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The Banff 5-day workshop 12w5023 was held from Sunday April 1, to Friday
April 6, 2012, at the conference site in Banff International Research Station in
Alberta. The conference was mainly concerned with the fine analysis of stochastic
partial differential equations, hereforth referred to as SPDEs, for the sake of brevity.
This topic has experienced tremendous growth, particularly in the past decade for
at least two significant reasons: First, a number of central open problems of this
area have been solved, and/or are on the verge of being solved; and second, the topic
receives continued input from other scientific disciplines, including but not limited
to mathematics. Therefore, the organizers felt, and still feel, that the conference
was timely.

The main objectives of this meeting were to bring together some of the leading
researchers in the analysis of SPDEs, together with select highly-promising young
researchers in order to present their recent findings, as well as identify key research
problems/areas within the general topic of SPDEs and related fields. The organizers
feel strongly that these objectives were met, and that the conference was a success.

The conference was organized roughly as follows: On Monday April 2 through
Thursday April 5, the morning talks began at 9:00 a.m. with several half-hour re-
search talks by various leading experts. There was also one 1-hour plenary talk
every day in order to introduce to the younger audience aspects of the “big pic-
ture” in the modern going-ons of research in SPDEs. These talks were delivered, in
chronological order, by Professors Carl Mueller [University of Rochester], Michael
Röckner [University of Bielefeld], David Nualart [University of Kansas], and Robert
Dalang [Ecole Polytechnique Fédérale de Lausanne]. The evenings of Monday, Tues-
day, and Thursday, and all of Friday were dedicated to informal breakout research
sessions wherein the audience would spend 5–20 minutes per person describing one,
or a series, of open problems and/or directions of modern research interest. These
breakout sessions were informal but highly well-attended, and have led to current
potential research collaborations among various combinations of the participants.
The following is a brief, but still more detailed, synopsis of the lectures at the con-
ference.

Carl Mueller opened the conference with a plenary 1-hour talk on a central
open problem for a family of SPDEs that arise in population genetics. The problem
is basically the following: Consider the SPDE

(1)
∂

∂t
u(t , x) = κ

∂2

∂x2
u(t , x) + ρ(u(t , x)) Ẇ (t , x),

Date: 4/2/2013.

1



2 ROBERT C. DALANG, DAVAR KHOSHNEVISAN, AND YIMIN XIAO

subject to zero initial data, where κ > 0 denotes a “viscosity term,” Ẇ denotes
space-time white noise, and ρ(x) = |x|α. Clearly, u(t , x) = 0 is a solution; the
question is whether or not u(t , x) = 0 is the only solution. The particular case that
α = 1/2 arises most prominently in population genetics, where any solution has
the law of the socalled “Brownian density process.” Mueller presented his recent
non-uniqueness result [joint with L. Mytnik and E. Perkins]: If α < 3/4 then the
solution is not unique. A major open problem that was introduced is to see whether
or not uniqueness holds among all “physical solutions,” in this case “all nonneg-
ative solutions.” More recently, another participant of this workshop, Mr. Y.-T.
Chen, has completed a thesis under the supervision of Professor Edwin Perkins
[The University of British Columbia]. Mr. Chen’s thesis proves that if we add a
nonvoid immigration term to the SPDE (1), then the solution is not unique even
among non-negative solutions.

Wenbo Li’s lecture gave a bird’s-eye view of a number of recent developments
in the general theory of “small-value probabilities.” A number of novel connections
of this topic to SPDEs, branching processes, tauberian theory, Gaussian processes,
statistical mechanics [Edwards model] etc. were pointed out. Roughly speaking,
the area of small-value probabilities is concerned with the asymptotic behavior of
probabilities of the type P{W ≤ ε} as ε ↓ 0, where W is an interesting non-negative
random variable. Among other things, Li introduced his striking work [joint with
Q.-M. Shao] on the d-parameter Brownian sheet W : There exist universal constants
c1 and c2 such that for all ε > 0 sufficiently small,

exp
(
−c1 |log(1/ε)|d

)
≤ P

{
sup

(s,t)∈[0,1]d
W (s , t) < ε

}
≤ exp

(
−c2 |log(1/ε)|d

)
.

A vast array of open problems were presented.

Daniel Conus presented his research on intermittency and chaos for various
stochastic systems. In particular, he presented his work [joint with M. Joseph &
D. Khoshnevisan] which shows that the solution to the stochastic heat equation (1)
with α = 1 and initial data [say] u(0 , x) ≡ 1—this is the socalled parabolic An-
derson model of mathematical physics—has the following “KPZ scaling property”:
There exist positive and finite universal constants c1 and c2—depending only on
the time variable t > 0—such that almost surely for all R large,

exp

(
c1

(logR)2/3

κ1/3

)
≤ sup
|x|<R

u(t , x) ≤ exp

(
c2

(logR)2/3

κ1/3

)
.

Sandra Cerrai lectured on her work [joint in part with M. Friedlin] on 2-D
stochastic Hamiltonian systems of the type

µ
∂2

∂t2
qµ(t) = b (qµ(t)) +A0

∂

∂t
qµ(t) + σ (qµ(t)) Ẇ (t),

subject to qµ(0) := q ∈ R2 and ∂qµ(t)/∂t := p ∈ R2. Here, µ > 0 is a positive

parameter and Ẇ denotes white noise on [0 ,∞). When the the real parts of the
eigenvalues of A0 are strictly negative, then the preceding is a generalized 2-D
Langevin equation [∂qµ/∂t := friction], and Friedlin [2005; also, Chen] have shown



REPORT FOR BANFF WORKSHOP 12W502 3

that the following Kramers–Smoluchowski approximation is valid for every T, k > 0:

lim
µ↓0

E

(
sup
t≤T
|qµ(t)− q(t)|k

)
= 0,

where q solves the stochastic differential equation dq = (b ◦ q) dt+ (σ ◦ q) Ẇ . Cer-
rai’s talk addressed the remaining case which corresponds to when the Hamiltonian
system is describing charged particles in a magnetic field. She showed how the
Hamiltonian system needs to be regularized, in that case, and presented a homog-
enization theorem for the regularized equation. As a consequence of this develop-
ment, Cerrai showed a type of “propagation of chaos” result.

Raluca Balan’s lecture revolved around her work on novel linear SPDEs that
are driven by fractional noises. An example of her work is the following: Consider
the SPDE

(2)
∂

∂t
u(t , x) = (Lu)(t , x) + Ẇ (t , x),

with zero initial data, where L := −(−∆)β/2 denotes the fractional Laplacian of

order β/2, and Ẇ is a Gaussian noise that is white in space, and whose temporal
covariance kernel is of a fractional Brownian motion type,

(3) RH(t , s) := H(2H − 1)

∫ t

0

du

∫ s

0

dv |u− v|2H−2.

Balan presented a necessary and sufficient condition for the existence of a random
field solution to (2) [joint with C. Tudor]. These works were shown to be connected
to a new sort of probabilistic potential theory, in particular, to weighted local times
functionals

Lt(ϕ) := β

∫ t

0

dr

∫ t

0

ds |r − s|2H−2ϕ(Xr − Ys),

where X and Y are two independent β-stable Lévy processes. An important ingre-
dient of the existence proof rested on developing a new maximum principle for a
corresponding weighted potential kernel. Related results on hyperbolic equations
were also presented.

John Walsh’s lecture closed the Monday lecture sessions, and contained a new
method for the numerical analysis of linear SPDEs of the type,

(4)
∂

∂t
u(t , x) =

∂2

∂x2
u(t , x) + Ẇ (t , x),

where Ẇ denotes space-time white noise on [0 , 1]×R, and the SPDE has a “nice”
initial value. It is well known that solution is Hölder continuous of any order < 1/2
in the x variable and any order < 1/4 in the t variable.

If one discretizes (4)—with respective mesh sizes ∆t and ∆x for the time and
space variables—then the universal error-rates of Davies and Gaines show that the
error rate in the resulting numerical scheme is of rough order max{(∆t)1/4 , (∆x)1/2}.
It follows that we need to adopt ∆t ≈ (∆x)2 for best results. Walsh’s lecture was
concerned about the practical problem of making more precise the meaning of “≈”
in the preceding discussion. In other words, Walsh proved that there typically is a
canonical choice of c > 0 such that ∆t = c(∆x)2 is optimal; the value of c depends,
among other things, on the particulars of the numerical method that is being used.
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For instance, when one applies the Crank–Nicholson numerical scheme for solving
(4), then Walsh’s striking optimal choice is ∆t = (∆x)2/(π − 2). A series of open
problems were also introduced.

Michael Röckner’s was the second 1-hour plenary talk of the conference. His
lecture was on the regularization of ODEs and PDEs by noise [joint with V.
Bogachev, G. Da Prato, N.V. Krylov, E. Priola, and S. Shaposhnikov]. As an
example of this general theory, Röckner presented the following ∞-dimensional
SDE/SPDE: Let H be a separable Hilbert space, B : H → H a nice vector field,
and σ : H → L(H) measurable. Then, consider the stochastic differential equation,

dXx
t = B(Xx

t ) dt+ σ(Xx
t ) dW x

t ,

subject to W x
0 := x ∈ H. Then, it was shown that ptf(x) := Ef(Xx

t ) solves the
Fokker–Planck equation, (d/dt) ptf(x) = pt(Lf), and the operator L has a second-
order part [because of the noise] which has a regularizing effect on the Fokker–
Planck equation. Underlying this theory lies a new method of characteristics for
PDEs, which now involves also ideas from the Itô calculus. This method is shown
to lead to a uniqueness theorem for the Fokker–Planck equation. Röckner went on
to show how to extend this theory in order to establish the existence of pathwise
solutions to various infinite-dimensional SDEs that are driven by a “large” white-
noise forcing term.

Yaozhong Hu presented a novel Feynman–Kac representation for the parabolic
Anderson model (1) [joint with D. Nualart and J. Song], where Ẇ now denotes a
Gaussian noise with covariance form

EẆ (t , x)Ẇ (s , y) = RH0
(s , t) ·

d∏
j=1

RHi
(xi , yi),

where RH was defined in (3). Hu’s talk established exactly when this SPDE has
a [Stratonovich] solution, and that when there is a solution, it has a Feynman–
Kac representation. The sufficient condition for the existence and uniqueness of a

weak solution was shown to be: H0, . . . ,Hd > 1/2; and 2H0 +
∑d
i=1Hi > d + 1.

In that case, the solution exists, u(t , x) has a finite moment generating function
near the origin, (t , x) 7→ u(t , x) is Hölder continuous a.s., and the law of u(t , x)
is absolutely continuous with respect to the Lebesgue measure. In the case that
EẆ (t , x)Ẇ (s , y) = RH(s , t)Q(x , y) for a bounded, jointly Lipschitz continuous Q,
and 1/4 < H < 1/2, Hu showed the existence of a Feynman–Kac formula.

Le Chen’s lecture was on stochastic heat equations of the type (1), where ρ
is Lipschitz and satisfies the lower cone condition infx |ρ(x)/x| > 0. Motivated
by statistical mechanics [where ρ(x) ∝ x and u(0 , x) = δ0(x)], Chen showed his
analysis of the preceding SPDE [joint with R. Dalang], wherein they prove that
the preceding SPDE has a unique random-field solution provided that u(0 , ·) is a
tempered signed measure.

Chen also presented a solution to an open problem of Conus and Khoshnevisan
(2012) about the existence of L2-intermittency fronts of the solution. An example
of his general theorem is the following: Consider the parabolic Anderson model
wherein ρ(x) = λx for some λ > 0. Then, the lower and upper L2-intermittency



REPORT FOR BANFF WORKSHOP 12W502 5

fronts agree and are equal to λ2/2; more precisely, for all α > λ2/2 and β < λ2/2,

lim inf
t→∞

1

t
sup
|x|>αt

log E
(
|u(t , x)|2

)
< 0, lim sup

t→∞

1

t
sup
|x|>βt

log E
(
|u(t , x)|2

)
> 0.

This material was borrowed from Mr. Chen’s PhD thesis under the supervision of
Professor R. Dalang [Ecole Polytechnique Fédérale de Lausanne], and has now been
completed.

Leonid Mytnik’s lecture was about his work on the multifractal analysis of
1-dimensional super processes with β-stable branching. Let {Xt}t≥0 denote a
(2 , d , β) super process with β-stable branching, in the sense of Dawson, Perkins,
. . . . Mytnik considers the case that d = 1 and β < 1; this is precisely when t 7→ Xt

is a discontinuous measure-valued process with pure jumps of the form rδx, and
yet Xt(dx) � dx a.s. In that case, we can write Xt(x) for Xt(dx)/dx, and Xt(x)
solves the SPDE

∂

∂t
Xt(x) =

∂2

∂x2
Xt(x) + [Xt−(x)]1/(1+β) L̇(t , x),

where L̇ denotes a (1 + β)-stable Lévy noise with no negative jumps [Mytnik,
2002]. Perkins and Mytnik (2003) proved that Xt is a.s. continuous for all t > 0
fixed, and Fleischmann and Wachtel (2010) established that whenever 0 < η <
ηc := 2/(β + 1) − 1, Xt is a.s. Hölder continuous of order η, and that ηc is an
optimal choice. Finally, Mytnik introduced two novel results. The first [joint with
Fleischmann and Wachtel] shows that if x and t > 0 are fixed then the optimal
Hölder exponent at x is

η̄c := min

[
ηc +

1

1 + β
, 1

]
.

For his second main theorem, Mytnik defined the space Cη(x) as the space of all
functions f : R → R for which we can find a finite constant c and a polynomial
Px of degree ≤ bηc such that |f(y) − Px(y)| ≤ c|x − y|η, globally. Define H(x) :=
sup{η : Xt ∈ Cη(x)} as a new measure of optimal Hölder regularity. Then Mytnik
showed that if η < 1 and X0 is a finite measure, then the measure Xt has the
following multifractal behavior: For every open set U ⊂ R and η ∈ [ηc , η̄c],

dimH {x ∈ U : H(x) = η} = (β + 1)(η − ηc),

a.s. on {Xt(U) > 0}.

Martina Zähle’s lecture presented SPDEs driven by gradient noises of the type

∂tu = −Aθu+ F (u) +G(u) · Ż,

where A is the generator of an ultra-contractive semigroup {Pt}t≥0 that has posi-

tive and finite spectral dimension, θ ≤ 1, and Ġ is an arbitrary [possibly random]

element of the function space C1−α([0 , T ] , Hθβ
2 (µ)∗). The main result of this lec-

ture is that the preceding SPDE has a pathwise unique mild solution in the Sobolev
space W γ([0 , T ] , Hθδ

2 (µ)) for a suitable choice of δ > 0 [joint with M. Hinz and E.
Issoglio].
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Franceso Russo discussed his recent work on stochastic and non-stochastic
porous media equations [joint with V. Barbu, M. Röckner, N. Belaribi, and F. Cu-
velier]. These are models of self-organized criticality that are supposed to describe,
for example, the evolution of snow flakes. The general form of the model is

(5)
∂

∂t
u(t , x) =

1

2
∆(β(u)) + u(t , x)Ẇ (t , x),

where Ẇ denotes a Gaussian noise that is white in time and possibly nice in x.
In the non-random setting, one obtains the PDE ∂tu(t , x) = 1

2∆(β(u)), which is

supposed to be solved in L1(Rd) for example because it is known the the solution,
if any, can have discontinuities when the function β is large. An important example
is when β(u) = uH(u − ec) for a nice function H and a “critical parameter” ec.
Russo presented a theorem that states that the preceding PDE has a weak solution
when β is continuous. Moreover, that solution can be characterized as degenerate
[versus non-degenerate] if and only if a certain explicitly-defined function Φ = Φβ
vanishes at zero. Furthermore, there is a corresponding Fokker–Planck equation.
Relations to the stochastic PDE with multiplicative noise were also introduced.
Most remarkably, it was pointed out that the stochastic problem hinges on a sto-
chastic Fokker–Planck equation that is of independent interest.

Martina Hoffmanová introduced the main findings of her PhD thesis [under
the supervision of Professor A. Debussche] which has quite recently been approved
and completed. This talk’s main results are on wellposedness problems for kinetic
solutions to degenerate parabolic SPDEs such as

du+ div(B(u)) dt = div(A(x)∇u) dt+ Φ(u) dW,

where W is a cylindrical Brownian motion in a separable Hilbert space H, A : Tn →
RN×N is a smooth and symmetric positive semidefinite matrix, B : R → RN is a
C1 flux function of at-most polynomial growth, and Φ(z) : H → L2(TN ) has linear
growth and is coordinatewise Lipschitz for every z ∈ L2(TN ). Using related non-
random conservation laws, Hoffmanová introduced a notion of a kinetic solution,
and went on to prove that if the initial function u0 is in Lp(Ω , Lp(TN )), then the
degenerate SPDE (5) has a unique kinetic solution that is continuous in its initial
data.

Xia Chen studied the stationary parabolic Anderson model,

∂

∂t
u(t , x) =

1

2
∆u(t , x) + u(t , x)V (x),

for x ∈ Rd and t ≥ 0, subject to u(0 , x) = 1, where the random potential V has any
one of the following four types: (i) V is a stationary Gaussian process with mean
zero and a bounded and continuous covariance function; (ii) V is fractional white
noise; that is, V (x) = ∂dWH(x)/∂x1 · · · ∂xd, for a fractional Brownian motion WH

with Hurst vector H := (H1 , . . . ,Hd); (iii) {V (x)}x∈Zd is a spatial white noise;
and (iv) V has the following representation in terms of a white noise W on Rd:
V (x) =

∫
Rd ‖y − x‖−pW (dy).

For case (i) it had been conjectured by Carmona and Molchanov that if the
spectral density of V at x behaves as C/‖x‖α as ‖x‖ → 0, for some 0 < α < 2 ∧ d,
then log u(t , 0) ∼ Ct(log t)(4−α)/(2−α) as t → ∞. Chen shows that this conjecture
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is incorrect, and can be corrected in the following form:

(6) log u(t , 0) ∼ κ(α)[c(d , α)]2/(4−α) · t(log t)2/(2−α) as t→∞,

where κ(α) is an explicitly-defined numerical quantity that depends solely on α,
and c(d , α) is the optimal constant in the following Sobolev-type inequality:∫∫

Rd×Rd

[f(x)f(y)]2

‖x− y‖α
dxdy ≤ c(d , α) · ‖f‖4−α2 ‖∇f‖α2 ,

valid for all f ∈ W 1,2(Rd). Similar results are shown for cases (ii) and (iv). In

both of these cases, (6) holds with the respective choices α := 2p− 2
∑d
j=1Hj [for

(ii)] and α = 2p− d [for (iv)]. Finally, Chen showed that in case (iii) [white noise],
(6) has to be adjusted as follows:

log u(t , 0) ∼ 1

2

(
3

2

)2/3

t(log t)2/3 as t→∞.

In all cases, the proofs involved a delicate large-deviations analysis of the Feynman–

Kac formula, u(t , 0) = E(exp{
∫ t
0
V (Bs) ds} |V ), where B denotes a Brownian mo-

tion.

David Nualart delivered the third 1-hour plenary talk of the workshop. Nu-
alart’s lecture began with a brief overview of the Malliavin calculus, and in partic-
ular, the Nourdin–Viens formula for the density of elements of Malliavin’s proba-
bilistic Sobolev space D1,2. Nualart’s lecture then proceeded by showing how one
can apply these ideas from Malliavin’s calculus in concrete problems of SPDEs.
As a first example, Nualart presented [a more general form of] the following the-

orem: Suppose u solves (1) with nice initial data, where Ẇ is white in time
and spatially homogeneously correlated with a spectral density f that satisfies∫
Rd(1 + z2)−η f(z) dz < ∞ for some η ∈ (0 , 3/4), then u(t , x) has an absolutely-

continuous distribution with a density function that satisfies the heat-kernel bounds

c0
t1−η

exp

(
−−(z −m)2

c1t

)
≤ p(z) ≤ c2

t
exp

(
−−(z −m)2

c3t

)
.

Next, Nualart discusses degenerate SPDEs of the form

HXt(x) = −
∫ ∞
−∞

∂

∂x
(h(y − x)Xt(x))

∂2

∂t∂x
W (t , y) dy +

√
Xt(x)

∂2

∂t∂x
V (t , x),

where H := ∂t−∂2xx denotes the heat operator W and V are independent Brownian
sheets, and h 6= 0 is a nice function. Such SPDEs arise as continuum limits of in-
teracting particle systems [Dawson, Vaillancourt, Wang, . . . ]. An open question in
this area is to establish the Hölder continuity of the solution Xt(x). Recently (2011)
Li, Wang, Xiong, and Zhou have proved that the solution is Hölder continuous for
any index < 1/10 in t and < 1/2 in x. Nualart showed how one can use the Malliavin
calculus in a clever way in order to establish the desired Hölder continuity in t of
an arbitrary index < 1/4 [joint work with Lu and Hu].

Frederi Viens began his lecture with an accessible introduction to the Malliavin
calculus and Stein’s equation. He then showed how to obtain the following remark-
able inequality: If X ∈ D1,2 is an otherwise arbitrary centered random variable
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and Z is a standard normal random variable, then

(7) sup
z∈R
|P{X > z} − P{Z > z}| ≤ E (|1−GX |) ,

where GX is the random variable that is defined uniquely via the Nourdin–Peccati
integration by parts formula E(Xϕ(X)) = E(ϕ′(X)GX), valid for all smooth and
bounded functions ϕ. Viens then showed how one can apply the inequality (7) to
the study of a family of continuous 1-dimensional polymer measures. Namely, he
considered the parabolic Anderson model

(8)
∂

∂t
u(t , x) =

∂2

∂x2
u(t , x) + u(t , x)

∂

∂t
W (t , x),

with t > 0 and x ∈ Rd and u(0 , x) ≡ 1, where W is a centered Gaussian process
with covariance form

EẆ (t , x)Ẇ (s , y) = min(s , t)Q(x− y),

for a bona fide correlation function Q on Rd×Rd that is bounded [i.e., Q(0) <∞].
The solution to (8) exists and is related to the partition function ZWt of a 1-D

polymer in random environment W , where ZWt := E(exp{
∫ t
0
W (dsdbs)} |W ), for

an independent Brownian motion b. The polymer measure is then P̃ , whose Radon–

Nikodým derivative is dP̃ /dP = (ZWt )−1 exp{
∫ t
0
W (dsdbs)}, where P denotes the

Wiener measure. [The “curvilinear stochastic integral” in question is known to
exist.] An important question in this area of statistical mechanics is to understand
the behavior of the variance of logZWt as t→∞.

When d = 1 and W is space-time white noise, it is generally believed that
Var(logZWt ) = t(2/3)+o(1) for large t. This conjecture has been verified in recent
work by Balazs, Quastel, and Seppäläinen in the case that u(0 , x) is the exponential
of an independent two-sided Brownian motion [this is the invariant measure]. When
Q(0) = 0—say when Q(x) = 1 − x2α + o(x2α) for x ≈ 0—it is believed that
Var(logZWt ) = t2χ(α)+o(1) as t → ∞, where 1/3 ≤ χ(α) ≤ 1/2. Moreoever, it is
believed that all values of χ(α) in this interval are achievable for different models.

Viens proves that if infx∈Rd Q(x) > 0, then the conjecture always holds with
χ(α) = 1/2. The idea is to write X := logZWt , and estimate the relavant ran-
dom quantity GX that arises in (7), for this particular random variable X, using
Mehler’s formula.

Samy Tindel’s lecture concluded the invited research talks of Wednesday, and
was concerned with rough SDEs of the type

(9) dYt = V0(Yt) dt+

d∑
j=1

Vj(Yt) dBjt ,

where the Vi’s are bounded and smooth vector fields, and B is a d-dimensional
Gaussian process such as fractional Brownian motion [fBm] with Hurst index 1/4 <
H < 1/2. Rough stochastic differential equations of type (9) have been solved
recently [Cass, Fritz, Victoir], for example where B is fBm with Hurst index 1/4 <
H < 1/2. However, smoothness has eluded prior attempts. Tindel introduced his
recent work [joint with T. Cass, M. Hairer, and C. Litterer] in which they show how
the solution to (9) exists and is fairly generally continuous, for instance if B is fBm
with 1/4 < H < 1/2 or if the covariance function R of B satisfies some regularity
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conditions [enough to ensure strong local non-determinism, for instance]. Some of
the key ingredients of the proof were also presented; one particularly noteworthy
ingredient was shown to be the following: The Jacobian J that corresponds to (9)
itself solves the following rough-path differential equation:

Jt = I +

∫ t

0

DV0(Yu)Ju du+

d∑
j=1

∫ t

0

DVj(Yu)Ju dBju.

Robert Dalang began the Thursday lectures with his 1-hour plenary talk on
hitting probability estimates for solutions to systems of SPDEs of the form

(10) Lul = bl(u) +

d∑
j=1

σl,j(u)Ẇj (1 ≤ l ≤ d)

where L acts on the spatial variable x ∈ Rk and on the time variable t ∈ [0 , T ],
and L can denote either the heat operator ∂t − ∂2xx or the wave operator ∂2tt − ∂2xx.
The functions bl and σj,l are Lipschitz continuous, and the initial function u0 [also

u′0 for the wave case] are assumed to be deterministic and given. Finally, the Ẇj ’s
are i.i.d. Gaussian noises; when k = 1, they are assumed to be space-time white
noise and when k ≥ 2, they are assumed to be white in time and colored in space
according to a Riesz kernel, viz.,

EẆi(t , x)Ẇj(s , y) =
δ0(t− s)
‖x− y‖β

· δi,j ,

where β ∈ (0 , 2 ∧ k) in order to ensure the existence and uniqueness of a solution.
The lecture addresses the following question: Given a d-dimensional set A and a

hypercube I×J ⊂ (0 ,∞)×Rk, when is there positive probability that there exists
some random (t , x) ∈ I × J such that u(t , x) ∈ A? If such a point exists then we
say that A is nonpolar ; else it is polar.

The presented answer depends on whether or not L is the wave operator or the
heat operator. In the case of the wave operator, Dalang showed [joint work with
M. Sanz–Solé] in particular that

A is polar if dimH(A) < d−2 + 2k

2− β
and nonpolar if dimH(A) > d−2 + 2k

2− β
+

4d2

2− β
.

By contrast, when L is the heat operator [joint work with D. Khoshnevisan and E.
Nualart],

A is polar if dimH(A) < d− 4 + 2k

2− β
and nonpolar if dimH(A) > d− 4 + 2k

2− β
.

The proofs hinge on developing detailed “heat-kernel estimates” for random vari-
ables of the form u(t , x) and (u(t , x) , u(s , y)), together with a great deal of Malli-
avin calculus and probabilistic potential theory, much of which were carefully in-
troduced.

Martin Grothaus presented a lecture on an algebraic SPDE that was de-
rived for a concrete problem in industrial mathematics for textile such as dia-
pers, disposable clothes in hospitals, etc. [in collaboration with the Fraunhofer
Institute and others]. Grothaus began his lecture with a detailed description of
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the underlying problem, and derived a nonlinear SPDE of the form m∂2ttX =[
∂s(λ∂sX)− b∂4ssssX + f(X , ∂tX)

]
dt + g(X, ∂tX) dW, subject to a certain alge-

braic norm-one condition on ∂sX(s , t). Grothaus showed how one can rewrite a
simplified version of the preceding, more succinctly, as an infinite-dimensional SDE
of the form

(11) dX(t) = (L(t)X(t) + F (t)) dt+GdW (t),

subject to X(t0) = ξ, where the operator L leads us to a 2-parameter evolution
system ∂tU(t , τ)ϕ = L(t)U(t , τ)ϕ, and the noise has a covariance operator that

satisfies
∫ t
t0

Tr [U(t , r)GQG∗U(t , r)∗] dr < ∞ for all t ∈ [t0 , T ]. Grothaus then

showed [joint work with B. Baur and T. T. Mai] that, under some regularity con-
ditions, (11) has a unique mild solution which is, more significantly, an analytic
solution. The preceding does not address the algebraic constraint on the original
SPDE. In order to address that matter, Grothaus showed then how J. P. Aubin’s
work on viability theory can be utilized in the present setting. In order to ad-
dress that matter, Grothaus showed that a solution to any equation of the form
X ′(t) = f(X(t)) is viable in K—that is, X(t) ∈ K for all t0 ≤ t ≤ T—if and only
if

lim inf
h↓0

dist(x+ hf(x) ,K)

h
= 0 for every x ∈ K.

Finally, a stochastic version of this result was also briefly mentioned [De Prato and
Frankowska]; that result is what is needed in order to build in the algebraic con-
straints into the original problem.

Leif Döring’s lecture revolved around his solution to an old problem in the
structure theory of self-similar Markov processes, and its use in the analysis of
symbiotic branching processes. Specifically, he presented a complete characteriza-
tion theorem [joint with M. Barczy] of self-similar Markov processes in terms of a
weak solution to a [quite complicated] SDE, thereby also characterizing the solution
to the following system that was introduced earlier by Etheridge and Fleischmann:

du(t , k) = ∆u(t , k) dt+
√
βu(t , k)v(t , k) dB1

t (k),

dv(t , k) = ∆v(t , k) dt+
√
βu(t , k)v(t , k) dB2

t (k),

where B1 and B2 denote correlated Brownian motions with ρ := Corr(B1
t , B

2
t ),

and the initial states u0 and v0 are assumed to be nonnegative.
This model reduces to mutually-catalytic branching process when ρ = 0, to the

parabolic Anderson model when ρ = 1, and to a 2×stepping-stone model when
ρ = −1. Döring described his work on the behavior of the solution as β → ∞:
When ρ = −1 the solution converges to the voter model; when ρ = 0 it converges
to a “monster process” [Mytnik and Klenke]; and when ρ ∈ (−1 , 1), it converges to
a “generalized monster process” [joint work with Mytnik]. It was shown how these
questions reduce to problems about duality relations. A series of [very hard] open
questions were also posed.

Peter Imkeller lectured on his joint work with N. Perkowski, wherein they
devise a Fourier-analytic approach of pathwise integration as a possible alternative
to other integration theories against rough functions. This idea can be summarized
roughly as follows: If f ∈ L2[0 , 1], then we can develop f in terms of the Schauder
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basis ϕn(t) :=
∫ t
0
χn(s) ds, where the χn’s are Haar functions. Imkeller showed that

whenever f is Hölder continuous of order α, we have a pointwise bound,∣∣∣∣∣∣
∑
k>K

2k−1∑
`=0

(∫
χ2k+` df

)
ϕ2k+`

∣∣∣∣∣∣ ≤ C2−αK‖f‖α,

for a universal finite constant C, and all integers K ≥ 1. Thus, the preceding holds
true for all f ∈ H := the closure of Cα with respect to the norm ‖ · · · ‖α, as well.
From this, Imkeller deduced that the map

f 7→
(
c−αn

∫ 1

0

χn df

)
defines an isomorphism between H and a sequence space, where the cn’s have a
concrete, though somewhat complicated, numerical form. Extensions to other base
spaces than Cα were also mentioned, in particular, to Besov spaces Bα

p,q.
Finally, an argument was sketched that described how one can plan to construct

integrals of the form
∫ 1

0
g df for rough functions g and f ∈ H, using the sequence-

space ideas together with methods of rough-path theory.

Jan van Neerven introduced stochastic reaction-diffusion equations of the form

(12)
∂

∂t
u(t , ξ) = Au(t , ξ) + f(t , ξ , u(t , ξ)) + g(t , ξ , u(t , ξ))RẆ (t , ξ),

where the space variable ξ takes values in a bounded open subset O of Rd, Ẇ
dentoes space-time white noise, and R is a Radonifying separator from L2(O) to
Lq(O) when d ≥ 2, and R := the identity map on L2(O) when d = 1.

Van Neerven addressed the question of global existence of solutions to (12) by
rewriting the problem as one about stability of an SDE on a UMD Banach space
E:

dX(t) = [AX(t) + F (t ,X(t))] dt+G(t ,W (t)) dW (t).

Stability theorems were presented that show that ifAn → A in a suitable sense, then
the resulting solutions X(n), killed at suitable stopping times, converge to X, killed
at a suitable stopping time. And convergence holds in the space L0(Ω ;Bb([0 , T ] ;E)).
Moreoever, one can control the behavior of the stopping times well enough to en-
sure the following result: Under natural regularity assumptions on A, f , if X0 ∈ Lp
for some p sufficiently large [explicit bounds were shown], then (12) has a global
solution that is in Lp(Ω ;C([0 , T ]× Ō)) [joint work with M. Kunze].

L lúıs Quer–Sardanyons presented his work [joint with A. Deya and M. Jo-
lis] on the stochastic heat equation. Let W be an L2 := L2[0 , 1]-valued Brow-
nian motion with [a finite-trace] nuclear covariance Q, and consider the random
Stratanovich-type integral equation

(13) Yt = Stψ +

∫ t

0

St−s (f(Ys) ◦ dWs) ,

where {St}t≥0 denotes the L2-semigroup corresponding to −∆ and ψ ∈ L2.
Let X denote the mild solution to

dXt = ∆Xt dt+ V 1
t dt+ V 2

t dWt,
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where X0 = ψ and V i’s are continuous-in-L2 vector fields. Quer–Sardanyons proved

that one can always construct the curvilinear stochastic integral
∫ t
0
St−s(f(Xs) ◦

dWs) by first mollifying the white noise and solving the preceding heat equation
to obtain Xε—where ε is the mollifier parameter–and then letting ε ↓ 0 in order

to deduce that
∫ t
0
St−s(f(Xt−s) ◦ dWs) := limε↓0

∫ t
0
St−s(f(Xε

t−s) ◦ dWs) exists in
probability. Moreover, that limits was shown to be equal to∫ t

0

St−s (f(Xs) · dWs) +

∫ t

0

St−s
(
V 2
s · f ′(Xs) · P

)
ds,

where P is a certain polynomial in the covariance Q, and the first stochastic inte-
gral is an Itô integral. Using this stability result, Quer–Sardanyons showed that if
f, f ′ ∈ L∞, then (13) has a unique L2-valued solution. Moreover, Quer–Sardanyons
showed that one can use the correlational rough-path analysis of Tindel and Gu-
binelli (2010) in order to establish that if f ∈ C3

b then the solution is Hölder
continuous.

Tusheng Zhang’s lecture presented a uniqueness theorem for the invariant
measure of SPDEs with two reflecting walls [joint work with J. Yang]. Specifically,
Zhang considered an SPDE of the following form.

Let h1 and h2 denote two reflecting walls on the state space S1 with the properties
that: (H1) h1(x) < h2(x) for all x ∈ S1; and (H2) ∂2xxh

j ∈ L2(S1) for j = 1, 2.
The SPDE that was studied seeks to find a random function u(t , x) such that
h1(x) ≤ u(t , x) ≤ h2(x) for t > 0 and x ∈ S1, and u satisfies

(14)
∂

∂t
u(t , x) =

∂2

∂x2
u(t , x) + f(u(t , x)) + σ(u(t , x)) Ẇ (t , x) + η − ξ,

where f, g : S1 → R are Lipschitz continuous, u(0 , ·) ∈ C(S1), Ẇ denotes space-
time white noise, and η and ξ are random measures that are a part of the solution
and satisfy

∫
R+×S1(u − h1) dη =

∫
R+×S1(h2 − u) dξ = 0. In the one-sided case

(say, h1 ≡ 0 and h2 ≡ ∞) the preceding becomes an SPDE with reflection. In that
case, when the noise is additive, Nualart and Pardoux have shown that there exists
a unique solution; and in the multiplicative case when σ is non-constant Donati
Martin and Pardoux established existence, and Xu and Zhang proved uniqueness.

Zhang’s lecture presented an argument based on the respective theories of Krylov-
Bogolyubov [for existence] and Mueller [for uniqueness] in order to prove that, under
the stated assumptions, (14) always has a unique invariant measure.

Annie Millet’s lecture on the stochastic Cahn–Hilliard and Allan–Cahn equa-
tions concluded the research talks of the conference. As a sampler of the theory
presented in this talk, let us consider a nice convex domain O ⊂ Rd with piecewise
smooth boundary, and denote by ν its outward normal vector. Millet introduced
the SPDE

(15) ∂tu = −ρ∆ (∆u− f(u)) + (∆u− f(u)) + σ(u)Ẇ ,

for (t , x) ∈ [0 , T ]×O, subject to

∂

∂ν
u =

∂

∂ν
∆u = 0 on [0 , T ]× ∂O.

The function f is assumed to be a third-degree polynomial with positive leading
coefficient; for instance, f = F ′, where F (u) = (1−u2)2 denotes the free energy for
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a double-well potential. Then Millet showed that if u0 ∈ Lq(O) for some q ≥ 6 and
σ is Lipschitz continuous with |σ(u)| = O(|u|α) as |u| → ∞ for some α ∈ (0 , 1/9),
then for all T > 0, (15) admits a unique pathwise solution u ∈ L∞([0 , T ];Lq(O))
[joint work with A. Antonopoulos and G. D. Karali]. Similar results were presented
for the stochastic Cahn–Hilliard equation.

In the case that O = (0 , π)d is the open torus, then more information about
the solution is available. For example: (i) If u0 is continuous, then so is u; (ii) If
u0 ∈ Cγ for some γ ∈ (0 , 1), then u is Hölder continuous in its space variable; (iii)
If d = 1, 2, 3, u0 is continuous, and |σ(x)| > 0 for all x ∈ O, then the law of u(t , x)
is absolutely continuous for all t > 0 and x ∈ O.


