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1 Overview of the Field
Given a �nite positive measure � on the real line, with in�nitely many points in its support, we can de�ne
orthonormal polynomials fpng1n=0 satisfying, for allm;n � 0;Z

pnpmd� = �mn:

Here
pn (x) = nx

n + :::, n > 0;

is a polynomial of degree n, with positive leading coef�cient n. The fpng may be generated by the Gram-
Schmidt process, applied to the monomials 1; x; x2; ::: with inner product

(f; g) =

Z
fg d�:

Orthonormal polynomials have been the subject of investigation for over 150 years. They have applications
in areas ranging from statistical physics to combinatorics to signal processing. There are obvious links to
special functions and harmonic and numerical analysis.
The notion of an orthogonal polynomial has been greatly generalized in recent decades. While the ex-

tension to measures on the plane is obvious, multivariate analogues already present the problem of how to
order monomials in higher dimensions. Then there are important generalizations to the case where a single
orthogonality relation is replaced by one involving more than one measure, or more than one polynomial.
Active intrinsic topics of study include analytic and algebraic aspects, and asymptotics. Applications to

areas like random matrices and numerical analysis have given new insight into orthogonal polynomials, and
their generalizations. Some key references are [14], [16], [18], [26], [39], [40], [41], [43].

2 Topics Covered by the Workshop

2.1 Measures on the Real Line
A classical result of Szeg�o asserts that when � is an absolutely continuous measure supported on [�1; 1],
with Z 1

�1

log�0 (x)p
1� x2

dx > �1;

then
lim
n!1

pn (z)�
z +

p
z2 � 1

�n = D (z) ;

1
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uniformly for z in closed subsets of Cn [�1; 1]. Here z +
p
z2 � 1 is the conformal map of Cn [�1; 1] onto

Cn fz : jzj � 1g, and D (z) is the Szeg�o function for �. The case where [�1; 1] is replaced by �nitely many
intervals was considered by Harold Widom in a celebrated paper [45]. The case of in�nitely many intervals
(and more general sets of homogeneous type) was considered more recently by Peherstorffer, Sodin, and
Yuditskii. At the workshop, Jacob Christiansen presented asymptotics, and related conjectures, for the case
where the support is still more general than a set of homogeneous type.
Lilian Manwah Wong discussed the problem of adding point masses to a given measure on the real line,

and comparing the asymptotics of the new orthogonal polynomials, and related quantities, to those for the
original measure. Christian Remling discussed re�ectionless measures, with applications to extensions of the
Denisov-Rakhmanov Theorem relating recurrence coef�cients of orthogonal polynomials, and the support of
the measure. Vilmos Totik presented new methods for establishing asymptotics for Christoffel functions on
the real line (which also work over arcs in the plane), and consequences in approximation theory. Avram
Sidi presented asymptotics for coef�cients in Legendre expansions, and related quadrature errors, when the
underlying functions have certain types of singularities.
Sasha Aptekarev showed how to use sophisticated analysis of recurrence relations, to derive speci�c

types of Plancherel-Rotach asymptotics for discrete orthogonal polynomials such as Meixner polynomials.
As a consequence, the local behavior of the reproducing kernels is obtained. Mourad Ismail discussed the
J-Matrix method introduced in the 70's to study the spectrum on Schrödinger operators in physics. It is a
tridiagonalization technique and Ismail [19] discussed how to make the technique rigorous and apply it to
study orthogonal polynomials.

2.2 Orthogonal Relations in the Complex Plane
Weighted Bergman polynomials involve an orthogonality relation against an area measure, rather than an arc.
LetG be a bounded simply-connected domain in the complex plane C, whose boundary is a Jordan curve, let
w be a function positive on G, and de�ne fpng by the Hermitian relationZ

G

pn (z) pm (z)w (z) dA (z) = �mn;

where A stands for area measure. The classical Bergman case is the unweighted case w = 1. There are
many unresolved questions concerning the behavior of the polynomials and their zeros, for example, when
the boundary of G is not a smooth curve. Laurent Baratchart presented asymptotics for fpng when G is the
unit disk when weak assumptions are made about w, involving its behavior on the circle jzj = r as r ! 1�.
Erwin Miña-Diaz considered the case where G is the disk, and w = jhj2, for some polynomial h.
Nikos Stylianopoulos discussed the case w = 1, for domains with piecewise analytic boundary - but

without cusps. An especially interesting case with cusps is the hypocycloid. Nikos presented joint work with
Ed Saff for this region, showing how certain Hessenberg matrices approach Toeplitz matrices associated with
Faber polynomials. He also presented a very interesting application to the Arnoldi process for numerical
calculation of orthogonal polynomials, showing its stability in comparison to the classical Gram-Schmidt
process. A further conclusion is that "�nite term" recurrence relations for Bergman polynomials do not hold,
except in the essentially "trivial" case where the region is bounded by an ellipse. Thus for most regions, the
associated Hessenberg matrices are not banded.
There is a close connection between Padé approximation and orthogonal polynomials. Let f (z) be a

function admitting an expansion about1 in negative powers of z:

f (z) =
1X
j=1

fjz
�j

The (n� 1; n) Padé approximant to f is a rational function �n of type (n� 1; n) satisfying, as z !1;

f (z)� �n (z) = O
�
z�2n

�
:

In the case where f is a Markov function, the denominator polynomial in �n is an orthogonal polynomial.
In the general case, the denominator still satis�es a non-Hermitian orthogonality relation, arising from the
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matching condition. Maxim Yattselev presented asymptotics for the Padé approximants associated with cer-
tain types of elliptic functions,

f (z) =
1

i�

Z
�

h (t)

t� z
dtp

(t� a0) (t� a1) (t� a2) (t� a3)+
:

Here � is a collection of three arcs joining the point a0 to the non-collinear points a1; a2; a3, taken to have
minimal capacity, and h satis�es a suitable Dini condition. Riemann-Hilbert techniques are used to obtain
the asymptotics.
Of course, Padé approximants are a special type of rational approximation. Vasiliy Prokhorov discussed

results on best rational approximation, derived via elaborations and extensions of the Adamjov-Arov-Krein
theory.

2.3 Potential Theory in One and More Variables
The link between polynomials and potentials is easily seen from the relation

1

n
log

������
nY
j=1

(z � zj)

������ =
Z
log jz � tj d� (t) ; (1)

where � places mass 1n at each of the zj . The function

U� (z) =

Z
log jz � tj�1 d� (t)

is the potential associated with the measure �.
Joe Ullman was a pioneer in using potential theory to analyze asymptotics of orthogonal polynomials for

compactly supported measures. It was Hrushikesh Mhaskar, Evgenii Rakhmanov, and Ed Saff who developed
its use for the case of measures with non-compact support, and for varying measures [36]. Thus if d� (x) =
e�x

2

dx is the Hermite weight, one looks for a probability measure � with compact support, such that

U� (x) = �x2 + constant, x 2 supp [�] :

More generally, if the �eld x2 is replaced byQ (x), one replaces x2 byQ (x) in this last identity. The measure
� is called an equilibrium measure for the external �eld Q. The support of Q, and the properties of �, are
crucial in analyzing orthogonal polynomials. At the conference, Benko and Dragnev gave new conditions for
convexity of �0 using an elaboration of the iterated balayage algorithm, which they call ping pong balayage.
Another powerful application of potential theory was given by Igor Pritsker. He derived discrepancy

estimates, in the spirit of the Erd�os-Turán theorem, but instead involving discrete energies. As a consequence
a classic problem of means of zeros of integer polynomials was analyzed, and surprising restrictions were
given for growth of integer polynomials in the disk.
Potential theory in the multivariate case is far more challenging than the univariate case. There is no

longer such a simple relationship between polynomials and potentials like (1). A fascinating account of recent
developments was given by Norman Levenberg [25]. He showed how the complex Monge-Ampere operator
arises in both weighted and non-weighted multivariate potential theory. Concepts of weighted trans�nite
diameter, and Fekete points, and L2 approximations to equilibrium measures were discussed. Using deep
recent results of Berman and Boucksom [3], [4] from a more abstract setting, it was shown that appropriate
discrete approximations to equilibrium measures converge weakly, as the number of points grows to in�nity.
In particular, this is the case for Fekete points.
Tom Bloom showed how the same tools of pluripotential theory can be applied to discuss large deviations

for random matrices, and give alternative tools and insights to those typically used in the theory of random
matrices.
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2.4 Universality Limits and Riemann-Hilbert Problems
It was the physicist Eugene Wigner who in the 1950's �rst used eigenvalues of random matrices to model the
interactions of neutrons for heavy nuclei. One classical setting can be described as follows: letM (n) denote
the space of n by n Hermitian matricesM = (mij)1�i;j�n. Consider a probability distribution onM (n) ;

P (n) (M) = cw (M)
�Yn

j=1
dmjj

��Y
j<k

d (Remjk) d (Immjk)
�
:

Here w (M) is a function de�ned onM (n), and c is a normalizing constant. One important case is w (M) =
exp (�2n tr Q (M)), involving the trace tr, for appropriate functions Q de�ned onM (n). In particular, the
choice Q (M) = M2, leads to the Gaussian unitary ensemble, apart from scaling, that was considered by
Wigner. One may identify P (n) above with a probability density on the eigenvalues x1 � x2 � ::: � xn of
M;

P (n) (x1; x2; :::; xn) = c

0@ mY
j=1

w (xj)

1A�Y
i<j
(xi � xj)2

�
:

See [10, p. 102 ff.]. Again, c is a normalizing constant.
It is at this stage that orthogonal polynomials arise [10]. Let � and fpng be as above. The nth normalized

reproducing kernel for � is

eKn (x; y) = �0 (x)
1=2

�0 (y)
1=2

n�1X
j=0

pj (x) pj (y) :

When �0 (x) = e�2nQ(x)dx, there is the basic formula for the probability distribution P (n) [10, p.112]:

P (n) (x1; x2; :::; xn) =
1

n!
det
�
~Kn (xi; xj)

�
1�i;j�n

:

One may use this to compute a host of statistical quantities - for example the m�point correlation function
forM (n) [10, p. 112]:

Rm (x1; x2; ::; xm) =
n!

(n�m)!

Z
:::

Z
P (n) (x1; x2; :::; xn) dxm+1 dxm+2 :::dxn

= det
�
~Kn (xi; xj)

�
1�i;j�m

:

The universality limit in the bulk asserts that for �xedm � 2, and � in the interior of the support of f�g,
and real a1; a2; :::; am, we have

lim
n!1

1
~Kn (�; �)

mRm

�
� +

a1
~Kn (�; �)

; � +
a2

~Kn (�; �)
; :::; � +

am
~Kn (�; �)

�
= det

�
sin� (ai � aj)
� (ai � aj)

�
1�i;j�m

:

Of course, when ai = aj , we interpret
sin�(ai�aj)
�(ai�aj) as 1. Because m is �xed in this limit, this reduces to the

casem = 2, namely

lim
n!1

~Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) : (2)

There are a variety of methods to establish (2). The deepest methods are the Riemann-Hilbert methods,
which yield far more than universality [10], [11]. The whole topic of universality limits was dramatically
advanced by Riemann-Hilbert experts, and they also communicated the topic to others, including those using
more classical techniques to analyze orthogonal polynomials. We note that there are several settings, other
than that described above, for universality limits for random matrices [42].
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How general is (2), that is what restrictions are need on �? Here is a

Conjecture
Let � be a measure with compact support. Then for a.e. � 2 f�0 > 0g, we have (2).

Here, of course, f�0 > 0g = f� : �0 (�) > 0g. The most general pointwise result to date towards this con-
jecture is due to Vili Totik [44]. He showed that if � is a regular (in the sense of Ullman, Stahl, and Totik)
measure with compact support, and (c; d) is an interval such thatZ d

c

log�0 > �1;

then, indeed, (2) holds for a.e. � 2 (c; d). Barry Simon established a similar result when the support has
�nitely many intervals. Another recent development, presented by Doron Lubinsky at the workshop [28], is
that without local or global regularity, universality holds in measure.
One cannot in general expect that universality with the sinc kernel holds at points where �0 (x) = 0. For

example, at the edges of the support of �, when the support consists of �nitely many intervals, one instead
obtains the Bessel kernel. At interior points where �0 has a jump discontinuity, Martinez et al discovered that
one obtains a new, non-classical kernel. This suggests that universality with the since kernel is associated with
points where �0 exists and is positive. A very interesting result of Breuer, presented for the �rst time at the
Banff conference, was that there are measures � with support [�1; 1], that are purely singularly continuous,
and yet universality with the sinc kernel holds at each point of (�1; 1). This surprising result is obtained by
sparsely perturbing the recursion relation of classical Chebyshev polynomials.
Of course universality goes way beyond measures with compact support, or even varying measures. This

was powerfully illustrated by the talk of Arno Kuijlaars. In modelling the Brownian motion of particles that
start at time t = 0 from a �nite number of given points, and end at time t = 1 at a �nite number of points,
while following non-intersecting paths, one is led to mixed type multiple orthogonal polynomials. In analyz-
ing the asymptotics of these, one use Riemann-Hilbert problems of larger size, such as 4� 4 matrices for the
case of two start and end points. In contrast, classical orthogonal polynomials require only 2 � 2 matrices.
Kuijlaars illustrated the depth of techniques required for the analysis, and the new universality phenomena
that arise, often described using solutions of Painlevé equations.

2.5 Sobolev Orthogonal Polynomials
Sobolev orthogonal polynomials are polynomials whose orthogonality relation involves derivatives. Thus we
might search for polynomials fpng that satisfy, for example,Z

pn (x) pm (x) d� (x) +

Z
p0n (x) p

0
m (x) d� (x) = �mn;

where � and � are positive measures. Higher derivatives could also be involved. They arise in a number of
applications, and have received substantial attention in recent decades [1], [30]. An obvious question is how
the measures � and � interact. In many standard cases, the dominant term is provided by the derivative term,
and p0n behaves roughly like an orthogonal polynomial for the measure �. In other cases, however, there is
interaction between the two terms.
At the workshop, Paco Marcellan considered the case when � has unbounded support, while � is a Dirac

delta, or sum thereof. Issues such as zeros, asymptotics, comparison to the compact case were considered. A
multivariate version of these was discussed by Miguel Pinar, with the derivative being replaced by a gradient.

2.6 Multiple Orthogonal Polynomials
Given measures

�
�j
	p
j=1

on the real line, and a p-tuple of integers (n1; n2; :::; np), the type II multiple
orthogonal polynomial P is a monic polynomial of degree n1 + n2 + ::: + np such that for j = 1; 2; :::; p,
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and 0 � k � nj � 1; Z
P (x)xkd�j (x) = 0.

The dual type I polynomials A1; A2; :::; Ap are determined by the conditionsZ
xk

0@ pX
j=1

Ajd�j (x)

1A = 0;

for 0 � k � n1 + n2 + :::+ np � 2, with degree(Aj) � nj � 1.
Multiple orthogonal polynomials have connections to rational approximation in the complex plane, to dio-

phantine approximation in number theory, and to random matrix ensembles. Bill Lopez presented powerful
results on Nikishin systems for two intervals, �nding probability measures, and associated multiple orthogo-
nal polynomials that satisfy a recurrence relation of order 4. Walter Van Assche showed how potential theory,
Riemann-Hilbert (and other) methods can be used to analyze asymptotics of multiple orthogonal polyno-
mials. Arno Kuijlaars exhibited the use of multiple orthogonal polynomials in non-intersecting Brownian
motions.

3 Multivariate polynomials
From the orthogonality relation it follows that any family of orthogonal polynomials on the real line satis�es
a three term recurrence relation:

anpn+1(x) + bnpn(x) + an�1pn�1(x) = xpn(x):

The classical orthogonal polynomials (Jacobi, Hermite, Laguerre, Bessel) which appear in numerous appli-
cations in mathematics and physics are characterized by the fact that they are eigenfunctions of a differential
operator, which is independent of the degree n. In other words the classical orthogonal polynomials are
characterized by a bispectral problem [13] since they satisfy a second-order difference equation in the degree
variable n and a differential equation in the variable x. The construction of bispectral orthogonal polynomials
in higher dimensions brought different new tools from combinatorics, representation theory and integrable
systems into this old classical area.

3.1 Orthogonal polynomials associated with root systems
One possible extension of the above theory to orthogonal polynomials of more than one variable is related
to the theory of symmetric functions and the corresponding Macdonald-Koornwinder polynomials [29, 22].
These polynomials were introduced as the unique eigenfunctions of certain remarkable commuting symmet-
ric difference operators. Each family depends on a root system and several free parameters. Special cases
lead to classical families of symmetric functions such as Schur functions and characters of corresponding
Lie groups, Hall-Littlewood functions, Jack polynomials, or more generally, the multivariate Jacobi polyno-
mials due to Heckman and Opdam [17]. The bispectrality in this case is closely related to the Macdonald
conjectures which were established with the theory of double af�ne Hecke algebras [8]. Recently, there has
been a major development in this �eld leading to biorthogonal elliptic functions generalizing Macdonald-
Koorwinder polynomials [33]. In particular, one needs to work with generalized eigenvalue problems which
require several new techniques. The latest progress in this beautiful theory was described by Eric Rains who
outlined the main ingredients of the construction and the crucial properties. Tom Koornwinder studied the
nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. As a particular new result made
possible by this approach he obtained positive de�niteness of the inner product in the orthogonality relations,
under certain constraints on the parameters.

3.2 Orthogonal polynomials in Rd

Yuan Xu discussed a discrete Fourier analysis on the fundamental domain of Ad lattice that tiles the Euclid-
ean space by translation [27]. In particular, Chebyshev polynomials can be de�ned using symmetric and
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antisymmetric sums of exponentials. One of the interesting outcomes of this theory is the construction of
Gaussian cubatures, which exist very rarely in higher dimension.
Bispectral properties of orthogonal polynomials within the usual framework [14] of orthogonal poly-

nomials in Rd attracted a lot of attention recently. Interesting examples of such polynomials go back to
the multivariate Hahn and Krawtchouk polynomials in the pioneering works of Karlin and McGregor [20]
and Milch [31] related to growth birth and death processes. A probabilistic model that involves cumula-
tive Bernoulli trials led Hoare and Rahman to a new family of 2D Krawtchouk polynomials. In his talk,
Mizan Rahman derived a 5-term recurrence relation, thus showing that these polynomials possess the bis-
pectral property. He also indicated possible extensions to 3 or more variables. Paul Terwilliger explained
how the recurrence formulas for the same polynomials can be derived using the Lie algebra sl3. George
Gasper considered general methods for the derivation of second-order partial difference equations. Alberto
Grünbaum illustrated with examples the interaction between orthogonal polynomials and random walks. Pla-
men Iliev discussed a new characterization of the commutative algebras of ordinary differential operators that
have orthogonal polynomials as eigenfunctions, which leads to multivariate extensions. Luc Vinet showed
that the d-orthogonal Charlier and Hermite polynomials appear naturally as matrix elements of nonunitary
transformations corresponding to automorphisms of the Heisenberg-Weyl algebra, thus establishing duality,
recurrence, and difference equations.
Greg Knese described recent results [21] on polynomials orthogonal on the bi and poly circle and their

relation to bounded analytic functions on the polydisk. Important in this work is a Christoffel-Darboux like
formula which in the bivariate case can be related to stable polynomials, Bernstein-Szeg�o measures and
gives a new proof of Ando's celebrated theorem in operator theory. Geronimo [6] discussed a new proof
of Gasper's theorem on the positivity of sums of triple products on Jacobi polynomials. This theorem plays
an important role in setting up a convolution structure for Jacobi polynomials. The new techniques are
based on a correlation operator which was discovered by Carlen, Carvahlo, and Loss in their solution of the
spectral gap problem in the Kac model. The correlation operator is an operator on the N-sphere looking
for its eigenfunction expansion in various angular momentum sectors leads to Gasper's Theorem and to the
Koornwinder-Schwartz product formulas for the biangle This is an extension of Gasper's theorem to the
bivariate case.

4 Connections with integrable systems and algebraic geometry
One of the landmarks in the modern theory of integrable systems is the work of Sato-Sato [37] which assigns
a solution to the Kadomtsev-Petviashvili (KP) hierarchy to each point of a certain in�nite dimensional Grass-
mannian. The construction uses the so called � -function, which de�nes a Baker-Akhiezer function via the
formula:

 (t; z) =
�(t1 � 1

z ; t2 �
1
2z2 ; : : : )

�(t)
exp

 1X
k=1

tkz
k

!
;

where t = (t1; t2; : : : ) are the KP �ows. Important examples of � -functions are the Schur functions, the
Riemann �-function (appropriately evaluated and multiplied by a quadratic exponential factor in the time
variables) and the partition function of the two-dimensional gravity [23, 38, 46]. John Harnad reviewed this
construction with an emphasis on the algebro-geometric solutions of Krichever [24]. He discussed the subtle
question of determining the Plücker coordinates appearing in the expansion of the � -function as an in�nite
linear combination of Schur functions.
An interesting link between Krichever's work and the polynomials associated with root systems was

discovered in [7], by constructing a mutivariate Baker-Akhiezer function for speci�c values of the free pa-
rameters in the Macdonald-Koornwinder operators. In particular, this approach can be used to prove the
bispectrality uniformly for all root systems as well as for certain deformations where other techniques (e.g.
Hecke algebras) do not seem to be applicable. Oleg Chalykh explained the main ingredients of this connection
and derived new orthogonality relations for the Baker-Akhiezer functions.
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5 Outcome of the Meeting
The conference led to several unusual interactions: between researchers in the abstract special function side,
and those on the analysis side; between those studying orthogonal polynomials of a single variable, and
those studying many variables; between those studying multivariate polynomials from a real angle, and those
studying from a multivariate complex angle; and between those applying potential theory in one variable,
and practitioners of the multivariate theory. In addition, there were numerous interactions within individual
topics.
Several recent doctorates expressed the belief that their research horizons expanded. Participants agreed

that they learnt a lot about the broader �eld. This was especially the case for univariate researchers, who
learnt a lot about multivariate potential theory, and the general multivariate settings.
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