs.
This study was initiated by Erdős and Rényi around 1960 and by now there is a rich and beautiful theory of
random graphs, and many models of random graphs are fairly well understood. These include the classical
models of Erdős and Renyi, the investigation of graph processes and hitting times, the well studied models of
random regular graphs, and various less studied and more recent models based on preferential attachment in
which the intention is to explain the behavior of real world networks, like the graph of the Internet. Other
closely related models in which there have been some recent exciting developments and yet much less is known
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deal with random subgraphs of given graphs, various percolation models and the study of the random k-SAT
problem.

The third topic is the study of randomized algorithms. Here the main question is either to design randomized
algorithms for a certain goal or to analyze natural algorithms given special inputs. While this topic can also
be considered as a topic in Computer Science, it has turned out quite recently that it also has much to do with
Statistical Physics. For instance, there is a natural algorithm (motivated by problems from statistical physics)
for generating a random coloring of a graph. A tantalizing question is to know when this algorithm runs in
polynomial time, and a proper bound would have amazing consequences in Physics.

The subject of Extremal Combinatorics is perhaps less structured than Probabilistic Combinatorics, for this
reason we will confine ourselves here to describing in brief few of its most important topics.

The first topic of Extremal Combinatorics we would like to mention is Extremal Graph Theory. There, the
subject of study is extremal problems on graphs. Problems and results such as the maximum possible number
of edges in a planar graph with a given number of vertices (with possibly some additional restrictions added) or
the maximum possible number of edges in a graph of given order not containing a copy of a forbidden graph (so
called Turán-type problems) fall into this category. This is one of the most important branches on modern Graph
Theory, with a variety of methods and arguments (linear algebraic arguments, probabilistic considerations, ad
hoc proofs) applied. The development of this subject was very instrumental in turning Graph Theory into
modern, deep and versatile field of Combinatorics.

The second subject is Extremal Set Theory. There, extremal problems are usually formulated and studied
for families of sets satisfying given restrictions. Good examples include the famous Sperner theorem about the
maximum cardinality of a family of subsets of the ground set of size n with no two family members containing
each other, or the Erdős-Ko-Rado theorem about the maximum size of a family of subsets of 1,...,n, in which
every two members share at least one common element. Problems of this type are especially appealing, in part
due to the fact that quite a few of them arise in a variety of applications in diverse fields of Mathematics,
Computer Science, Coding and Information Theory.

Ramsey Theory is undoubtedly one of the most central branches of modern mathematics, studying quan-
titatively the following phenomenon: every large object, chaotic as it may be, contains a sub-object who is
guaranteed to be well structured, in certain appropriately chosen sense. This phenomenon is truly ubiquitous
and manifest itself in a variety of ways, ranging from the most basic Pigeon Hole Principle to intricate state-
ments from Set Theory. Quite a few questions from Ramsey theory, including estimates on the so called Ramsey
numbers, can be cast and viewed as problems in Extremal Graph or Set Theory. Probabilistic arguments are
essential here, and their importance and applicability can not be overestimated.

There are now fields of Graph Theory and Combinatorics that combine both extremal and probabilistic
mindsets in the most natural ways. Extremal Theory of Random Graphs is just one such subject, there one
studies typical behavior of basic graph theoretic parameters over the probability space of random graphs. This
topic has served as a catalyst for developing new deep combinatorial tools, the so called Sparse Regularity
Lemma being one of them. Another hybrid subject is the theory of pseudo-random graphs, where one tries
to capture quantitatively (sometimes quite elusive) properties of random graphs, and to suggest deterministic
models of random graphs; this theory has had quite a few important applications to Computer Science and
Coding Theory.

The workshop specifically focused on several major research topics in modern Combinatorics. These topics
include Extremal Problems for Graphs and Hypergraphs, Ramsey Theory, Random Graphs, Quasi-random
Graphs, Additive Combinatorics and Probabilistic Methods. One aim of the workshop was to foster interaction
between researchers in these rather diverse fields and to discuss recent progress and to communicate new
results. We’ve also put an emphasis on the exchange of ideas, approaches and techniques between Probabilistic
and Extremal Combinatorics.

In the remainder of the report we describe in detail some of the advances presented at the workshop.

2



2 Erdős-Rényi model of random graphs

Critical random graphs: limiting constructions and distributional properties

Louigi Addario-Berry joint with N. Broutin and C. Goldschmidt

Since its introduction by [10], the model G(n, p) of random graphs has received an enormous amount of
attention [14, 3]. In this model, a graph on n labeled vertices {1, 2, . . . , n} is chosen randomly by joining any
two vertices by an edge with probability p, independently for different pairs of vertices. This model exhibits a
radical change in structure (or phase transition) for large n when p = p(n) ∼ 1/n. For p ∼ c/n with c < 1, the
largest connected component has size (number of vertices) O(log n). On the other hand, when c > 1, there is a
connected component containing a positive proportion of the vertices (the giant component). The cases c < 1
and c > 1 are called subcritical and supercritical respectively. This phase transition was discovered by Erdős
and Rényi in their seminal paper [10]; indeed, they further observed that in the critical case, when p = 1/n, the
largest components of G(n, p) have sizes of order n2/3. For this reason, the phase transition in random graphs
is sometimes dubbed the double jump.

Understanding the critical random graph (when p = p(n) ∼ 1/n) requires a different and finer scaling: the
natural parameterization turns out to be of the form p = p(n) = 1/n + λn−4/3, for λ = o(n1/3) [4, 16, 17]. In
this talk, we will restrict our attention to λ ∈ R; this parameter range is then usually called the critical window.
One of the most significant results about random graphs in the critical regime was proved by [1]. He observed
that one could encode various aspects of the structure of the random graph (specifically, the sizes and surpluses
of the components) using stochastic processes. His insight was that standard limit theory for such processes
could then be used to get at the relevant limiting quantities, which could, moreover, be analyzed using powerful
stochastic-process tools. Fix λ ∈ R, set p = 1/n+λn−4/3 and write Zni and Sni for the size and surplus (that is,
the number of edges which would need to be removed in order to obtain a tree) of Cni , the i-th largest component
of G(n, p). Set Zn = (Zn1 , Z

n
2 , . . . ) and Sn = (Sn1 , S

n
2 , . . . ).

Theorem 1 ([1]). As n→∞.
(n−2/3Zn,Sn) d−→ (Z,S).

Here, the convergence of the first co-ordinate takes place in `2↘, the set of infinite sequences (x1, x2, . . . ) with
x1 ≥ x2 ≥ · · · ≥ 0 and

∑
i≥1 x

2
i < ∞. (See also [17, 15].) The limit (Z,S) is described in terms of a Brownian

motion with parabolic drift, (Wλ(t), t ≥ 0), where

Wλ(t) := W (t) + tλ− t2

2
,

and (W (t), t ≥ 0) is a standard Brownian motion. The limit Z has the distribution of the ordered sequence
of lengths of excursions of the reflected process Wλ(t) − min0≤s≤tW

λ(s) above 0, while S is the sequence of
numbers of points of a Poisson point process with rate one in R+×R+ lying under the corresponding excursions.
Aldous’s limiting picture has since been extended to “immigration” models of random graphs [2], hypergraphs
[12], and most recently to random regular graphs with fixed degree [18].

The purpose of this work is to give a precise description of the limit of the sequence of components Cn =
(Cn1 , Cn2 , . . .). Here, we view Cn1 , Cn2 , . . . as metric spacesMn

1 ,M
n
2 , . . ., where the metric is the usual graph distance,

which we rescale by n−1/3. The limit object is then a sequence of compact metric spaces M = (M1,M2, . . . ).
The appropriate topology for our convergence result is that generated by the Gromov–Hausdorff distance on
the set of compact metric spaces, which we now define. Firstly, for a metric space (M, δ), write dH for the
Hausdorff distance between two compact subsets K,K ′ of M , that is

dH(K,K ′) = inf{ε > 0 : K ⊂ Fε(K ′) and K ′ ⊂ Fε(K)},
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where Fε(K) := {x ∈ M : δ(x,K) ≤ ε} is the ε-fattening of the set K. Suppose now that X and X ′ are two
compact metric spaces, each “rooted” at a distinguished point, called ρ and ρ′ respectively. Then we define the
Gromov–Hausdorff distance between X and X ′ to be

dGH(X,X ′) = inf{dH(φ(X), φ′(X ′)) ∨ δ(φ(ρ), φ(ρ′))}

where the infimum is taken over all choices of metric space (M, δ) and all isometric embeddings φ : X →M and
φ′ : X ′ →M . (We consider G to be rooted at its vertex of smallest label.) We then have the following result.

Theorem 2. As n→∞,
(n−2/3Zn, n−1/3Mn) d−→ (Z,M),

for an appropriate limiting sequence of metric spaces M = (M1,M2, . . .). Convergence in the second co-ordinate
here is in the metric specified by

d(A,B) =

( ∞∑
i=1

dGH(Ai, Bi)4
)1/4

(1)

for any sequences of metric spaces A = (A1, A2, . . .) and B = (B1, B2, . . .).

Resilient pancyclicity of random graphs

Choongbum Lee joint with M. Krivelevich and B. Sudakov

The systematic study of resilience, recently initiated by Sudakov and Vu [21], is a fascinating field which
provides interesting connection between classical extremal graph theory and random graphs. For example,
Sudakov and Vu successfully extended Dirac’s theorem, which says that every graph of minimum degree greater
than n/2 contains a hamilton cycle, to random graphs in a following way.

Theorem 3. If p ≥ log4 n/n then, G = G(n, p) a.a.s. has the following property. For any subgraph H ⊂ G of
maximum degree at most (1/2 + o(1))np, G−H contains a hamilton cycle.

A graph G on n vertices is pancyclic if it contains cycles of length t for all 3 ≤ t ≤ n. A classical theorem
of Bondy [5] says if a graph has minimum degree greater than bn/2c, then it must be pancyclic. We proved the
following theorem which extends this theorem to random graphs.

Theorem 4. For any fixed integer l ≥ 3, if p� n−1+1/(l−1) then G = G(n, p) asymptotically almost surely has
the following property. For any subgraph H ⊂ G of maximum degree ate most (1/2 + o(1))np, G−H contains
cycles of length t for all l ≤ t ≤ n.

These results are tight in two ways. First, the condition on p essentially cannot be relaxed and second, it is
impossible to improve the constant 1/2 in the assumption for the minimum degree.

Anatomy of a young giant component in the random graph

Eyal Lubetzky joint with J. Ding, J.H. Kim and Y. Peres

In their seminal papers from the 1960’s, Erdős and Rényi established a phenomenon known as the double
jump. For p = c/n where c < 1 is fixed, the largest component C1 has size O(log n) with high probability
(w.h.p.). When c > 1, the size of C1 is linear in n, and at the critical c = 1 it has order n2/3 (this latter
fact was fully established much later by Bollobás in 1984 and  Luczak in 1990. The critical behavior extends
throughout the critical window, the regime where p = (1 ± ε)/n for ε = O(n−1/3). Up to the critical point,
the structure of C1 is relatively well understood. For instance, in the fully subcritical regime (p = (1− ε)/n for
ε > 0 fixed), C1 is a tree of known (logarithmic) size and diameter. In the critical window (ε = O(n−1/3) the
distribution of |C1| is known. In the supercritical regime (p = (1 + ε)/n with ε3n → ∞), a variety of methods

4



can determine key features of C1 up to some continuous functions of ε. While these functions remain bounded in
the fully supercritical case (ε > 0 fixed), the situation becomes much more delicate as ε approaches the critical
window. For example, one can deduce that the diameter of the fully supercritical C1 has order log n merely by
analyzing certain (weak) expansion properties of its 2-core). More precise results on the diameter were obtained
by Riordan and Wormald and by  Luczak and Seierstad, but until this work they still did not give the asymptotic
diameter in the whole supercritical regime. In the fully supercritical case, the giant component consists of an
expander “decorated” using paths and trees of at most logarithmic size. However, the existing decompositions
of the giant component are not precise enough to handle the case where ε → 0 (e.g., Riordan and Wormald
point out that this is the most difficult regime for determining the diameter).

Here we obtain a complete characterization of the supercritical giant component. Rather than merely
describing its properties, we present a simple construction whose distribution is contiguous with that of C1.
This construction is particularly elegant when the giant component is “young”, namely when ε = o(n−1/4) (see
[8] for the general case). Let N (µ, σ2) denote the normal distribution with mean µ and variance σ2, and let
Geom(ε) denote the geometric distribution with mean 1/ε.

Theorem 5 ([8]). Let C1 be the largest component of the random graph G(n, p) for p = 1+ε
n , where ε3n → ∞

and ε = o(n−1/4). Then C1 is contiguous to the model C̃1, constructed in 3 steps as follows:

1. Let Z ∼ N
(

2
3ε

3n, ε3n
)
, and select a random 3-regular graph K on N = 2bZc vertices.

2. Replace each edge of K by a path, where the path lengths are i.i.d. Geom(ε).
3. Attach an independent Poisson(1− ε)-Galton-Watson tree to each vertex.

That is, P(C̃1 ∈ A)→ 0 implies P(C1 ∈ A)→ 0 for any set of graphs A.

In the above, a Poisson(µ)-Galton-Watson tree is the family tree of a Galton-Watson branching process with
offspring distribution Poisson(µ). Note that our description of C̃1 constructs the kernel in Step 1, the 2-core
in Step 2 and the entire component C̃1 in Step 3. The above theorem not only states that the kernel of C1 in
this regime is an expander, but it is in fact contiguous to a random 3-regular graph, an object whose expansion
properties are well understood. Furthermore, the 2-core is obtained from the kernel by a simple operation
(“stretching” the edges into paths of lengths i.i.d. geometric with mean 1/ε). This allows us to pinpoint the
expansion properties of the 2-core and their dependence on ε as it tends to 0.

Theorem 5 enables us to interpret distances in the 2-core as passage times in first-passage percolation. This
connection gives the asymptotic behavior of the diameter throughout the regime ε3n→∞ and ε = o(1):

Theorem 6 ([9]). Consider the random graph G(n, p) for p = 1+ε
n , where ε3n→∞ and ε = o(1). Let C1 be the

largest component G, let C(2)1 be its 2-core and let K denote its kernel. Then w.h.p.,

diam(C1) =
(
3 + o(1)

)
(1/ε) log(ε3n) , (2)

diam(C(2)1 ) =
(
2 + o(1)

)
(1/ε) log(ε3n) , (3)

max
u,v∈K

distC(2)1
(u, v) =

(
5
3 + o(1)

)
(1/ε) log(ε3n) . (4)

A deletion method for local subgraph counts

Angelika Steger joint with R. Spöhel and L. Warnke

For a given graph H let XH denote the random variable that counts the number of copies of H in a random
graph Gn,p. Note that E[XH ] = θ(nv(H)pe(H)), where v(H) and e(H) denote the number of vertices and edges
of H. For subgraph counts one can use Janson’s inequality to obtain upper bounds on the probability that XH

is smaller than its expectation.
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For the corresponding upper tail, however, such bounds are not obtained easily. Over the last years such
research has been devoted to proving results of the form Pr[XH ≥ (1 + ε)E[XH ]] ≤ exp(−f(n, p)). As it turned
out, this probability is simply not as small as the lower tail. Roughly speaking this is due to the fact that a
reasonably small number of edges that cluster in an appropriate way can give rise to lots of subgraphs H.

In order to better control the upper tail of XH , Rödl and Ruciński (Threshold functions for Ramsey prop-
erties, J. AMS, 1995) showed that with probability similar to lower bound the number of copies of H can be
reduced to at most (1 + ε)E[XH ] by deleting some small fraction of all edges (or of all triangles, whatever is
smaller).

In this talk we are interested in the following strengthening of this result. We want to find a subgraph
that on the one hand still contains at least (1 − ε)E[XH ] many H-subgraphs, and on the other hand has the
property that every vertex (and more generally every small subset of vertices) is contained in ‘not too many‘
H-subgraphs. First we show how the FKG-inequality can be used to link the probability of existence of a ’nice’
collection of H-subgraphs to the probability that a certain number of H-subgraphs exists at all. From this we
then deduce the following result for the case that H = 4 is a triangle. (We defer the corresponding statement
for general graphs H to the full paper.)

Theorem 7. For every ε > 0 and 0 < p < 1 there exists C > 0 such that with probability at least 1 −
exp(−Θ(min{E[X4, n2p}), there exists a set E0 ⊆ E(Gn,p) of size at most ε·min{E[X4], n2p} such that Gn,p\E0

contains at least (1− ε)E[X4] triangles and such that (in Gn,p \E0) each vertex v ∈ V is contained in at most
max{C, (1 + ε)E[Xv]} triangles and every edge e ∈ E(Gn,p) \ E0 is contained in at most max{C, (1 + ε)E[Xe]}
triangles. (Here E[Xv] and E[Xv] denote the expected number of triangles that a vertex resp. edge is contained
in.)

On the Density of a Graph and its Blowup

Raphael Yuster joint with A. Shapira

It is well known that of all graphs with edge-density p, the random graph G(n, p) contains the smallest
density of copies of Kt,t, the complete bipartite graph of size 2t. Since Kt,t is a t-blowup of an edge, the
following intriguing open question arises: Is it true that of all graphs with triangle density p3, the random graph
G(n, p) contains close to the smallest density of Kt,t,t, which is the t-blowup of a triangle?

Our main result gives an indication that the answer to the above question is positive by showing that for
some blowup, the answer must be positive. More formally we prove that if G has triangle density p3, then there
is some 2 ≤ t ≤ T (p) for which the density of Kt,t,t in G is at least p(3+o(1))t2 , which (up to the o(1) term)
equals the density of Kt,t,t in G(n, p).

This result is best possible in the sense that we can only guarantee that t is bounded by the constant T (p).
We cannot have t universally fixed and applied to all sufficiently large graphs with triangle density p3. Indeed,
we prove that for every fixed t there are graphs whose Kt,t,t-density is far from the corresponding density in a
random graph with the same triangle-density.

The result extends to blowups of other complete graphs, other than the triangle.

3 General random graphs

Hamilton Cycles in Random Geometric Graphs

József Balogh
We consider one of the frequently studied models for random geometric graphs, namely the Gilbert Model.

Suppose that Sn is a
√
n ×
√
n box and that P is a Poisson process in it with density 1. The points of the
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process form the vertex set of our graph. There is a parameter r governing the edges: two points are joined if
their (Euclidean) distance is at most r.

Having formed this graph we can ask whether it has any of the standard graph properties, such as connect-
edness. As usual, we shall only consider these for large values of n. More formally, we say that G = Gn,r has a
property with high probability (abbreviated to w.h.p.) if the probability that G has this property tends to one
as n tends to infinity.

Penrose proved in the nineties that the threshold for connectivity is πr2 = log n. In fact he proved the
following very sharp result: suppose πr2 = log n + α for some constant α. Then the probability that Gn,r is
connected tends to e−e

−α
.

He also generalised this result to find the threshold for κ-connectivity: namely πr2 = log n+(κ−1) log log n.
Moreover, he found the “obstruction” to κ-connectivity. Suppose we fix the vertex set (i.e., the point set in Sn)
and “grow” r. This gradually adds edges to the graph. For a monotone graph property P let H(P ) denote the
smallest r for which the graph on this point set has the property P . Penrose showed that

H(δ(G) ≥ κ) = H(connectivity(G) ≥ κ)

w.h.p.: that is, as soon as the graph has minimum degree κ it is κ-connected w.h.p..
He also considered the threshold for G to have a Hamilton cycle. Obviously a necessary condition is that

the graph is 2-connected. In the normal (Erdős-Rényi) random graph this is also a sufficient condition in the
following strong sense. If we add edges to the graph one at a time then the graph becomes Hamiltonian exactly
when it becomes 2-connected.

Penrose, conjectured that the same is true for a random geometric graph. We prove the following theorem
proving the conjecture.

Theorem 8. Suppose that G = Gn,r the two-dimensional Gilbert Model. Then w.h.p.,

H(G is 2-connected) = H(G has a Hamilton cycle).

Combining this with the earlier result of Penrose we see that, if πr2 = log n+ log log n+α then the probability
that G has a Hamilton cycle tends to e−e

−α
.

Our proof generalises to higher dimensions, and to other norms.
We also show that in the k-nearest neighbour model, there is a constant κ such that almost every κ-connected

graph has a Hamilton cycle.

Explosion

Simon Griffiths joint with O. Amini, L. Devroye and N. Olver

Let T be a infinite rooted tree. Let W be a distribution taking values in the non-negative reals. Denote by
TW the random weighted tree obtained by independently giving each edges of T a weight from the distribution
W . If there is an infinite path in the tree with finite weight in TW we say that TW explodes. For a fixed pair
(T,W ) the event that TW explodes will have probability zero or one by the Kolmogorov zero-one law. So, for
a fixed tree T , we consider the set

W0(T ) = {W : TW explodes almost surely} ,

which contains exactly those weight distributions W for which TW explodes almost surely. For example, if T is
a very thin tree, in the sense that the generation sizes of T do not tend to infinity, thenW0(T ) contains only the
trivial distribution which takes value 0 almost surely. On the other hand if every vertex in the nth generation of
T has 2n+1 children then there are very many weight distributions inW0(T ), including the uniform distribution
on [0, 1].
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An event related to explosion is the event that there exists some choice of one edge from every level such
that the sum of the weights of these edges is finite. Equivalently, this is the event that the sum over levels of
the minimum weight of the level is finite; if this occurs we say that TW is min-summable. For a fixed tree T let

W0(T ) = {W : TW min-summable} .

Trivially, W1(T ) ⊇ W0(T ) for all T .
If T is a very thin tree, with generation sizes not tending to infinity then W1(T ) contains only the trivial

distribution which takes value 0 almost surely. In this trivial case we have W0(T ) = W1(T ). However, as
one moves on to consider less trivial examples T it becomes clear that in a great many cases W1(T ) strictly
containsW0(T ). It may even appear that, aside from trivial cases,W1(T ) should always strictly containW0(T ).
However, somewhat counter-intuitively this is not the case; there are examples of trees with generation sizes
growing very fast (double exponentially) for which W0(T ) =W1(T ). Our main result is that this phenomenon
is in fact quite general in trees obtained by a Galton-Watson process with a heavy tailed offspring distribution.

Theorem 9. Let Z be a distribution taking values in the positive integers and suppose that there exist constants
ε > 0 and m0 ∈ N such that F−1

Z (1 − 1
m ) ≥ m1+ε for all m ≥ m0. Then the random tree T obtained by a

Galton-Watson branching process with offspring distribution Z has W0(T ) =W1(T ) almost surely.

Our condition on Z tells one something about the rate of growth of generation sizes and something about
the smoothness of this growth. We have examples that make clear that both of these are necessary.

The Bohman-Frieze Process – The Rise of the Young Giant

Joel Spencer joint with S. Janson, W. Perkins and others

In the Bohman-Frieze (BF) Process we start with the empty graph. Each round we pick two random vertices.
If they are isolated we join them. Otherwise we pick two other random vertices and definitely join them. We
use Erdős-Rényi time, at time t, tn2 edges have been selected.

In work with Nick Wormald we found there was a critical time tc ∼ 1.176. In the subcritical regime the
components were of size O(lnn) while in the supercritical regime a giant component of size Ω(n) has been
created.

Now we are looking at the barely supercritical regime. At time tc + ε let the giant have size f(ε)n. Our new
result is that f(ε) grows linearly as ε→ 0+.

The key is actually in further analysis of the sub-critical regime. Let S(t) = E[|C(v)|], v uniformly chosen
at time t. With Wormald we had found a differential equation for S(t) and shown that tc was when S(t)→∞.
(This has natural analogies to classical percolation theory, that the susceptibility goes to infinity exactly when
the infinite cluster appears.) Now we looked at M2(t) = E[|C(v)|2] and M3(t) = E[|C(v)|3]. We derived
differential equations for them and were able to give power laws for their values at tc − ε and ε → 0+. At this
stage we were able to “jump” from tc− ε to tc + εδ by adding random edges (ignoring the ones between isolated
vertices) at a certain rate. This led to a Galton-Watson birth process problem, estimating the probability that
a birth process would go on forever which was the proportion of vertices in the giant component. It turned out
that S,M2,M3 allowed us to make good estimates of this probability. Taking limits in ε, δ appropriately gave
the size of the young giant.

4 Quasi-random graphs

The Quasi-Randomness of Hypergraph Cut Properties

Asaf Shapira joint with R. Yuster

8



We study quasi-random k-uniform hypergraphs, specifically, hypergraphs whose edge distribution is similar
to that of random hypergraphs. We consider properties defined by the number of edges of the hypergraph that
cross a cut of a given type. For a vector α = (α1, . . . , αk) with

∑
αi = 1 we define Pα to be the property

of k-uniform hypergraphs that asserts that for any partition of the vertices of the hypergraph into k-sets of
sizes (α1n, . . . , αkn), the number of edges with one vertex in each set is the one we expect to find in a random
hypergraph.

Chung and Graham considered the special case of cut properties in graphs and proved that satisfying Pα
guarantees that a graph is quasi-random if and only if α 6= (1/2, 1/2). We obtain the following results:

• We extend the result of Chung-Graham to k-uniform hypergraphs by showing that Pα guarantees that a
k-uniform hypergraph is quasi-random if and only if α 6= (1/k, . . . , 1/k).

• We strengthen the result of Chung-Graham by showing that the only way a non-quasi random graph can
satisfy P(1/2,1/2) is the the trivial one.

5 Extremal combinatorics

Directed graphs without short cycles

Jacob Fox joint with P. Keevash and B. Sudakov

For a directed graph G without loops or parallel edges, let β(G) denote the size of the smallest feedback arc
set, i.e., the smallest subset X ⊂ E(G) such that G − X has no directed cycles. Let γ(G) be the number of
unordered pairs of vertices of G which are not adjacent. We say that a digraph is r-free if it does not contain
a directed cycle of length at most r. Chudnovsky, Seymour and Sullivan [6] conjectured that if G is a 3-free
digraph then β(G) is bounded from above by γ(G)/2, which would be best possible. They proved this holds
within a factor of 2. That is, every 3-free digraph G satisfies β(G) ≤ γ(G).

In her thesis, Sullivan [22] posed an open problem to prove that β(G) ≤ f(r)γ(G) for every r-free digraph
G, for some function f(r) tending to 0 as r → ∞. We prove that for r ≥ 3, every r-free digraph G satisfies
β(G) ≤ 800γ(G)/r2. This is best possible up to a constant factor, and extends the result of Chudnovsky,
Seymour and Sullivan to general r.

This result can also be used to answer a question of Yuster [23] concerning almost given length cycles in
digraphs. We show that for any fixed 0 < θ < 1/2 and sufficiently large n, if G is a digraph with n vertices
and β(G) ≥ θn2, then for any 0 ≤ m ≤ θn − o(n) it contains a directed cycle whose length is between m and
m+6θ−1/2. Moreover, there is a constant C such that either G contains directed cycles of every length between
C and θn−o(n) or it is close to a digraph G′ with a simple structure: every strong component of G′ is periodic.
These results are also tight up to the constant factors.

The Number of 3-SAT Functions

Jeff Kahn joint with L. Ilinca

A k-SAT function of (Boolean) variables x1, . . . , xn is one that can be expressed as

C1 ∨ · · · ∨ Ct, (5)

with each Ci a k-clause (that is, an expression y1 ∧ · · · ∧ yk, with y1 . . . yk literals corresponding to different
variables xi).

The problem of estimating the number, say G3(n), of 3-SAT functions of x1 . . . xn was suggested by Bollobás,
Brightwell and Leader (2003), who showed

G3(n) ≤ exp[(2
√
π)
(
n

3

)
]
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—as opposed to the easy
G3(n) > 2n(2(n3) − n2(n−1

3 )) ∼ 2n+(n3) (6)

—and conjectured that

log2G3(n) < (1 + o(1))
(
n

3

)
.

We show that in fact (6) gives the asymptotics not just of logG3(n), but of G3(n) itself; that is,

Theorem G3(n) ∼ 2n+(n3).

Actually (an easy but key idea) we show the same asymptotic value for the number of minimal formulas (5)
(i.e. those for which deletion of any Ci produces a different function). The Frankl-Rödl Regularity Lemma for
3-uniform hypergraphs is one main ingredient in the proof.

Counting Substructures

Dhruv Mubayi

Turán’s theorem determines the maximum number of edges in a graph with n vertices and no clique of a
fixed size, and extremal graph theory has grown through extensions and generalizations of this result. One such
direction is to count the number of copies of a specified clique in a graph with more edges than in the Turán
bound. We take this approach further by extending classical results of Rademacher, Erdős, Simonovits, and
Lovász-Simonovits to the class of color critical graphs. The techniques are new and quite general, and they
yield similar results for hypergraphs. Here is a sample theorem:

Füredi-Simonovits and independently Keevash-Sudakov settled an old conjecture of Sós by proving that the
maximum number of triples in an n vertex triple system (for n sufficiently large) that contains no copy of the
Fano plane is p(n) =

(dn/2e
2

)
bn/2c+

(bn/2c
2

)
dn/2e.

We prove that there is an absolute constant c such that if n is sufficiently large and 1 ≤ q ≤ cn2, then every
n vertex triple system with p(n) + q edges contains at least

6q
((
bn/2c

4

)
+ (dn/2e − 3)

(
bn/2c

3

))
copies of the Fano plane. This is sharp for q ≤ n/2− 2.

One modern ingredient of our approach is the use of the removal lemma, which is a consequence of the
hypergraph regularity lemma. In many cases, our results so far use ad hoc methods for each hypergraph F , and
one open problem is to prove general results that apply to large classes of hypergraphs. Another open problem
is to count induced copies of graphs or hypergraphs, which is a more challenging problem. A specific case is
to consider the enumerative questions for the configurations studied recently by Razborov and Pikhurko, which
are closely related to the famous Turán conjecture for hypergraphs.

The Minimum Size of 3-Graphs without a 4-Set Spanning No or Exactly Three Edges

Oleg Pikhurko

For a family of k-graphs G, let t(n,G) be the minimum size of a k-graph on n vertices not containing any
member of G as an induced subgraph. For 0 ≤ i ≤ 4, let Gi be the (unique) 3-graph with 4 vertices and i edges.

One of the most famous open questions in extremal combinatorics is to determine t(n,G0). It goes back
to the fundamental paper by Turán (1941) who conjectured that t(n,G0) = |Tn|, where Tn the 3-graph on [n]
whose edges are triples {x, y, z} with x, y ∈ Vi and z ∈ Vi ∪ Vi+1 for some i ∈ Z3, where V0 ∪ V1 ∪ V2 = [n] is
some partition into almost equal parts. Successively better lower bounds on t(n,G0) were proved by de Caen
(1994), Giraud (unpublished), and Chung and Lu (1999) (see also Razborov (2008)).

Note that Tn is also G3-free; thus t(n, {G0, G3}) ≤ tn. Applying his flag algebras technique Razborov (2008)
proved the matching asymptotic lower bound t(n, {G0, G3}) =

(
4
9 + o(1)

) (
n
3

)
.
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This result is very interesting because there are very few non-trivial hypergraphs or hypergraph families for
which the asymptotic of its Turán function is known. Also, it gives us a better understanding of the original
conjecture of Turán. For example, if the conjecture is false, then any G0-free 3-graph G on n vertices beating
tn has to contain an induced copy of G3. (In fact, if |G| ≤ (1 − Ω(1)) tn as n → ∞, then G contains Ω(n4)
G3-subgraphs by the super-saturation technique of Erdős and Simonovits(83).)

We proved for all n ≥ n0 that t(n, {G0, G3}) = tn and the Turán 3-graph Tn is the unique extremal 3-graph.
This result is also interesting in the context of the rapidly developing theory of graph and hypergraph limits as
it shows a way how to obtain exact results from limit computations. The key ingredient here is the stability
property which states, roughly speaking, that all almost extremal hypergraphs have essentially the same unique
structure. This approach was pioneered by Simonovits in the late 1960s and has led to exact solutions of
numerous extremal problems since then. In recent years it has been actively used to prove exact results for the
hypergraph Turán problem (by Füredi, Keevash, Mubayi, Simonovits, Sudakov, and others).

6 Ramsey theory

The Ramsey number of dense graphs

David Conlon

The Ramsey number r(H) of a graph H is the smallest number n such that in every 2-colouring of the edges
of the complete graph Kn there exists a monochromatic copy of H. That these numbers exist was proven by
Ramsey [19] and independently rediscovered by Erdős and Szekeres [11].

The most famous question in the field is that of estimating the Ramsey number r(t) of the complete graph
Kt on t vertices. Despite some small improvements [7, 20], the standard estimates, that

√
2
t ≤ r(t) ≤ 4t, have

remained largely unchanged for over sixty years. The question we address here is what happens if one takes a
slightly less dense graph H?

The density ρ of a graph H with t vertices and m edges is ρ = m/
(
t
2

)
. We would like to determine the

Ramsey number of a graph H with t vertices and given density ρ. An easy lower bound follows from taking a
clique of size

√
ρt/2 and connecting up the rest of the t vertices with a sparse collection of edges. This gives

r(H) ≥ 2
√
ρt/4. We provide a nearly matching upper bound.

Theorem 10. There exists a constant c such that any graph H on t vertices with density ρ satisfies

r(H) ≤ 2c
√
ρ log(2/ρ)t.

We also look at graphs H with maximum degree at most ρt. A result of Graham, Rödl and Ruciński [13]
implies that r(H) ≤ 2cρt log

2 t. We show how to remove the log factors, replacing them with corresponding terms
depending only on ρ.

Theorem 11. There exists a constant c such that any graph H on t vertices with maximum degree ρt satisfies

r(H) ≤ 2cρ log2(2/ρ)t.

Finally, we consider random graphs H with density ρ. Such graphs will not only satisfy a condition saying
that the maximum degree is at most 2ρt, but the edges will be quite nicely spread within any given subset.
This allows us, within a certain range of ρ, to improve the above bound as follows.

Theorem 12. There exist constants c and c′ such that, if H is a binomially chosen random graph with probability
ρ ≥ c′ log

3/2 t√
t

, H almost surely satisfies

r(H) ≤ 2cρ log(2/ρ)t.
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An easy probabilistic argument shows that any graph H with density ρ satisfies r(H) ≥ 2cρt, so this result
is also very close to being sharp.

Sizes of induced subgraphs of ramsey graphs Alexander Kostochka joint work with N. Alon, J.
Balogh and W. Samotij

For a graph G = (V,E), call a set W ⊆ V homogenous, if W induces a clique or an independent set. Let
hom(G) denote the maximum size of a homogenous set of vertices of G. For a positive constant c > 0, an
n-vertex graph G is called c-Ramsey if hom(G) ≤ c log n.

Ramsey theory states that every n-vertex graph G satisfies hom(G) ≥ (log n)/2, and for almost all such
G, we have hom(G) ≤ 2 log n. In other words, in a random graph G, the value hom(G) is of logarithmic
order. Moreover, the only known examples of graphs with hom(G) = O(log n) come from various constructions
based on random graphs with edge density bounded away from 0 and 1. Therefore it is natural to ask whether
c-Ramsey graphs look “random” in some sense. Erdős, Faudree and Sós stated the following conjecture:

Conjecture 1. For every positive constant c, there is a positive constant b = b(c), such that if G is a c-Ramsey
graph on n vertices, then the number of distinct pairs (|V (H)|, |E(H)|), as H ranges over all induced subgraphs
of G, is at least bn5/2.

At the time the conjecture was stated, its authors knew how to prove an Ω(n3/2) lower bound. The same
lower bound was also obtained as a corollary of a much stronger result of Bukh and Sudakov. Very recently
it has been improved to Ω(n2) by Alon and Kostochka. In fact, the following stronger result was proved. Let
φ(k,G) denote the number of distinct sizes of k-vertex induced subgraphs of G.

Theorem 13. For every 0 < ε < 1/2 there is an n0(ε) so that the following holds. Let n > n0 and let G be an
n-vertex graph with ε < |E(G)|/

(
n
2

)
< 1− ε. Then, for every k with k ≤ εn

3 ,

φ(k,G) ≥ 10−7k. (7)

The bound is sharp up to a constant factor (in the class of graphs G ε < |E(G)|/
(
n
2

)
< 1− ε). For c-Ramsey

graphs, we now improve it as follows:

Theorem 14. For every positive constants c and ε, there is a positive constant b = b(c, ε), such that if G is a
c-Ramsey graph on n vertices, then the number of distinct pairs (|V (H)|, |E(H)|), as H ranges over all induced
subgraphs of G, is at least bn1+

√
30
4 −ε ≈ bn2.3693−ε.

7 Additive combinatorics

Inverse Littlewood-Offord theorems

Van Vu

In this talk, we gave a brief survey about Inverse Littlewood-Offord theory, initiated a few years ago by Tao
and the speaker.

The classical Littlewood-Offord theorem, in the discrete form, is as follows. Let a1, . . . , an be non-zero
integers, and ξ1, . . . , ξn be iid Bernoulli random variables (taking values ±1 with probability 1/2). Let S :=
a1ξ1 + · · ·+ anξn. Then (with v = (a1, . . . , an))

p(v) := max
z∈Z

P(S = z) = O(log n/
√
n).

The log n term was removed by Erdős (1940s), using Sperner lemma. The improved bound is sharp, as
can be see by taking a1 = . . . an = 1. The Littlewood-Offord-Erdős theorem is very well-known, and has been
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extended in various directions. For example, Sárközy and Szemerédi (1960s) proved that if the ai are different,
then one can improve the bound further to O(1/n3/2), which is again sharp. In fact Stanley showed that the
extremal construction is when the ai form an arithmetic progression. A general theme of these extensions is
that if one forbid more additive relations among the ai, then the bound gets better, and we gave many examples
to illustrate this fact.

The Inverse L-O project, started in 2005, puts the problem in a new perspective. Assume that p(v) is large,
say p(v) ≥ 1/nC for some constant C, we try to characterize the set {a1, . . . , an}. A weak characterization was
given by Tao and the speaker in 2006. We significantly improved it in 2008, and successfully used it to confirm
a long standing conjecture in the theory of random matrices (Circular Law Conjecture). However, even the
improved version is still not optimal. The technical part of the talk is thus devoted to the discussion of a recent
result of Hoi Nguyen and the speaker (2009), which provides a characterization with optimal parameters. As a
consequence, we obtain a new, short, proof of many previous quantitative results (such as the Sárközy-Szemerédi
theorem mentioned above) and also a stable, quantitative, version of Stanley theorem.

8 Probabilistic methods in other areas of mathematics

Going up in dimension: Probabilistic and combinatorial aspects of simplicial complexes

Nati Linial

The main thesis of my talk is that combinatorics has much to gain by ”going up in dimension”. We first
recall.

Definition 1. Let V be a finite set of vertices. A collection of subsets X ⊆ 2V is called a simplicial complex if
it satisfies the following condition: A ∈ X and B ⊆ A ⇒ B ∈ X. A member A ∈ X is called a simplex or a
face of dimension |A| − 1. The dimension of X is the largest dimension of a face in X.

In theoretical computer science simplicial complexes were used in (i) The study of the evasiveness conjec-
ture, starting with [Kahn, Saks and Sturtevant ’83] (ii) Impossibility theorems in distributed asynchronous
computation (Starting with [Herlihy, Shavit ’93] and [Saks, Zaharoglou ’93]).

In combinatorics: (i) Lovász’s proof of A. Frank’s conjecture on graph connectivity 1977. (ii) Lower bounds
on chromatic numbers of Kneser’s graphs and hypergraphs. (Starting with [Lovász ’78]). (iii) The study of
matching in hypergraphs (Starting with [Aharoni Haxell ’00]).

The major challenges that we raise are: (i) To start a systematic attack on topology from a combinatorial
perspective, using the extremal/asymptotic paradigm. In particular we hope to introduce the probabilistic
method into topology. In the other direction we suggest to use ideas from topology to develop new probabilistic
models (random lifts of graphs offer a small step in this direction). We also hope to introduce ideas from
topology into computational complexity.

Can we develop a theory of random complexes, similar to random graph theory? Specifically we seek a
higher-dimensional analogue to G(n, p). To fix ideas we consider the simplest possible case: Two-dimensional
complexes with a full one-dimensional skeleton. Namely, we start with a complete graph Kn and add each triple
(=simplex) independently with probability p. This probability space of two-dimensional complexes is denoted
by X(n, p).

We recall from Erdős and Rényi’s work:

Theorem 15 (ER ’60). The threshold for graph connectivity in G(n, p) is

p =
lnn
n
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We next ask when a simplicial complex should be considered connected. Unlike the situation in graphs, this
question has many (in fact infinitely many) meaningful answers, i.e.: (i) The vanishing of the first homology
(with any ring of coefficients). (ii) Being simply connected (vanishing of the fundamental group).

Theorem 16 (Linial and Meshulam ’06). The threshold for the vanishing of the first homology in X(n, p) over
GF (2) is

p =
2 lnn
n

This extends to d-dimensional simplicial complexes with a full (d − 1)-st dimensional skeleton. Also, for
other coefficient groups. (Most of this was done by Meshulam and Wallach). We still do not know, however:

Question. What is the threshold for the vanishing of the homology with integer coefficients?

On the vanishing of the fundamental group we have:

Theorem 17 (Babson, Hoffman, Kahle ’09). The threshold for the vanishing of the fundamental group in
X(n, p) is near p = n−1/2.

We next move on to some extremal problems and recall:

Theorem 18 (Brown, Erdős, Sós ’73). Every n-vertex two-dimensional simplicial complex with Ω(n5/2) sim-
plices contains a (triangulation of the) two-sphere. The bound is tight.

and state:

Conjecture 2. Every n-vertex two-dimensional simplicial complex with Ω(n5/2) simplices contains a (triangu-
lation of the) torus.

We can show that if true this bound is tight. This may be substantially harder than the BES theorem,
where one actually finds a bi-pyramid. We suspect that such a “local” triangulation of the torus need not exist.
With Ehud Friedgut we showed that Ω(n8/3) simplices suffice.
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