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1 Overview of the Project

Polynomials, rational functions, and formal power series in (free) noncommuting variables were considered
in a variety of settings. While usually viewed as formal algebraic objects, they also appeared often as func-
tions by substituting tuples of matrices or operators for the variables. Our point of view is that a function
of noncommuting variables is a function defined on tuples of matrices of all sizes that satisfies certain com-
patibility conditions as we vary the size of matrices: it respects direct sums and simultaneous similarities,
or equivalently, simultaneous intertwinings. This leads naturally to a noncommutative difference-differential
calculus. The objective of our research is to develop a comprehensive theory of noncommutative functions
and their difference-differential calculus in both algebraic and analytic setting. We expect this theory to have
a wide range of applications from noncommutative spectral theory (compare Taylor [8, 9]) and free probabil-
ity (compare Voiculsecu [10, 11]) to analysis of linear matrix inequalities (LMIs) in optimization and control
(compare Helton [1], Helton–McCullough–Vinnikov [2], Helton–McCullough–Putinar–Vinnikov [3]).

2 Preliminary discussion: noncommutative polynomials and noncom-
mutative formal power series

The simplest function of several commuting variables is doubtless a polynomial function that arises by eval-
uating a polynomial on tuples of (say) complex numbers. Let us consider instead the ringC〈x1, . . . , xd〉 of
noncommutative polynomials (the free associative algebra) overC; x1, . . . , xd are noncommuting indetermi-
nates, andf ∈ C〈x1, . . . , xd〉 is of the form

f =
∑

w∈Fd

fwxw, (1)

whereFd denotes the free semigroup ond generators,fw ∈ C, xw are noncommutative monomials in
x1, . . . , xd, and the sum is finite. Notice thatf can be evaluated in an obvious way ond-tuples of complex
matrices of all sizes: forX = (X1, . . . , Xd) ∈ (Cn×n)d,

f(X) =
∑

w∈Fd

fwXw. (2)
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We can also consider the ringC〈〈x1, . . . , xd〉〉 of noncommutative formal power series (the completion
of the free associative algebra) overC; f ∈ C〈〈x1, . . . , xd〉〉 is of the same form as in (1), except that the sum
is in general infinite. There are two ways to evaluatef ond-tuples of complex matrices:

• Assume thatX = (X1, . . . , Xd) ∈ (Cn×n)d is a jointly nilpotentd-tuple, meaning thatXw = 0 for
all w ∈ Fd with |w| = k for somek, where|w| denotes the length of the wordw; equivalentlyX is
jointly similar to ad-tuple of strictly upper-triangular matrices. Then we can definef(X) as in (2),
since the sum is actually finite.

• Assume thatf has a positive noncommutative multi-radius of convergence, i.e., there exists ad-tuple
ρ = (ρ1, . . . , ρd) of strictly positive numbers such that

limsup
k→∞

k

√ ∑
|w|=k

|fw|ρw ≤ 1.

Then we can definef(X) as in (2), where the infinite series converges absolutely and uniformly on any
noncommutative polydisc

∞∐
n=1

{
X ∈

(
Cn×n

)d : ‖Xj‖ < rj , j = 1, . . . , d
}

of mutiradiusr = (r1, . . . , rd) with rj < ρj , j = 1, . . . , d.

We notice that in all these cases the evaluation off ond-tuples of matrices possesses two key properties.

• f respects direct sums:f(X ⊕ Y ) = f(X)⊕ f(Y ), where

X⊕Y = (X1, . . . , Xd)⊕ (Y1, . . . , Yd) = (X1⊕Y1, . . . , Xd⊕Yd) =
([

X1 0
0 Y1

]
, . . . ,

[
Xd 0
0 Yd

])
(we assume here thatX, Y are such thatf(X), f(Y ) are both defined).

• f respects simultaneous similarities:f(TXT−1) = Tf(X)T−1, where

TXT−1 = T (X1, . . . , Xd)T−1 = (TX1T
−1, . . . , TXdT

−1)

(we assume here thatX andT are such thatf(X) andf(TXT−1) are both defined).

3 Overview of some definitions and results

Both for the sake of potential applications and for the sake of developing the theory in its natural generality,
it turns out that the proper setting for the theory of noncommutative functions is that of matrices of all sizes
over a given vector space (or a given module). In the special case when the vector space isCd, n×n matrices
overCd can be identified withd-tuples ofn× n matrices overC, and we recover noncommutative functions
of d variables, key examples of which appeared in the previous section.

Let V be a vector space overC (for the algebraic part of the theory, we can consider more generally a
module over any commutative ring with unit). We call

Vnc =
∞∐

n=1

Vn×n

the noncommutative space overV. A subsetΩ ⊆ Vnc is called a noncommutative set if it is closed under
direct sums, i.e., we have

X ⊕ Y =
[
X 0
0 Y

]
∈ Ωn+m
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for all X ∈ Ωn, Y ∈ Ωm and alln, m ∈ N, where we denoteΩn = Ω∩Vn×n. Noncommutative sets are the
only reasonable domains for noncommutative functions, but additional conditions on the domain are needed
for the development of the noncommutative difference-differential calculus. Essentially we need the domain
to be closed under formation of upper-triangular block matrices with an arbitrary upper corner block, but this
is too much (e.g., this is false for noncommutative polydiscs and balls). The proper notion turns out to be
as follows: a noncommutative setΩ ⊆ Vnc is called upper admissible if for allX ∈ Ωn, Y ∈ Ωm and all
Z ∈ Vn×m, there existsλ ∈ C, λ 6= 0, such that[

X λZ
0 Y

]
∈ Ωn+m.

Our primary examples of upper admissible noncommutative sets are as follows:

• The setΩ = NilpV of nilpotent matrices overV. HereX ∈ Vn×n is called nilpotent ifXk = 0 for
somek, where we viewX as a matrix over the tensor algebra

T(V) =
∞⊕

j=0

V⊗j

of V; equivalently, there existsT ∈ GLn(C) such thatTXT−1 is strictly upper triangular.

• Assume thatV is a Banach space and thatΩ is open in the sense thatΩn ⊆ Vn×n is open for alln;
thenΩ is upper admissible.

A special case of the second item — that is crucial for analytic results that are uniform in the size of matrices
— is whenV is an operator space This means that there is a sequence of norms‖ · ‖n onVn×n such that

‖X ⊕ Y ‖n+m = max{‖X‖n, ‖Y ‖m} for all X ∈ Vn×n, Y ∈ Vm×m, (3)

and

‖TXS‖n ≤ ‖T‖‖X‖n‖S‖ for all X ∈ Vn×n, T, S ∈ Cn×n. (4)

An important example of an open noncommutative set is then a noncommutative ball

Ω =
∞∐

n=1

{
X ∈ Vn×n : ‖X‖n < ρ

}
.

(For the general theory of operator spaces, see, e.g., Paulsen [6] or Pisier [7].)
LetV andW be vector spaces overC, and letΩ ⊆ Vnc be a noncommutative set. A functionf : Ω →Wnc

with f(Ωn) ⊆ Wn×n is called a noncommutative function if:

• f respects direct sums:f(X ⊕ Y ) = f(X)⊕ f(Y ) for all X ∈ Ωn, Y ∈ Ωm.

• f respects similarities:f(TXT−1) = Tf(X)T−1 for all X ∈ Ωn and T ∈ GLn(C) such that
TXT−1 ∈ Ωn.

It turns out that these two conditions are equivalent to a single one:f respects intertwinings, namely if
XS = SY thenf(X)S = Sf(Y ), whereX ∈ Ωn, Y ∈ Ωm, andS ∈ Cn×m. This condition originates in
the pioneering work of Taylor [8].

One can construct noncommutative functions generalizing the formal power series construction discussed
in Section 2 to a coordinate free framework. Assume that we are given a sequencefk : V⊗k → W of linear
mappings. Then

f(X) =
∞∑

k=0

fk(Xk), (5)

where the matrix powerXk is taken in the tensor algebraT(V) andfk is extended entrywise to a linear
mapping from matrices overV⊗k to matrices overW, defines a noncommutative function provided we can
make sense of the (generally speaking) infinite sum on the right hand side. This can be done in two ways:
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• If X is nilpotent then the sum in (5) is actually finite; hence (5) always defines a noncommutative
function onNilp(V).

• If V andW are operator spaces, and we have a growth estimate

limsup
k→∞

k
√
‖fk‖cb ≤

1
ρ

(where‖ · ‖cb denotes the completely bounded norm), then the series in (5) converges absolutely and
uniformly on any noncommutative ball of radiusr < ρ; hence in this case (5) defines a noncommutive
function on the noncommutative ball of radiusρ.

One of the main results of the noncommutative difference-differential calculus is the infinite series ex-
pansion, called the Taylor–Taylor expansion1, that provides a converse to the above construction. It is given
by

f(X) =
∞∑

k=0

∆k
Rf(0, . . . , 0︸ ︷︷ ︸

k+1

)(Xk). (6)

Here the multilinear forms∆k
Rf(0, . . . , 0︸ ︷︷ ︸

k+1

) : Vk −→W are the values at(0, . . . , 0) of thekth order noncom-

mutative difference-differential operators applied tof . They can be calculated directly by evaluatingf on
block upper trangular matrices:

f





0 Z1 0 · · · 0

0 0
...

...
...

...
...

...
... 0

...
... 0 Zk

0 · · · · · · 0 0





=



f(0) ∆Rf(0, 0)(Z1) · · · · · · ∆k
Rf(0, . . . , 0)(Z1, . . . , Zk)

0 f(0)
... ∆k−1

R f(0, . . . , 0)(Z2, . . . , Zk)
...

...
...

...
...

...
... f(0) ∆Rf(0, 0)(Zk)

0 · · · · · · 0 f(0)


.

The exact meaning of (6) is one of the two:

• If f is a noncommutative function onNilp(V), then the expansion holds for allX ∈ Nilp(V).

• If f is a bounded noncommutative function whose domain contains an open noncommutative ball of
radiusρ and that is bounded there, then the expansion holds on this ball with the series converging
absolutely and uniformly on every noncommutative ball of a strictly smaller radius.

This is merely the simplest of the various convergent Taylor–Taylor series. The expansion can be around
any point inVnc rather than about0, providing for the possibility of analytic continuation. In the caseV = Cd

one can obtain stronger results relating to the absolute convergence of the series (2) over the free semigroup,
rather than grouping the terms together to obtain a series of homogeneous polynomials as in (6). One can also
relax the assumptions of local uniform boundedness over all matrix sizes (with respect to an operator space
norm); if a noncommutative functionf is locally bounded (or even just locally bounded on slices) in every
matrix size, it is still true that its Taylor–Taylor series is locally uniformly convergent in every matrix size (of
course the convergence is no longer uniform across matrix sizes). Thus a very weak regularity assumption on
a noncommutative function implies already a very strong regularity result.

1In honour of Brook Taylor and of Joseph L. Taylor.
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4 Progress during the Banff RIT meeting

We are currently working on completing the foundations of the theory of noncommutative functions and their
difference-differential calculus, including the preparation of the manuscript [5]. During our week at Banff we
made a considerable progress, especially with regard to the detailed proof of the convergence theorem for the
Taylor–Taylor series in the non-uniform case, including some facets having to do with the classical theory of
analytic functions in several and in infinitely many variables (see, e.g., Hille–Phillips [4] for the later).
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