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1 Overview of the Field
The best way to think of triangulated categories is as a powerful technical tool which has had amazing
applications over the last 30 years. Homological algebra was first introduced quite early in the 20th century,
and by the 1950s the subject was viewed as fully developed: so much so that the authoritative book, by Cartan
and Eilenberg, dates from this decade, and until recently no one bothered to write an update. Around 1960
Grothendieck and Verdier introduced a new twist (triangulated categories), a refinement no one expected.
It took about 20 years before people started realizing the power of the method, and in the last 30 years the
applications have reached corners of mathematics no one would have foreseen. In organizing the conference
we tried to bring in people from diverse fields, who use triangulated categories in their work, to give them a
chance to interact. Many of the participants told us it was the best conference they had been to in a long lime.

2 Recent Developments and Open Problems
It’s hard to know where to begin, there has been so much recent progress and it’s been all over the place.
Some of the progress has been on foundational questions, such as Brown representability [27, 11, 26, 5] and
understanding the Balmer spectrum [1, 2, 4] of a tensor triangulated category. There has been considerable
progress in understanding t-structures on various derived categories, for example the theory of Bridgeland
stability conditions [8, 9, 10]. There are several theorems about obstructions to finding model structures for
triangulated categories, examples of categories without model structures [25], and theorems telling us about
the existence and uniqueness of model structures for large classes of triangulated categories [28, 23]. There
has been major progress in computing the Balmer spectrum [3], as well as generalizations to categories with
coproducts and applications in the specific cases [6, 7]. There has also been progress on applying triangulated
categories to mathematical physics [12, 20, 21, 22] and to the study of C∗–algebras [24].

Every bit of progress opens up a myriad new questions, the very fact that we are making so much progress
is evidence of how little we know.

3 Presentation Highlights
We began the conference with three very introductory presentations: we decided that, for such a diverse
audience, there was a need to have experts present an overview of how their field finds triangulated categories
relevant. Somewhat arbitrarily we decided to split up the applications into three broad areas: Mark Hovey
talked about topology, Yujiro Kawamata introduced algebraic geometry, and Henning Krause spoke about
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representation theory. Of course this leaves out many of the fields to which triangulated categories are applied,
but we couldn’t very well have a conference that was just a string of introductory talks.

In choosing the speakers we kept diversity in mind; we tried to have as many fields as possible represented,
and specifically asked each speaker to bear in mind that he or she will be addressing an audience most of
whom know nothing about their specialty. As already mentioned, the participants were enthusiastic about the
outcome.

Ralf Meyer and Ivo Dell’Ambrogio gave talks with a C∗–algebra perspective, Gonçalo Tabuada intro-
duced us to how to reframe a whole bunch of conjectures in terms of suitable model liftings of triangulated
categories and their localizations. Neil Strickland talked about the right axiomatization of tensor products
in triangulated categories. Greg Stevenson and Srikanth Iyengar both gave talks about two (quite different)
generalizations of the Balmer spectrum to infinite triangulated categories, that is to ones with coproducts,
and each gave examples of applications. Jon Carlson and Julia Pevtsova both talked about applications to
representation theory and group cohomology. Sabin Cautis and Tony Licata talked about categorified repre-
sentation theory and the triangulated categories that arise there. John Greenlees told us about cohomological
descriptions of complete intersection, with a derived category tilt. Brooke Shipley presented results on the
equivariant version, where the group G is a compact Lie group; this improves on work by Greenlees in the
special cases where G is either a finite group or the group S1. Don Stanley gave a talk about the progress
made in the attempts to classify t–structures in certain interesting cases. Fernando Muro told us about the
current confused status of our understanding of Brown representability, including the (published) theorem of
Rosický that unfortunately happens to be false and counterexamples to it. Wendy Lowen and Amnon Yeku-
tieli each gave a talk about (totally different) results of interest in non-commutative algebraic geometry. And
finally Daniel Murfet explained to us the problem of constructing finite dimensional models of the pushfor-
ward of a matrix factorization: it’s easy to show, by theoretical arguments, that such a model exists, but an
effective procedure for constructing one is very new.

It goes without saying that there were many topics we could not cover, and the fact that some topics were
left out was because speakers chosen to cover them cancelled their participation at the last minute.

4 Scientific Outcomes of the Meeting
The meeting aimed to bring together a very diverse group of mathematicians who employ the methods of
triangulated categories in totally different fields. They certainly were interested in listening to each other, and
we hope that the interactions and exchange of ideas will continue. Over time we will be able to form a more
accurate picture of what the scientific benefits will be.

5 Abstracts
Mark Hovey
To open this conference on triangulated categories and applications, we first describe how triangulated cate-
gories arose in algebraic topology. Thus we explain the process that leads from topological spaces to specta
to the stable homotopy category. The stable homotopy category is a compactly generated tensor triangulated
category. The most basic feature of any such category is the graded commutative ring of self-maps of the
unit, which in this case consists of the stable homotopy groups of the sphere. We describe what is known
about this ring, but it is so complex that there are no prospects for ever computing it entirely. So we need new
approaches. We describe two such approaches, both worked out by Mike Hopkins and Jeff Smith. We first
describe all the field objects of the category; these turn out to be the Morava K-theories. We then describe the
thick subcategories of compact objects and the associated prime ideal spectrum, in the sense of Paul Balmer.
Finally, we describe how the stable homotopy category gives rise to all of the commonly studied triangulated
categories, including ones seemingly far away from algebraic topology. Building on work of Stefan Schwede
and Brooke Shipley, Andreas Heider has recently shown that every well-generated triangulated category with
a model is a localization of the triangulated category of modules over a symmetric ringoid spectrum.

Yujiro Kawamata
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This was a survey talk on the structure of the bounded derived categories of coherent sheaves on algebraic
varieties Db(X) = Db(Coh(X)), viewed as new kind of spaces. I started with results on explicit structures
given by exceptional collections of objects such as

Db(Pn) ∼= 〈O(−n), . . . ,O(−1),O〉

by Beilinson, and by semi-orthogonal decompositions such as

Db(X) ∼= 〈U+,OX , Db(C)〉

for a Fano 3-fold X of degree 12 and a curve C of genus 8 by Kuznetsov.
Then I went on to more complicated derived categories when the canonical divisor is trivial. I explained

an equivalence called the Fourier-Mukai transform

ΦP : Db(A)→ Db(Â)

for an abelian variety A and its dual abelian variety Â defined as an integral functor whose kernel is the
Poincaré line bundle. I also explained a more complicated case of K3 surfaces and the derived Torelli theorem.

I explained the representability theorem by Bondal and Van den Bergh, which says that the category
Db(X) is saturated. I also explained the representability theorem by Orlov, which says that equivalences of
derived categories are expressed as integral functors. I also talked about the Fourier-Mukai partners.

I talked about invariants of the categories. I explained Hochshild (co)homology, and the Hochshild-
Kostant-Rosenberg isomorphism. I explained the moduli spaces of stability conditions defined by Bridgeland,
and his structure theorem on the autoequivalence group of the derived category of a K3 surface.

Finally I explained the relationship between the semiorthogonal decompositions and the minimal model
program. Especially I explained so-called K to D conjecture. I explained a problem of replacing the cate-
gories when the varieties have singularities.

Henning Krause
When one studies the representations of a finite dimensional algebra A (over some field k), there are two
triangulated categories which naturally arise: the bounded derived category Db(modA) of the category
modA of finite dimensional representations, and the stable category stmodA where one takes the quotient
modulo all morphisms factoring through a projective module. For the second construction, one needs to
assume that the algebra is self-injective; a typical example would be the group algebra kG of a finite group
G. An important example for the first construction arises from the path algebra kQ of a finite quiver Q
without oriented cycles.

Historically, the first interesting results are those of Beilinson and Bernstein–Gelfand–Gelfand (both pub-
lished in 1978). They provide a beautiful connection between algebraic geometry and representation theory
and contain already a number of important ideas, which led in the following years to further exciting re-
sults. Beilinson describes for the projective space Pnk an equivalence of the form RHom(T,−) between
Db(cohPn) and Db(mod End(T )) via a tilting object T , while the BGG-correspondence gives an equiva-
lence between Db(cohPn) and the stable category of graded modules over the exterior algebra of an n + 1
dimensional vector space.

Then I gave the basic results from tilting theory, in particular Rickard’s theorem characterising the fact
that two algebras have equivalent derived categories. Also the stable category was explained in further detail,
based on work of Buchweitz for Gorenstein algebras.

Next I moved to hereditary categories such that its derived category admits a tilting object. Happel’s
theorem tells us that there are just two types: the representations of path algebras and the coherent sheaves
on weighted projective lines in the sense of Geigle–Lenzing.

Auslander-Reiten theory for triangulated categories and Serre duality form another interesting aspect. A
theorem of Happel says that Db(modA) has AR-triangles if andf only if A has finite global dimension.

One of the great success stories in representation theory is based on the notion of cohomological support
for modular group representations. A theorem of Benson, Carlson, and Rickard gives a complete classifi-
cation of all thick subcategories of stmod kG, using the support defined in terms of the group cohomology
H∗(G, k).
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Finally, I moved to the theory of exceptional sequences which is well developed for quiver representa-
tions. A recent result of Ingalls and Thomas implies a classification of all admissable thick subcategories of
Db(mod kQ) in terms of non-crossing partitions associated to the underlying diagram of the quiverQ. Taking
as an example the Kronecker quiver (two vertices and two parallel arrows), this classification complements
the classification of the thick tensor ideals which one gets from the equivalence with Db(cohP1

k).

Ralf Meyer
Noncommutative topology views C*-algebras as a generalization of pointed compact topological spaces.
The basis of this is that the category of commutative C*-algebras is anti-equivalent to the category of pointed
compact spaces by Gelfand’s Theorem.

An important source of C*-algebras are stacks, which may be described by groupoids and corresponding
C*-algebras. The C*-algebra associated to a groupoid is, however, only well-defined up to an appropriate
C*-algebraic notion of Morita equivalence. Thus we add a Morita invariance condition to the axioms for
homology theories in the C*-algebraic context.

This has rather drastic effects: it turns out that any Morita invariant and split-exact functor on C*-algebras
behaves essentially like K-theory. In particular, the universal such functor deserves to be called bivariant K-
theory. This is the analogue of the stable homotopy category in noncommutative topology. It is a triangulated
category as well.

Several results in homotopy theory can be extended to noncommutative topology by first generalizing
them to triangulated categries and then specializing to bivariant K-theory. In many cases, this requires some
further work because C*-algebras do not admit uncountable coproducts or internal Hom functors. Hence
standard notions from homotopy theory do not apply directly. It seems also quite difficult to relate bivariant
K-theory to model categories.

One of the most powerful techniques in this context is homological algebra in triangulated categories. It
provides an abelian approximation to a triangulated category, starting with a stable homological ideal. This is
a powerful substitute for t-structures. The latter do not apply to bivariant K-theory because of Bott periodicity.

Approximating bivariant K-theory and its variants by Abelian categories also leads to some interesting
phenomena in ring theory. The search for universal coefficient theorems for equivariant versions of bivariant
K-theory has led to several examples of hereditary exact categories that deserve further study by algebraists.

Goncalo Tabuada
I will start by introducing the categoryMot of noncommutative motives, as invisioned by Drinfeld and Kont-
sevich in their noncommutative algebraic geometry program. This category is the natural setting for the
study of several classical invariants such as cyclic homology (and its variants), algebraic K-theory, topo-
logical Hochschild homology, etc. Among other results, I will show that algebraic K-theory becomes co-
representable inMot by the tensor unit object. Then, I will present joint work with Ivo Dell’Ambrogio on
the tensor triangular geometry of noncommutative motives. Making use of Hochschild homology, periodic
cyclic homology, and algebraic K-theory, I will describe some explicit points in the Balmer spectrum of
Mot. This will illustrate the complexity of the Balmer spectrum ofMot. Finally, I will present joint work
with Paul Balmer on the assembly isomorphism conjectures. Our main result asserts that the fundamental
assembly isomorphism conjecture (which implies all the conjectures on the market) is simply a coefficients
variant of the classical Farrell-Jones conjecture in K-theory. This will illustrate the central role played by the
classical Farrell-Jones conjecture among all isomorphic conjectures.

Neil Strickland
Many important examples of triangulated categories come equipped with a symmetric monoidal tensor prod-
uct. There are some basic features of the interaction between these structures that are well-known. However,
Peter May has pointed out that there are more subtle interactions present in the usual examples, which are
important for certain applications. Here we report on a project to make May’s results more complete and sym-
metrical. For simplicity, we restrict attention to the homotopy category D of ungraded differential modules
over a fixed commutative Z/2-algebra. This has a canonical triangulation for which the suspension functor
is the identity. We believe that, with more bookkeeping, our constructions can be generalised to cover all the
usual algebraic examples of tensor triangulated categories.

Suppose we have two distinguished triangles in D, say A0 → A1 → A2 → A0 and B0 → B1 → B2 →
B0. By tensoring these together, we obtain a functor F : U → D, where U is an evident additive category
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with object set (Z/3)2. Our elaboration of May’s results shows that this has a canonical extension over a
larger category V ⊃ U . More specifically, the category V has objects uij (for i, j ∈ Z/3) and vk. There are
morphisms

vi+j+1
µij−−→ uij

λij−−→ vi+j−1,

and the full category is generated freely by these, subject only to the relations µi+1,j+1λi−1,j−1 = 0 and∑
i+j=k λijµij = 0. The category V has only finitely many morphisms, which can be listed explicitly. It

also has a rich group of automorphisms. For each morphism in the image of the extended functor F : V → D,
the cofibre can be described as an object in the image of F , or a direct sum of two or three such objects.

Greg Stevenson
We will discuss a framework for proving classification theorems for localizing subcategories of compactly
generated triangulated categories using actions of tensor triangulated categories. As both motivation and an
application we will discuss the classification of localizing subcategories of the stable derived category of a
complete intersection over a field.

An action of a tensor triangulated category T on a triangulated category K is a functor T × K → K
which is exact and coproduct preserving in each variable and is compatible with the tensor structure on T .
In the case that T is rigidly-compactly generated and K is compactly generated this gives rise to a theory of
supports which extends the theory of Balmer and Favi and categorifies work of Benson, Iyengar, and Krause.

We will indicate briefly how one constructs the associated support theory and its relationship to the classi-
fication problem. This leads to the one of the central abstract results: the local-to-global principle for actions.
This theorem allows one to reduce the classification problem to (hopefully) more tractable problems.

As a demonstration of the utility of this machinery we explain recent progress on understanding the lattice
of localizing subcategories of the stable derived category of a noetherian separated scheme. In particular, the
classification for hypersurfaces in terms of the singular locus will be discussed.

Ivo Dell’Ambrogio
As an illustration of the general methods of relative homological algebra in triangulated categories developed
by Christensen, Beligiannis and Meyer-Nest, we explain the following equivariant generalization of two
classical, and very useful, results of Rosenberg and Schochet, namely, their universal coefficient and Künneth
theorems for complex C*-algebras.

LetG be a finite group. For anyG-C*-algebraA, the collection of allH-equivariant topological K-theory
groups of A, with H running through all subgroups of G, assemble to form a Z/2-graded Mackey func-
tor k∗(A). The assignment of k∗(A) to A lifts to a stable homological functor defined on the G-equivariant
Kasparov category, KKG. We obtain from this construction, and from the general machinery, the existence
of previously unobserved universal coefficient and Künneth spectral sequences abutting to KKG(A,B) and
KG(A ⊗ B), respectively. As input for these spectral sequences we find Ext and Tor groups, respectively,
that can be computed in the abelian category of Mackey modules over the complex character ring of G. Con-
vergence – conditional and strong, respectively – is obtained if A is “cellular”, in the sense that it belongs to
the localizing subcategory of KKG generated by the algebras C(G/H). Such algebras form a rather large
class, containing all commutative G-C*-algebras and closed under the classical “bootstrap” operations.

Jon Carlson
This lecture is a survey of results on endotrival modules over finite groups and group schemes. Assume that
k is a field of characteristic p and G is a finite group or group scheme. A kG-module is endotrivial provided
Homk(M,M) ∼= M∗ ⊗M ∼= k⊕ P where P is a projective kG-modules. Thus. M is an endotrivial module
if its k-endomorphism rings is a trivial module in the stable category stmod(kG) of kG-modules modulo
projectives. Dade and Puig showed that the endotrivial modules play a substantial role in the block theory of
modular group representations. In addition, tensoring with an endotrivial module is a self-equivalence on the
stable category. Consequently the group of endotrivial module, which has elements the isomorphism classes
of endotrival modules in the stable category and operation given by the tensor product, is an important part
of the Picard group of self-equivalences of stmod(kG). It is group of self-equivalences of Morita type.

Everett Dade introduced the group of endotrivial modules more than thirty years ago. He classified them
in the case thatG is an abelian p-group. A complete classification of endotrivial modules for all p-groups was
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achieved a few years ago by Jon Carlson and Jacques Thévenaz building on the work of many others, notably
Dade and Jon Alperin. Classifications of the endotrivial modules over other types of groups are included in
works by various combinations of Jon Carlson, Dave Hemmer, Nadia Mazza, Dan Nakano, Gabriel Navarro,
Geoff Robinson and Thévenaz. Some progress has also been made by Carlson and Nakano on the structure
of endotrivial modules for infinitesimal finite group schemes. We review this work in the lecture and also
demonstrate a construction of exotic endotrivial modules. The construction relys on the theory of support
varieties for kG-modules and connects the work of Paul Balmer and Giordano Favi on gluings in triangulated
categories.

Julia Pevtsova
The study of representations of a finite group (scheme) over a field of characteristic p via their restrictions
to the subalgebras of the form k[t]/tp, known as cyclic shifted subgroups or π-points, goes back to the work
of J. Carlson in the 80’s and has an extensive literature base. In this talk, I’ll report on the ongoing project
joint with J. Carlson and E. Friedlander in which we initiate the study of representations of an elementary
abelian p-group E via their restrictions to “rank r shifted subgroups”, that is, subalgebras of kE of the form
k[t1, . . . , tr]/(t

p
1, . . . , t

p
r).

In this framework, we introduce various geometric invariants that generalize familiar concepts in the
special and well studied case of r = 1. In particular, we investigate a somewhat surprising behavior of
“r-support varieties” and “nonmaximal r-support varieties” for r > 1. Inspired by the concept of a module
of constant Jordan type that lead to new constructions of vector bundles on projective spaces, we introduce
modules of constant r-socle and r-radical type and show how such a generalization leads to constructing
algebraic vector bundles on Grassmannians. The talk will be spiced up with numerous examples of modules
with prescribed properties and of corresponding algebraic bundles on Grassmannians.

Srikanth Iyengar
The goal of my talk was to give an introduction to on-going work with Dave Benson and Henning Krause
concerning, what we have called, stratification of triangulated categories. The main achievement of our
collaboration so far, and the principal driving force behind it, has been a classification of the localizing
subcategories of the stable module category of a finite group, in the spirit of Neeman’s result for the derived
category of a commutative noetherian ring. To this end it has been necessary to develop a theory of local
cohomology and derived completion, from commutative algebra, in the context of fairly general triangulated
categories. Beyond clarifying what it takes to classify localizing, and also colocalizing, subcategories, these
techniques have allowed us to deduce many results that are consequences, but by no means obvious ones, of
such classifications. In my talk, I tried to illustrate these by explaining various answers we could obtain for
the question: When is there a non-zero morphism between objects in a triangulated category? The talk was
based on the following papers, all co-authored with Benson and Krause and available on the math arXiv:

• Colocalizing subcategories and cosupport, J. Reine. Angew. Math., to appear.

• Stratifying triangulated categories, J. Topology, to appear.

• Stratifying modular representations of finite groups, Ann. of Math. 175 (2012); to appear.

• Local cohomology and support for triangulated categories, Ann. Sci. École Norm. Sup. (4) 41 (2008),
575–621.

John Greenlees (Joint work with Benson, Hess and Shamir).
The talk described three different characterizations of complete intersections for Noetherian local rings R.
The sci condition (regular ring mod regular sequence), the mci condition (eventually multiperiodic resolutions
for finitely generate modules), and the gci condition (polynomial growth of Ext algebra). The aim of the talk
was to give a homotopy invariant definition, and in particular to give versions of these definitions which apply
to R = C∗(X; k) (cochains on a space X).

Before one gets to complete intersections, one needs to deal with the regular case. There are correspond-
ing definitions (s-regular, m-regular and g-regular) for regular local rings. One can make good sense of
g-regular (Ext algebra finite dimensional) and then use the putative m-regular condition (finitely generated
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implies small) to give a definition of finite generation. The substitute for the Noetherian condition on a ring
R is that there is a map Q → R from a regular ring, making R a small Q-module. An R-module M is then
said to be finitely generated if it is small as a Q-module.

Now, a space is sci if it is obtained as an iterated spherical fibration from a regular space. A space is
gci if H∗(ΩX) has polynomial growth. To make sense of the mci condition, the eventual multiperiodicity
states that a Koszul complex is small, but to get equivalence one needs to require that this natural in a suitable
sense. So we reach the eci condition which says that iterated cofibrations in the category of bimodules reach
a non-trivial small object. The sci condition is stronger than the others, but in the rational and mod p contexts,
the gci and eci conditions are equivalent.

The talk also provided some illustrative examples with X the classifying space of a finite group.

Brooke Shipley
For a compact Lie group G of rank r, Greenlees has conjectured that there is an abelian category A(G)
of injective dimension r such that the homotopy category of rational G-equivariant cohomology theories is
modeled by the derived category ofA(G). This conjecture holds for finite groups since rationalG-equivariant
cohomology theories are just graded rational Mackey functors (which are all injective). This conjecture also
holds for SO(2), O(2) and SO(3) by work of Greenlees [13, 14, 15]. In this talk we discussed joint work
with Greenlees on this conjecture forG a torus. Specifically we outlined this new, simplified, proof for SO(2)
and indicated the changes needed for higher rank tori.

Theorem [19] For any torus, Tn, there is an abelian category A(Tn) of sheaves over the space of closed
subgroups of Tn and a Quillen equivalence of model categories:

Rational Tn-spectra 'Q Rational dgA(Tn)

Furthermore, A(Tn) has injective dimension n (the rank.)
In the case of T = SO(2) this Quillen equivalence appears in [29] based on the work in [14]. In [16],

Greenlees uses this work to construct SO(2)-equivariant elliptic cohomlogy. Our generalization to higher
dimensional tori leads to the possibility of constructions of T g-equivariant cohomology theories associated
to complex curves of genus g; see also [17].

One can also specialize to families versions of the above Theorem for rationalG-spectra with fixed points
concentrated in a given family, F . For example, free Tn-spectra are modeled by differential graded torsion
modules over H∗BTn; this gives a new proof for tori of the results in [18].

Don Stanley Joint work with Adam-Christiaan van Roosmalen
Let R be an abelian category, and D(R) the derived category of R. An aisle U ⊂ D(R) is a full subcategory
closed under extensions and suspensions, such that the inclusion has a right adjoint. Keller and Vossieck
observed that aisles and t-structures are equivalent data. Given an aisle, consider the function

φ(U) : Z→ {specialization closed subsets of Spec(R)}

n 7→ ∪M∈USuppHn(M),

where Spec(R) is the ideal spectrum, and Supp is the support. It turns out that this function determines
the t-structure if we restrict to t-structures in Db

fg(R), the bounded derived category with finitely generated
homologies. If R also has dualizing complex, then it is understood which functions can occur, and hence
there is a classification of the t-structures.

On the other hand even for slightly more general abelian categories A, such as the coherent sheaves on
P 1, the support data of φ does not give enough information to determine t-structures. In this talk we introduce
other data that replaces the sequences of support that worked in the commutative ring case. This data is a
function

φ′(U) : Z→ (W (n), T (n))

where W (n) is a wide subcategory of A and T (n) is a tilting torsion theory in the orthogonal of W (n − 1)
insideW (n). IfA is a category of modules over a finite hereditary algebra, then this data classifies t-structures
in Db

fg(A).

Fernando Muro The talk is based on joint work with Oriol Raventós (Barcelona).
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There are two representability theorems that a compactly generated triangulated category T may satisfy:
Brown’s theorem says that any product-preserving functor T op → Ab which takes exact triangles to exact
sequences of abelian groups is representable. Adam’s theorem says that if T c is the category of compact
objects in T , any additive functor (T c)op → Ab which takes exact triangles to exact sequences is the restric-
tion of a representable functor T op → Ab, and any natural transformation T (−, X)|T c → T (−, Y )|T c is
represented by a morphism X → Y . These theorems were first proved for the stable homotopy category and
later generalized by Neeman, Krause, Franke... to triangulated categories under suitable assumptions.

The classical Adams representability theorem is seldom satisfied. For instance, the derived category
of a finite-dimensional hereditary algebra over an uncountable algebraically closed field satisfies Adam’s
theorem if and only if it is of finite representation type. A failed theorem of Rosický claimed that any well
generated triangulated category with a model would asymptotically satisfy a transfinite version of Adams’
theorem: for big enough regular cardinals α, if T α is the category of α-compact objects in T , any functor
(T α)op → Ab which preserves products of less than α objects and takes exact triangles to exact sequences
is the restriction of a representable functor T op → Ab, and any natural transformation T (−, X)|T α →
T (−, Y )|T α is represented by a morphism X → Y . Such a result for a given triangulated category would
still have amazing consequences, therefore this problem deserves to be studied in specific cases.

In my talk I presented an approach to this problem from the classical point of view of obstruction theory,
leading to counterexamples to Rosický’s theorem based on recent results by Braun–Göbel and Bazzoni–
Šťovı́ček. These counterexamples are about the representability of natural transformations for T the derived
category of Z or C[x, y]. I also showed that there would be counterexamples to the representability of functors
(T α)op → Ab if there were a hereditary ring R with α-pure global dimension > 2 for α big enough. The
existence of such rings is an open problem.

Amnon Yekutieli
Let A be a noetherian commutative ring, and a an ideal in it. In this lecture I will talk about several properties
of the derived a-adic completion functor and the derived a-torsion functor.

In the first half of the talk I will discuss GM Duality (first proved by Greenlees and May, then treated by
Alonso, Jeremias and Lipman), and the closely related MGM Equivalence. The latter is an equivalence be-
tween the category of cohomologically a-adically complete complexes and the category of cohomologically
a-torsion complexes. These are triangulated subcategories of the derived category D(Mod A).

I will explain how the derived completion functor can be studied using the concept of a-adically projective
modules.

In the second half of the talk I will discuss new results: (1) A characterization of the category of coho-
mologically a-adically complete complexes as the right perpendicular to the derived localization of A at a.
This shows that our definition of cohomologically a-adically complete complexes coincides with the original
definition of Kashiwara and Schapira. (2) The Cohomologically Complete Nakayama Theorem. (3) A char-
acterization of cohomologically cofinite complexes. This is related to t-dualizing complexes, in the sense of
Alonso, Jeremias and Lipman. (4) A theorem on completion by derived double centralizer. This last result
extends earlier work of Dwyer-Greenlees and Efimov.

This is joint work with Marco Porta and Liran Shaul.
For full details see the lecture notes

www.math.bgu.ac.il/∼amyekut/lectures/cohom-complete/notes.pdf
or the paper arxiv:1010.4386 .

Anthony Licata
A categorical sl2 action consists of a sequence of k-linear additive categories D(−N), . . . ,D(N) together
with functors, for ` ∈ Z,

E(`) : D(`− 1)→ D(`+ 1) and F(`) : D(`+ 1)→ D(`− 1)

satisfying the relations

E(`− 1) ◦ F(`− 1) ∼= id⊕`D(`) ⊕ F(`+ 1) ◦ E(`+ 1) if ` ≥ 0. (1)

F(`+ 1) ◦ E(`+ 1) ∼= id⊕−`D(`) ⊕ E(`− 1) ◦ F(`− 1) if ` ≤ 0 (2)
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On the complexified (split) Grothendieck groups V (`) := K(D(`)) ⊗Z C, the functors E(`) and F(`)
induce maps of vector spaces e(`) := [E(`)] and f(`) := [F (`)]. By the above relations, V = ⊕V (`) is a
locally finite representation of sl2(C), where e = [ 0 1

0 0 ] acts by ⊕`e(`) and f = [ 0 0
1 0 ] acts by ⊕`f(`).

Any such sl2 action on ⊕`V (`) integrates to an SL2 action. Hence the reflection element

t =

[
0 −1
1 0

]
induces an isomorphism of vector spaces V (`)

∼−→ V (−`). An interesting question is whether this isomor-
phism can be lifted to an equivalence of categories T : D(`) → D(−`) coming from a lift of the reflection
element.

In their seminal work, Chuang and Rouquier constructed such an equivalence under the assumption that
the underlying weight space categories are abelian, and the categorical sl2 action is by exact functors. More
precisely, they constructed an equivalence between the corresponding derived categories.

In our motivating geometric examples, however, the natural functors are not exact, and as a result the
weight space categories D(`) are triangulated instead of abelian. Nevertheless, it is still natural to ask for an
equivalence between D(`) and D(−`).

The setup we use in order to modify the Chuang-Rouquier construction is that of strong categorical sl2
actions. In particular, this means that categories D(`) are graded and the Es and Fs satisfy a graded version
of relations (1) and (2). The grading implies that on the level of the Grothendieck group there is an action of
the quantum group Uq(sl2).

As an additional data, we demand functors

E(r)(`) : D(`− r)→ E(r)(`+ r) and F(r)(`) : D(`+ r)→ D(`− r)

which categorify the elements e(r) = er

r! and f (r) = fr

r! along with natural transformations X,T which are
used to rigidify the isomorphisms (1) and (2).

Here is a sketch of the construction. If we restrict t ∈ SL2 to the weight space V (`) with ` ≥ 0, then one
can write t as

t = f (`) − f (`+1)e+ f (`+2)e(2) ± . . .

where the sum is finite since V (`) = 0 for ` � 0. We can lift f (`+s)e(s) to the composition of functors
F(`+s) ◦ E(s). We then form a complex of functors Θ∗ whose terms are

Θs := F(`+s)(s) ◦ E(s)(`+ s)〈−s〉.

(the 〈·〉 represents a shift in the grading). The connecting maps of the complex are defined via various
adjunction morphisms.

The main result of the talk states that if our categories D(`) are triangulated then the convolution of this
complex is an equivalence T : D(`)

∼−→ D(−`).

Sabin Cautis
In 2004 Chuang and Rouquier proved a version of Broué’s abelian defect group conjecture for the symmetric
group by introducing the notion of a strong categorical sl(2) action. Their key idea was to show that the Weyl
involution of sl(2) can be lifted to give an equivalence of categories.

More recently, in joint work with Joel Kamnitzer and Anthony Licata, we constructed similar cate-
gorical sl(2) actions on (derived) categories of coherent sheaves on cotangent bundles to Grassmannians
DCoh(T ∗G(k,N)). Furthermore we showed that such actions also induce equivalences and thus were able
to construct a natural equivalence DCoh(T ∗G(k,N)) ' DCoh(T ∗G(N −k,N)) generalizing earlier work
of Namikawa and Kawamata on derived equivalences in algebraic geometry.

More recently, in joint work with Joel Kamnitzer, we extend this notion to define categorical sl(n) actions.
We show that such an action induces an action of the braid group on n strands (this should be thought of as
a cover of the symmetric group which is the Weyl group of sl(n)). By constructing such an sl(n) action
on (derived) categories of coherent sheaves on n-step partial flag varieties we obtain a braid group action on
them.
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In this talk I will explain what is a categorical sl(n) action and how it can be used to construct braid group
actions. This definition will be motivated by braid group actions constructed via Seidel-Thomas spherical
twists. I will illustrate all of this by defining an sl(3) action on the resolution of C2/Z3, thus obtaining the
well known braid group action on (the derived category of) this space.

This method of constructing braid group actions has applications to geometry (as described above), knot
theory (e.g. algebro-geometric constructions of Khovanov homology) and representation theory of finite
group (e.g. the work of Chuang and Rouquier). It is also natural to ask if there are similar constructions for
other groups, for instance, mapping class groups.

Wendy Lowen
Compact generation of triangulated categories was introduced by Neeman. One of the motivating situations
is given by “nice” schemes (i.e. quasi-compact separated schemes, later extended to quasi-compact quasi-
separated schemes by Bondal and Van den Bergh). The ideas of the proofs later crystallized in Rouquier’s
(co)covering theorem which describes a certain covering-by-Bousfield-localizations situation in which com-
pact generation (later extended to α-compact generation by Murfet) of a number of “smaller pieces” entails
compact generation of the whole triangulated category. The notions needed in the (co)covering concept can
be interpreted as categorical versions of standard scheme constructions like unions and intersections of open
subsets, and in the setup of Grothendieck categories rather than triangulated categories they have been impor-
tant in non-commutative algebraic geometry. In this talk we present a (co)covering theorem for Grothendieck
categories based upon these notions, which can be used to prove compact generation of the derived category
of certain Grothendieck categories. As such, the result follows from the triangulated (co)covering theorem,
and it implies Neeman’s original result for schemes by application to the Grothendieck category of quasi-
coherent sheaves. Our interest in such an intermediate result comes from its applicability to Grothendieck
categories that originate as “non-commutative deformations” of schemes, more precisely abelian deforma-
tions of categories of quasi-coherent sheaves in the sense of Lowen and Van den Bergh. In general, there
remain obstructions to the lifting of compact generators of some of the relevant categories under deformation.
On the other hand, in some situations (eg. for quasi-projective surfaces) we can use the (co)cover theorem in
combination with techniques of Keller and Lowen to obtain compact generation of all deformations.

Daniel Murfet
Functors between triangulated categories are often described in terms of integration against a kernel. In
the categorical setting this integration takes the form of a pushforward. I will describe a new approach to
constructing finite models of pushforwards for matrix factorisations and some applications including, if time
permits, computations of homological link invariants.
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