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This workshop was a unique effort to combine strong, broad impact with a top level technical research
program. In order to help raise the profile of active female researchers in number theory and increase their
participation in research activities in the field, this event brought together female senior and junior researchers
in the field for collaboration. Emphasis was placed on on-site collaboration on open research problems as
well as student training. Collaborative group projects introducing students to areas of active research were a
key component of this workshop.

We would like to thank the following organizations for their support of this workshop: BIRS, PIMS,
Microsoft Research, and the Number Theory Foundation.

1 Rationale and Goals
Number theory is a fundamental subject with connections to a broad spectrum of mathematical areas in-
cluding algebra, arithmetic, analysis, topology, cryptography, and geometry. This very active area naturally
attracts many female mathematicians. Although the number of female number theorists is steadly growing,
there are still relatively few women reaching high profile positions and visibility at international workshops
and conferences. The lack of female leaders in the area is an issue that tends to perpetuate itself, since it has
repercussions in attracting and training the next generation of female mathematicians.

In order to increase the number of active female researchers in number theory, a workshop on “Women in
Numbers” (WIN 2008) was held at BIRS in November, 2008. This workshop was tremendously successful,
surpassing even its stated goals. Several research collaborations—typically involving some senior and junior
mathematicians, and in some cases advanced graduate students—began in the working groups of WIN 2008.
Many of these collaborations have already proved fruitful in producing publishable research, and a few of the
collaborations have continued long past the initial workshop.

For this momentum to continue, it is essential that WIN 2008 is not a single, isolated event, but rather
the beginning of a long-term program to develop and support female number theorists. This workshop was
designed continue and build upon the work started at WIN 2008. The specific goals were:

1. to highlight research activities of women in number theory;

2. to increase the participation of women in research activities in number theory;

3. to train female graduate students in number theory and related fields;

4. to strengthen the research network of potential collaborators in number theory and related fields started
by the WIN 2008 conference;

5. to enable female faculty at small colleges to participate actively with research activities including the
training of graduate students; and

6. to provide information on women in number theory with an inclusive approach.

Participant testimonials, comments from (male and female) colleagues, and other feedback suggest that
significant progress was made toward goals 1 through 4. In particular, the conference gave greater exposure
to the research programs of active female researchers in number theory. Through collaborative projects,
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students participated in new research in the field, and faculty at small colleges were exposed to supervision
activities. Some of the group projects will lead to new results and publications, and the conference organizers
are currently exploring venues for publication of a conference proceedings volume.

A Women in Numbers listserv, a website, and a Facebook page have all been established. These will
serve as the basis for the WIN Network, a network for female researchers in number theory. It is the sincere
hope of the workshop organizers that progress was also achieved toward goals 5 and 6 above, but only time
will tell.

2 Participants and Format
The participants were 41 female number theorists — 12 senior and mid-level faculty, 14 junior faculty and
postdocs, and 15 graduate students. About one-third of the participants, mostly faculty, were invited by the
conference organizers. The remaining slots were intended for junior faculty, postdocs, and graduate students.

The organizers solicited applications, advertising via: the BIRS website, the Association of Women in
Mathematics newsletter, and various mailing lists including the Number Theory listserv and the previous
Women in Numbers 2008 participants.

Fifty-three applicants submitted a CV and a research statement (for postdocs and faculty) or a list of
courses taken and letter of recommendation (for graduate students). After a careful and thorough review of
these documents, the organizing committee selected what were deemed to be the strongest applicants for
participation in the workshop.

Based on the participants’ research interests and expertise, the organizers then divided the participants up
into eight research groups of 4–6 members each; usually two senior members (group leaders) and 2–4 junior
members. Group leaders chose a project for collaborative research during and following the conference. They
provided materials and references for background reading ahead of time. The group leaders also gave talks
during first three days of the meeting to introduce all participants to their respective group projects. During the
last two days of the workshop, junior participants presented the progress made on the group projects. These
presentations usually involved more than one presenter. As a result, essentially all workshop participants
were able to give a talk at some point during the conference.

Each group also submitted a short written progress report on their project. These reports, along with the
project title and the names of the group members, are included in Section 4. Collaboration on the research
projects is on-going via electronic communication. Some of these projects will lead to new results and
publications. The organizers also expect to publish a conference proceedings volume in the future.

3 Schedule
The official schedule for the workshop appears below. Note that most nights, the project groups reconvened
and continued working after dinner.

Sunday:
4pm Check-in begins
5:30 – 7:30 dinner
8:00 informal gathering

Monday:
7:00 – 8:45 breakfast
8:45 – 9:00 intro & welcome (BIRS Station Manager & Organizers)
9:00 – 10:30 presentation by Group 1 leaders: Marie-José Bertin and Matilde Lalı́n
10:30 – 11:00 coffee
11:00 – 12:30 presentation by Group 2 leaders: Chantal David and Heekyoung Hahn
12:30 – 1:30 Lunch
1:30 – 2:30 BIRS tour
2:00 – 2:30 coffee
2:30 – 4:00 presentation by Group 3 leaders: Alina Bucur and Melanie Matchett Wood
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4:00 – 6:30 work in project groups
6:30 dinner

Tuesday:
7:00 – 8:45 breakfast
8:45 – 9:00 announcements
9:00 – 10:30 presentation by Group 4 leaders: Alina Cojocaru and Alice Silverberg
10:30 – 11:00 coffee
11:00 – 12:30 presentation by Group 5 leaders: Wieslawa Niziol and Sujatha Ramdorai
12:30 – 1:30 Lunch
1:30 – 3:00 presentation by Group 6 leaders: Rachel Pries and Hui June Zhu
3:00 – 3:30 coffee
3:00 – 6:30 work in project groups
6:30pm dinner

Wednesday:
7:00 – 8:45 breakfast
8:45 – 9:00 announcements
9:00 – 10:30 presentation by Group 7 leaders: Ling Long and Gabriele Nebe
10:30 – 11:00 coffee
11:00 – 12:30 presentation by Group 8 leaders: Kristin Lauter and Bianca Viray
12:30 Lunch / Free afternoon

Thursday:
7:00 – 1:30pm breakfast / project groups / lunch
1:30 – 2:00 Group 1 report by team members
2:15 – 2:45 Group 2 report by team members
2:45 – 3:15 Coffee break
3:15 – 3:45 Group 3 report by team members
4:00 – 4:30 Group 4 report by team members
4:45 – 5:15 Group 5 report by team members
5:30 – 6:00 Group 6 report by team members
6:00 – 7:30 dinner
8:00 informal career discussion

Friday:
7:00 – 8:45 breakfast
8:45 – 9 announcements
9:00 – 9:30 Group 7 report by team members
9:45 – 10:15 Group 8 report by team members
10:15 – 10:45 Coffee
10:45 – 11:30 closing discussion / future plans
11:30 – 1:30 lunch
checkout by noon

4 Research Projects and Project Groups

4.1 Group 1: Elliptic Surfaces and Mahler measure
Participants: Marie-José Bertin (Université Paris VI), Amy Feaver (University of Colorado Boulder), Jenny
Fuselier (High Point University), Matilde Lalı́n (Université de Montréal), and Michelle Manes (University of
Hawai‘i at Mānoa).
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The (logarithmic) Mahler measure of a nonzero multivariable Laurent polynomial P ∈ C[x±11 , . . . , x±1n ]
is defined by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1
x1

. . .
dxn
xn

.

This object has interesting connections to heights of polynomials and numbers, transcendence theory, vol-
umes in hyperbolic space, knot invariants, ergodic theory, among others.

For a one-variable polynomial, one obtains a simple expression in terms of the roots of the polynomial.
For multivariable polynomials there is no general formula, but there exist several examples of polynomials
that yield special values of zeta and L-functions that are often associated to the geometric object defined by
the zero set of the polynomial. For example, there are several examples were the polynomials correspond to an
elliptic curve and the Mahler measure is related to L(E, 2). These formulas have been related to Beilinson’s
conjectures.

In this project, we considered a family of K3-surfaces Yk (where k is a parameter) defined by the desin-
gularization of Pk = 0 where

Pk(x, y, z) = x+
1

x
+ y +

1

y
+ z +

1

z
− k.

The Picard number ρ(Yk) is generically equal to 19, but for some special values of k, ρ(Yk) = 20. In this
case, theK3-surface is called singular and the transcendental lattice has dimension 2, analogous to the elliptic
curve case. The cases of k = 0, 2, 10 fall into this category and were studied by Bertin [2, 3]. The goal of the
project was to study the Mahler measures for the cases of k = 3, 6, 18 which are also known to correspond
to singular K3-surfaces.

We were able to obtain

m(P3) =
15
√

15

2π3
L(f15, 3)

?
=
|detT (Y3)|3/2

2π3
L(Y3, 3)

m(P6) =
24
√

24

2π3
L(f24, 3) =

|detT (Y6)|3/2

2π3
L(Y6, 3)

m(P18) =
120
√

120

2π3
L(f120, 3) +

21
√

3

10π
L(χ−3, 2)

?
=
|detT (Y18)|3/2

9π3
L(Y18, 3) +

21
√

3

10π
L(χ−3, 2),

where f15, f24, f120 denote newforms of levels 15, 24 and 120, and T denotes the transcendental lattice of
Yk. The question marks indicate conjectural formulas.

We used a formula of Bertin [1] to relate the Mahler measures to the L-functions of newforms. The other
part of the proofs consists of relating the L-function of the newforms to the L-function of the surfaces. For
this part, the main ingredient is Livné’s modularity theorem. This was accomplished in the case of k = 6, but
the k = 3, 18 cases are harder to attack because we use an elliptic fibration of the surface having an infinite
section which requires the use of Néron’s desingularization. We hope to complete theses proofs in the near
future.

4.2 Group 2: Square-free values of sequences related to reductions of elliptic curves
over finite fields

Participants: Shabnam Akhtari (CRM, Montreal), Chantal David (Concordia University), Heekyoung Hahn
(McGill University), Min Lee (Columbia University), and Lola Thompson (Dartmouth College).

Let E be an elliptic curve over Q. For each prime p of good reduction, E reduces to a curve Ep over the
finite field Fp with #Ep(Fp) = p+ 1− ap(E) where |ap(E)| ≤ 2

√
p (the Hasse bound).

There are many conjectures about properties of the various reductions as one varies over all the primes,
for example, the Sato-Tate conjecture which was recently proven by Taylor, Harris and Shepherd-Barron. Or
the Lang-Trotter conjecture about # {p ≤ x : ap(E) = r} for a given integer r, or the Koblitz conjecture
about # {p ≤ x : #Ep(Fp) is prime} . Those last two conjectures are mostly completely open. The most
important result known is perhaps the work of Elkies [5] who showed that there are infinitively many super-
singular primes (i.e. primes such that ap(E) = 0) for any E over Q. This is the only known lower bound for
those questions.
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Let fp(E) be a sequence associated with the reductions ofE over Fp. The two cases that we have in mind
are fp(E) = p+ 1−ap(E) and fp(E) = ap(E)2− 4p. The first sequence describes the order of the reduced
groups Ep(Fp) and the second one is related to the ring of endomorphisms of the reduced curve Ep over Fp.
We concentrate on the case where E does not have CM.

We want to count
πSF
f,E(x) = # {p ≤ x : fE(p) is squarefree} .

It is easy to make a conjecture

πSF
f,E(x) ∼ CSF

E,fπ(x) (1)

where

CSF
E,f =

∞∑
d=1

µ(d)|CE,f (d2)|
|GE(d2)|

(2)

with GE(d2) the Galois group of Q(E[d2])/Q ⊆ GL2(Z/d2Z) and CE,f (d2) ⊆ GE(d2) a conjugacy class
determined by fp(E).

There are some known results about the above conjecture. It was shown to hold under some standard
conjectures in analytic number theory (namely the Generalized Riemann Hypothesis, the Artin Holomorphy
Conjecture and the Pair Correlation Conjecture) by Cojocaru [4], and it as shown to hold on average by David
and Jimenez Urroz [7].

As a first project, we will concentrate on writing an unconditional upper bound for πSF
E,f (x) of the type

πSF
E,f (x) ≤ CSF

E,fπ(x) (1 + o(1)) , (3)

where CSF
E,f is the conjectural constant of (2). In order to do so, we first write

πSF
E,f (x) ≤ #

{
p ≤ x : `2 - fp(E) for all ` ≤ z

}
, (4)

and use the Cheboratev Density Theorem in the extension obtained by adjoining all `2-torsion for ` ≤ z.
One needs to deal with the error term by choosing z appropriately, and presumably, this can be done without
assuming the GRH.

In the paper [7], the authors considered the problem of evaluating πSF
E,f (x) on average over a family of

curves. The main result of the paper can be restated by saying that for most curves,
∣∣∣πSF
E,f (x)− CSF

E,fπ(x)
∣∣∣ is

very small, except possibly for a small exceptional set of curves. In a second project, we will concentrate on
improving that result (i.e. improving the size of the exceptional set) by combining the use of the Cheboratev
Density Theorem (for sieving small squares) and the average (for sieving large squares).

While in Banff, we wrote the details of the proof of (3), which involves only some straightforward appli-
cations of the Chebotarev Density Theorem, as a way to familiarise ourselves with the tools needed to study
the conjecture (1). By using (4), and sieving for squares of primes up to z = log log x, we were able to get
the correct upper bound, with the conjectural constant CSF

E,f .
We then began to study the second project. Among other things, we are led to averages of the type∑

E∈C

CSF
E,f ,

whereCSF
E is the constant defined in (2). Such averages were considered by Jones [6], under some hypothesis

on the size of exceptional Galois groups in Serre’s theorem, and more recently by Zywina [8] who was able
to prove the results of Jones in some cases with any hypothesis, by using an effective result of Masser and
Wüstholz. We are now investigating the generalisation of the results of Jones and Zywina to our setting.
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4.3 Group 3: Statistics for D4 curves over finite fields
Participants: Alina Bucur (University of California at San Diego), Jing Hoelscher (University of Illinois
at Chicago), Renate Scheidler (University of Calgary), and Melanie Matchett Wood (American Institute of
Mathematics and University of Wisconsin-Madison).

Algebraic curves over finite fields are basic objects in number theory that also happen to come up in many
applications, e.g. cryptography, error-correcting codes. One of the fundamental properties of a curve of a
finite fields is its number of rational points over the field of definition, or more generally over extensions of
said field. For example, these numbers determine the zeta function of the curve, which exhibits behavior
similar to zeta functions of number fields, with the added bonus that in the case of finite fields, the Riemann
Hypothesis is a theorem of Weil.

Besides looking at a single curve, it is also interesting to look at average properties of the number of points
over a family of curves. Traditionally, this has been done in situations where the finite field was allowed
to vary, as in this case one can use powerful methods of Deligne. But more recently, attention has been
focused on families over a fixed finite field Fq , where things behave quite differently. For instance, Kurlberg
and Rudnick have studied the family of hyperelliptic curves [14]; Bucur, David, Feigon, Lalı́n looked at
the families of cyclic p-fold covers of P1 [9, 11] and plane curves [10]; Bucur and Kedlaya computed the
statistics for curves that are complete intersections of smooth quasi-projective subschemes of Pn [12]; Wood
has answered the same question about degree 3 (not necessarily cyclic) covers of P1 [16]. In each of these
cases, the statistics of the number of points on a curve in the given family turns out to be governed by
a probabilistic model, i.e. they behave asymptotically like a sum of certain i.i.d. random variables. These
random variables can be interpreted as the probabilities that the fiber over each point of the relevant projective
space has a given number of points.

In the first three cases the average number of points on a curve in the family turns out to be exactly the
same as the number of points on P1 itself, namely q+1. But in the case of complete intersections, the average
number of points is < q + 1, while in the last case it is > q + 1.

A natural extension of the case studied by Kurlberg and Rudnick in [14] is the case of the double covers of
hyperelliptic curves. While this is an easy question to formulate, one stumbles at the first step since not even
the number of curves in this family is known. In all the previous cases, the objects in the families studied
were parametrized by a rational moduli space. However, in the present case, the parameter space for our
curves is more complicated.

Counting isomorphism classes of double covers of a scheme S is equivalent to counting isomorphism
classes of pairs (s, L) where L is a line bundle on S and s ∈ L⊗−2 (e.g. see [15]). From Wood’s previous
work [15], we know that counting isomorphism classes of double covers of a scheme S with a line bundle on
the double cover is equivalent to counting isomorphism classes of binary quadratic forms on S (as defined
in [15]). These facts allow us to break the problem into two steps. First we will parametrize double covers
C

2→ P1
Fq of fixed genus gC with a line bundle L, and then we will parametrize double covers D 2→ C of a

specific hyperelliptic cover C with fixed genus gD.
When we work out concretely what binary quadratic forms on P1 are, it turns out that we need to count

orbits of the action of a certain group G on O(m − r)x2 ⊕ O(m)xy ⊕ O(m + r) (where O(i) denotes the
usual sheaf on P1, whose global sections are binary degree i forms). During the week of the workshop, we
reduced the problem to the count of these orbits. We proved that the main term is given by the case r = 0.We
used Dickson’s work on equivalence classes of pairs of binary quadratic forms [13] to compute an asymptotic
for the r = 0 term. Using this computation, we proved that the main term in the number of double covers of
double covers D 2→ C

2→ P1 of a given genus gD is given asymptotically as gD →∞ by

q2gD+5 (2− q−1)(1− q−(2gD+4)/3)

(1− q−1)(1− q−2)
+O

(
q5gD/3

(
1− q−(gD−1)/6

))
.

Note that the result is for double covers of double covers, and not for D4 covers, which is our target.
The next step is to sieve for the other possible Galois groups and get an asymptotic for all D4 covers of P1.
Then we will need to sieve for various covers that have various desirable geometric properties, like reduced,
irreducible and smooth.
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4.4 Group 4: Arithmetic Geometry
Participants: Alina Carmen Cojocaru (University of Illinois at Chicago), Rachel Davis (University of Wis-
consin), Antonella Perucca (Katholieke Universiteit Leuven), Alice Silverberg (University of California,
Irvine), Katherine E. Stange (Stanford University), and Diane Yap (University of Hawai‘i at Mānoa).

The group explored some problems relating to abelian surfaces over the field of rational numbers and over
finite fields.

We began by studying some of the background on abelian varieties, especially the arithmetic aspects of
abelian surfaces, including classification of the endomorphism ring, structure of torsion modules, properties
of the associated Galois representations, splitting (simple vs. non-simple), and properties of the reductions
modulo primes for abelian varieties over the rationals. See [17-46] for some of the papers we looked at.

We also formulated some problems to consider, and discussed various approaches we would take to solve
them. We did some exploratory work and achieved a better understanding of the problems, what is known,
and what obstacles remain.

4.5 Group 5: K-theory and Algebraic Number Theory
Participants: Veronika Ertl (University of Utah), Wieslawa Niziol (University of Utah), Bregje Pauwels
(University of California at Los Angeles), Sujatha Ramdorai (University of British Columbia), and Ila Varma
(Princeton University).

One of the fundamental open problems in arithmetic is the description of the Galois groupG = Gal(Q̄/Q).
Class field theory affords a description of the Galois group Gabmaximal abelian extension of Q and the de-
composition groups, namely the Galois groups Gab

p ,of the maximal abelian extensions of the local fields Qp,
as p varies over prime integer primes, are important constituents of the description of Gab. Local class field
theory affords a description of finite quotients of Gab

p in terms of K∗, where K is a finite abelian extension
of Qp, via the reciprocity map. Higher dimensional local fields of dimension > 1 have been studied by Kato,
Saito, Vostokov, Fesenko and others. They have proved the existence of higher dimensional reciprocity maps
which describes the Galois groups of abelian extensions of higher dimensional local fields F of dimension
n, in terms of higher Milnor K-groups KM

n (F ). Let F be any field. The Bloch-Kato conjecture asserts that
there is an isomorphism

KM
n (F )/pn ' Hn(Gal(F sep/F,A).

Here F sep is a separable closure of F , p a prime and A is the Galois module µ⊗mpm if p is prime to the
characteristic of F and the module of differentials νn(F )) otherwise. Thus, for higher dimensional local
fields F , the higher Milnor K-groups KM

n (F ) occur as a common theme in studying higher dimensional
reciprocity laws and the Milnor conjecture.

An important question in arithmetic geometry is the study of the Gersten sequence for Milnor K-theory
which we describe below. Let X be a smooth (or more generally regular) scheme, over a local ring of mixed
characteristic. Then the Gersten complex is the complex

0→ KM
n → ⊕x∈X0i∗xK

M
n (x)→ ⊕x∈X1i∗xK

M
n−1(x)→ . . .

where Xk is the set of codimension k points on X , ix : x → X is the inclusion map and one considers pull
backs of the MilnorK-sheaves. The Gersten conjecture is the assertion that this sequence is exact. We would
like to think about two concrete problems:

1. Determine the structure of KM
n (K) of complete discrete valuations fields of mixed characteristic.

Check [49, 51] for what is known. Consult [52, 50] for basics on K-theory and Milnor K-theory.

2. Gersten’s conjecture is open as stated, i.e., integrally. It is known mod-l, if l is different from the
residue characteristic p. We will try to see whether we can prove it mod-p.

The problems as stated above are difficult problems and a review of literature on the questions was un-
dertaken. Though no concrete progress was made towards the solution of the two problems, the possibility
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of using the existing techniques in describing the Milnor K-groups KM
i (F ) for special higher dimensional

local fields, to understand the Milnor K-group KM
1 (R) for total quotient rings of noncommutative, Auslan-

der regular Iwasawa algebras was explored. This would have implications for the study of p-adic L-functions
arising in noncommutative Iwasawa theory.

4.6 Group 6: Zeta functions of Artin-Schreier varieties and Hodge polygons of ex-
ponential sums

Participants: Rebecca Bellovin (Stanford University), Sharon Anne Garthwaite (Bucknell University), Ekin
Ozman (University of Texas-Austin), Rachel Pries (Colorado State University), Cassandra Williams (Col-
orado State University), and Hui June Zhu (State University New York at Buffalo).

Let q be a power of a prime p. Given a variety V over the finite field Fq , an important problem is to
count the number of rational points of V over finite extensions of Fq . This information is encoded in the
zeta function of V . By works of Dwork [56] and Deligne [55] on the Weil conjectures [60], the zeta function
of a smooth projective variety V is a rational function in Q[T ]. When V is a hypersurface of dimension n,
the non-trivial information about the zeta function is encoded in an L-function L(V/Fq;T ), whose roots are
algebraic integers with complex absolute values equal to qn/2, and `-adic absolute values equal to 1 for each
prime ` 6= p. It remains to know the distribution of the p-adic absolute values of these roots. This question is
equivalent to determining the slopes of the p-adic Newton polygon NP(V ) of the L-function.

On the other hand, it is a classical question in number theory to study the exponential sum of a Laurent
polynomial f(x1, . . . , xn) in Fq[x±11 , . . . , x±1n ] by its L-function L(f/Fq;T ). Write its normalized p-adic
Newton polygon by NP(f). These two questions are related in the following way: Consider the affine toric
Artin-Schreier variety Vf in An+1 defined by the affine equation yp− y = f(x1, . . . xn). The p-adic Newton
polygon of L(f/Fq;T ) and the p-adic Newton polygon of L(Vf/Fq;T ) are the same after scaling by a factor
of p− 1, denoted by NP(Vf ) = (p− 1)NP(f).

Until recently the task of determining the p-adic Newton polygon of an Artin-Schreier variety or expo-
nential sum was anything but easy; they were only accessible in very special cases, and estimation results of
the Newton polygons were often case-by-case. However things have changed due to the work of [57, 54, 59].

For a Laurent polynomial f , the Hodge polygon HP(f) of the L-function of the exponential sum of f is
defined using weightings of lattice points in a polytope ∆f determined by the monomials in f . This combi-
natorial object encodes the essential topological (cohomological) data for the toric Artin-Schreier variety Vf .
In this way HP(f) guards the p-adic valuations of the roots of L(f/Fq;T ), and hence it gives a lower bound
of NP(f) (see [59, 54]). This is analogous to the fact that the Hodge numbers of an algebraic variety over a
finite field determine a Hodge polygon which is a lower bound for the Newton polygon [58]. For a prescribed
Newton polytope ∆ in Rn, and a Laurent polynomial f(x1, . . . , xn) in Fq[x±11 , . . . , x±1n ] with ∆f = ∆,
there are necessary and sufficient conditions for when NP(f) coincides with the lower bound HP(∆f ) (see
[54, 59]).

The starting point of our group project was computing the L-function of f = xm1 + · · ·+xmn over Fq . This
classical case has been studied in the literature, and the Newton polygon of f can be computed using Gauss
sums and the Stickelberger theorem. The goal of our project is to study deformations of the classical diagonal
case to cases closely related to the important Kloosterman forms. First, we found closed form formulae for
the Hodge polygons of Laurent polynomials of the form

f = xm1 + · · ·+ xmn + x−m1 + · · ·+ x−mj .

Second, we found closed form formulae for the Hodge polygons of the generalized Kloosterman family given
by

f = xm1 + · · ·+ xmn + t(x1 · · ·xn)−1,

with parameter t varying in Q∗. For each reduction modulo p of f , one arrives at a special fibre of a motive
over the torus Gm(Fp). In addition, we proved some original asymptotic results about the variation of the
Newton polygon for fixed dimension n and m >> 0.
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4.7 Group 7: Project Title: Ramanujan supercongruences and complex multiplica-
tions

Participants: Sarah Chisholm (University of Calgary), Alyson Deines (University of Washington), Ling
Long (Iowa State University), Gabriele Nebe (RWTH Aachen University), and Holly Swisher (Oregon State
University).

Ramanujan discovered 17 series of the form∑
k≥0

(1/2)3k
k!3

(6k + 1)
1

4k
=

4

π
, (1/2)k = 1/2 · (1/2 + 1) · · · (1/2 + k − 1)

which is related to elliptic curves with complex multiplications. These expansions of 1
π admit p-adic ana-

logues, called Ramanujan supercongruences, of the following form: for any prime p > 3

(p−1)/2∑
k=0

(1/2)3k
k!3

(6k + 1)
1

4k
≡ (−1)(p−1)/2p mod p3.

The goal of the project is to give a geometric proof of Ramanujan supercongruences. To be more precise,
for λ ∈ Q such that Eλ : y2 = (x − 1)(x2 − 1

1+λ ) admits complex multiplications, following Ramanujan’s
idea, there exist numbers a, b, δ ∈ Q(λ) such that

∑
k≥0

(1/2)3k
k!3

(ak + b)λk =
δ

π
.

Correspondingly, we will like to prove that for any prime p > 7 such that λ ∈ Qp the following congruence
hold

(p−1)/2∑
k=0

(1/2)3k
k!3

(ak + b)λk = u(p) · b · p mod p2,

where u(p) is a root of unity depending on p that can be embedded in Qp.
The Picard-Fuchs equation of the family of elliptic curves Eλ : y2 = (x − 1)(x2 − 1

1+λ ) is an order
2 hypergeometric differential equation, whose symmetric square is the Picard Fuchs equation for the family
of K3 surfaces Xλ : z2 = xy(x + 1)(y + 1)(x + λy). We counted the Fp points on Xλ modulo p3 for
arbitrary λ over Fp by using results of Ahlgren, Kilbourn, Ono, Pennisten and hope this will give insights for
accomplishing our project.

4.8 Group 8: Arithmetic Intersection Formulas
Participants: Jackie Anderson (Brown University, Jennifer Balakrishnan (Harvard University, Kristin Lauter
(Microsoft Research), Jennier Park (Massachusetts Institute of Technology), and Bianca Viray (Brown Uni-
versity).

The goal of our project was to prove equality between two arithmetic intersection formulas when the
assumptions for both formulas are satisfied. We begin with some motivation. The absolute Igusa invariants
i1, i2, i3 of a genus 2 curve can be defined by values of modular functions on the Siegel moduli space. They
determine the isomorphism class of a genus 2 curve over C when i1 6= 0. The Igusa class polynomials Hj,K

of a primitive quartic CM field K are the minimal polynomials of Igusa invariants: for each j = 1, 2, 3,
Hj,K =

∏
(x− ij(C)), where the product ranges over isomorphism classes of genus 2 curves C with CM

by K (i.e. with an embedding of OK into End(Jac(C))), and the modular function is evaluated at the point
in the Siegel upper half plane corresponding to the canonically polarized Jacobian of the curve C. The
coefficients of these polynomials are rational but not necessarily integral. To compute them efficiently, it is
important to understand the denominators appearing in the coefficients.

The first Igusa invariant can be defined by the following ratio of modular forms: i1 := 2 · 35 χ
5
12

χ6
10
. A prime

` appearing in the denominator of i1 corresponds to a pole of i1 at a CM -point over F`. Since the numerators
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are modular forms, there is a pole of i1 at a point P only if P is a zero of χ10. Away from 2, div(χ10) = 2G1,
so 12 (G1.CM(K))` gives a formula for the `-valuation of the denominators, up to cancellation.

Bruinier and Yang [61] gave a conjectural formula for this intersection number for primitive quartic CM
fields K, under the assumption that the discriminant of K is D2D̃, where D and D̃ are primes≡ 1 (mod 4).
LetK be a totally imaginary quadratic extension of F = Q(

√
D), D ≡ 1 (mod 4) and prime, A andB such

that K = F (
√
A+B

√
D).

Theorem 1 (Bruinier-Yang Conjecture). Let K̃ be the reflex field of K and F̃ be the quadratic subfield of K̃.
Then

(CM(K).G1)`
log(`)

=
∑

δ=D−x2
4 ∈Z≥0

∑
n s.t. n+δ

√
D̃

2D ∈Disc
K̃/F̃

|n|<δ
√
D̃

B
n+δ
√
D̃

2D

(`),

where

Bt(l) =

{
0, if l splits in K̃
(vl(t) + 1)A(tDK̃/F̃ l

−1)f(l/l), otherwise
,

where A(tDK̃/F̃ l
−1) denotes the number of ideals inOK̃ whose relative norm in F̃ is tDK̃/F̃ l

−1. It has been
proved by Yang [64] when A2 −DB2 ≡ 1 (mod 4) is prime and OK is generated over OF by an element
of a special form.

More recently, Lauter and Viray [63] gave a formula for the intersection number that holds, away from
a few primes, for all primitive quartic CM fields such that OK is principally generated over OF . We state it
here in a simple case to emphasize its formal likeness to the formula given by Bruinier-Yang. Assume that
OK is generated over OF by one element, say η, so OK = OF [η]. Let D̃ denote NormF/Q

(
DiscK/F(OK)

)
and let α0, α1, β0, β1 ∈ Z be such that

TrK/F(η) = α0 + α1
D +
√

D

2
, NormK/F(η) = β0 + β1

D +
√

D

2
.

Theorem 2 (Lauter-Viray). Assume that ` 6= 2, D = 5 and that du(n) (defined below) is an odd fundamental
quadratic discriminant prime to `, for every n that appears below.

(CM(K).G1)`
log(`)

=
∑

δ=D−�
4 >0

∑
n such that

δ2D̃−n2

4D ∈`Z>0

n≡−c(K) (mod 2D)

B(δ, n)

B(δ, n) =
1

2
(v` (N) + 2)Adu(n) (N) ρdu(n) (N) ,

where

Ad(N) := #

{
b ⊆ Z

[
d+
√
d

2

]
: Norm(b) = N, b invertible

}

ρd(N) :=


0 if

(
d∗

p

)ap (−`ep
p

)
= −1 for some p|d,

where N = papep and d∗ = (−1)
p−1
2

d
p

2#{p:p|N and p|d} otherwise

c(K) := δ

(
α2
0 + α0α1D + α2

1

D2 −D
4

− 4β0 − 2β1D

)
du(n) := (α1δ)

2 − 4
(n+ c(K))δ

−2D
.
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Since the Lauter-Viray and Bruinier-Yang formulas both hold for primitive quartic CM fields under certain
assumptions, we considered the fields where both hypotheses were satisfied and sought to prove a direct
correspondence between the two statements. As a first step, we split the work into cases according to the form

of the generator η (see [62]). During the WIN2 Workshop, we worked on the case where η = 1+
√
A+B

√
D

2 .
This gives simplified formulas for αi, βi, c(K), du(n). Using this, we were able to prove that the Bruinier-
Yang and Lauter-Viray formulas are equal and match term-by-term:

Theorem 3 (ABLPV). Assume that
(
δ2D̃−n2

4Dl

)
is coprime to (2δ`du), that ρdu(n)

(
δ2D̃−n2

4Dl

)
6= 0 and that

all the assumptions for BY and LV are satisfied (in particular, assume that (`, 2δdu) = 1). Then

Adu(n)

(
δ2D̃ − n2

4Dl

)
ρdu(n)

(
δ2D̃ − n2

4Dl

)
= A

(
n+ δ

√
D̃

2D
DK̃/F̃ l

−1

)
.
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[18] P. Bayer and J. González. On the Hasse-Witt invariants of modular curves. Experiment. Math., 6(1):
57–76, 1997.

[19] C-L. Chai, B. Conrad, and F. Oort. CM Liftings. Available at
http://math.stanford.edu/∼conrad/papers/CMbook.pdf.

[20] N. Chavdarov. The generic irreducibility of the numerator of the zeta function in a family of curves with
large monodromy. Duke. Math. J., 87(1): 151–180, 1997.

[21] K-M Chou and E. Kani. Simple geometrically split abelian surfaces over finite fields. Available at
http://www.mast.queensu.ca/∼kani/papers/simpleAS3.pdf.

[22] A. Cojocaru. Questions about the reductions modulo primes of an elliptic curve. In Number theory,
volume 36 of CRM Proc. Lecture Notes, pages 61–79. Amer. Math. Soc., Providence, RI, 2004.

[23] A. Cojocaru and C. David. Frobenius fields for elliptic curves. Amer. J. Math., 130(6): 1535–1560,
2008.

[24] A. Cojocaru, E. Fouvry, and M.R. Murty. The square sieve and the Lang-Trotter conjecture. Canad. J.
Math., 57(6): 1155–1177, 2005.

[25] L. Dieulefait. Explicit determinaion of the images of the Galois representations attached to abelian
surfaces with End(A) = Z. Experiment. Math., 11(4): 503–512 (2003), 2002.

[26] L. Dieulefait and V. Rotger. The arithmetic of QM-abelian surfaces through their Galois representations.
J. Algebra, 281(1): 124–143, 2004.
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[29] J. González. On the p-rank of an abelian variety and its endomorphism algebra. Publ. Mat., 42(1):
119–130, 1998.

[30] S. Haloui. The characteristic polynomials of abelian varieties of dimensions 3 over finite fields. J. Num-
ber Theory, 130(12): 2745–2752, 2010.

[31] S. Haloui. The minimum and maximum number of rational points on Jacobian surfaces over finite fields,
2010. Available at http://arxiv.org/abs/1002.3683.

[32] S. Haloui and V. Singh. The characteristic polynomials of abelian varieties of dimension 4 over finite
fields. 2011. Available at http://www.arxiv.org/pdf/1101.5070.

[33] E. Howe, D. Maisner, E. Nart, and C. Ritzenthaler. Principally polarizable isogeny classes of abelian
surfaces over finite fields. Math. Res. Lett., 15(1): 121–127, 2008.

[34] E. Howe, E. Nart, and C. Ritzenthaler. Jacobians in isogeny classes of abelian surfaces over finite fields.
Ann. Inst. Fourier (Grenoble), 59(1): 239–289, 2009.

[35] S. Lang and H. Trotter. Frobenius distributions in GL2-extensions. Lecture Notes in Mathematics, Vol.
504. Springer-Verlag, Berlin, 1976. Distributions of Frobenius automorphisms in GL2-extensions of the
rational numbers.

[36] D. Maisner and E. Nart. Abelian surfaces over finite fields as Jacobians. Experiment. Math., 11(3):
321–337, 2002.

[37] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer,
New York, 1986.



13

[38] D. Mumford. Abelian varieties. Oxford Univ. Press, 1970.

[39] F. Oort. Abelian varieties over finite fields. In Higher-dimensional geometry over finite fields, volume
16 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., pages 123–188. IOS, Amsterdam, 2008.

[40] H-G Rück. Abelian surfaces and Jacobian varieties over finite fields. Composito Math., 76(3): 351—
366, 1990.

[41] W. M. Ruppert. Two-dimensional complex tori with multiplication by
√
d. Arch. Math. (Basel), 72(4):

278–281, 1999.

[42] G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications
of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971
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