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1 Overview of the Field
The study of the algebraic K-theory of rings and schemes has been revolutionized over the past two decades
by the development of “trace methods”. Following ideas of Goodwillie, Bökstedt and Bökstedt-Hsiang-
Madsen developed topological analogues of Hochschild homology and cyclic homology and a “trace map”
out of K-theory that lands in these theories [15, 8, 9]. The fiber of this map can often be understood (by
work of McCarthy and Dundas) [27, 13]. Topological Hochschild homology (THH) has a natural circle
action, and topological cyclic homology (TC) is relatively computable using the methods of equivariant
stable homotopy theory. Starting from Quillen’s computation of the K-theory of finite fields [28], Hesselholt
and Madsen used TC to make extensive computations in K-theory [16, 17], in particular verifying certain
cases of the Quillen-Lichtenbaum conjecture.

As a consequence of these developments, the modern study of algebraic K-theory is deeply intertwined
with development of computational tools and foundations in equivariant stable homotopy theory. At the same
time, there has been a flurry of renewed interest and activity in equivariant homotopy theory motivated by the
nature of the Hill-Hopkins-Ravenel solution to the Kervaire invariant problem [19]. The construction of the
norm functor from H-spectra to G-spectra involves exploiting a little-known aspect of the equivariant stable
category from a novel perspective, and this has begun to lead to a variety of analyses. One of the exciting
aspects of this conference was an effort to grapple with various perspectives on equivariant stable homotopy
theory in the context of real applications.

2 Recent Developments in Algebraic K-Theory
Algebraic K-theory is a field of wide mathematical interest, lying in the intersection of algebraic topology,
algebraic geometry, and number theory. A number of speakers at the workshop reported on exciting recent
developments in the study of algebraic K-theory and related invariants which were informed by or involved
equivariant homotopy theory.

2.1 Real algebraic K-theory
In the study of topological K-theory, Atiyah’s Real K-theory gives rise to a G-equivariant spectrum KR,
where G = Gal(C/R) [2]. The underlying non-equivariant spectrum of KR is equivalent to KU , represent-
ing periodic complex K-theory. The spectrum of G-fixed points of KR is equivalent to KO, representing
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periodic real K-theory. Lars Hesselholt and Ib Madsen have developed an analogous theory, called Real
algebraic K-theory. Lars Hesselholt reported on these recent developments at the workshop. They associate
to a pointed exact category with strict duality (C, T, 0) a G-equivariant spectrum KR(C, T, 0) that they call
the Real algebraic K-theory of (C, T, 0). The underlying non-equivariant spectrum is equivalent to Quillen’s
algebraic K-theory spectrum K(C, 0) [28]. The spectrum of G fixed points is equivalent to the Hermitian
K-theory of (C, T, 0). To construct the spectrum KR(C, T, 0), Hesselholt and Madsen have developed a new
variant of Waldhausen’s S•-construction which they call the Real Waldhausen construction [36]. They also
introduce a G-equivariant spectrum KR⊕(C, T, 0), called the Real direct sum K-theory of (C, T, 0). This
spectrum is essential for understanding the G-equivariant homotopy type of KR(C, T, 0). It uses a variant
of Segal’s Γ-category construction that Hesselholt and Madsen call the Real Γ-category construction [31].
Hesselholt and Madsen have proven the following theorem:

Theorem 1. If C is split-exact, then there is a canonical weak equivalence of G-spectra

KR⊕(C, T, 0) ' KR(C, T, 0).

They define the Real algebraic K-theory groups of (C, T, 0) to be the bi-graded family of equivariant
homotopy groups:

KRp,q(C, T, 0) = [Sp,q,KR(C, T, 0)]G.

Here Sp,q is the virtual G-equivariant sphere SRp−q ∧ SiRq

, where SiR denotes the sign representation. If
(A,L, α) is a ring with antistructure and (C, T, 0) is the category of finitely generated projective right A-
modules, with the induced duality structure, then the main theorem identifies the groups KRp,0(C, T, 0) with
the Hermitian K-groups of (A,L, α), defined by Karoubi.

2.2 Progress towards TC(MU)

Thom spectra in general, and MU in particular, are vitally important spectra carrying rich structure. An-
drew Blumberg described joint work with Angeltveit, Gerhardt, Hill, and Lawson which generalizes previous
work of Blumberg, Cohen, Schlichtkrull [5] on the topological Hochschild homology of Thom spectra. In
particular, Blumberg described several different symmetric monoidal products on G-spaces. The “commu-
tative monoids” for these various symmetric monoidal products are the infinite loop space analogue of the
flavors of E∞ ring spectra for which the E∞-operad is modeled by linear isometries on a possibly incom-
plete universe. Blumberg described how to make the earlier constructions of THH(Mf ) into an equivariant
construction, producing a genuine S1-equivariant commutative ring spectrum.

This new construction of THH arises by introducing an equivariant version of Hopkins’ construction of
the Thom spectrum of a map f : X → BGL1S

0 [1]. Blumberg described how one can apply the Hill-
Hopkins-Ravenel norm technology to mirror this equivariantly, landing not in maps to BGL1S

0 but rather in
maps to BGL1S

0
G. Coupled with a new description of THH as the left adjoint to the forgetful functor from

S1-commutative ring spectra to ordinary commutative ring spectra, this produces a model of THH(Mf ) as
an equivariant Thom spectrum that has the right equivariant homotopy type for all finite subgroups. Blumberg
also indicated that this new model of THH could be extended to construct TC relative to ground rings other
than the sphere spectrum; this resolves an old question in the area, and opens the door to new computational
approaches.

2.3 Representation rings and K-theory
Gunnar Carlsson reported on the completion of a program relating algebraic K-theory and the representation
theory of Galois groups. Several results in algebraic K-theory, such as Thomason’s descent theorem and the
Quillen-Lichtenbaum conjectures, assert that the algebraic K-groups of a field F should be assembled from
the algebraic K-groups of its algebraic closure F and the action of the Galois group GF . Carlsson’s program
aimed to recover the entire homotopy type of the spectrum K(F ) from K(F ), which is understood by work
of Quillen and Suslin, and the representation theory of the Galois group [28, 35].

If F contains an algebraically closed field k, Carlsson constructed a K-theory spectrum K(Repk(GF ))
from the category of representations of G over k. The homotopy groups are closely related to the represen-
tation ring of GF , and descent theory provides it with a natural map K(Repk(GF )) → K(F ). Carlsson’s
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conjecture has been that, upon applying an appropriately “derived” notion of completion, this map becomes
an equivalence.

The main theorem described in this talk is a proof of this result. The proof first uses a calculation for the
case of a Laurent polynomial ring k[t±1] and extensions obtained by adjoining roots of t. It then applies the
Bloch-Kato theorem, which shows that algebraic K-groups of fields (appropriately completed) are generated
in degrees 1 and 2, with specific descriptions of the generating elements. Finally, there is an “algebraic
to geometric” spectral sequence relating the homotopy groups of a completed spectrum to the appropriate
derived completion in algebra.

2.4 Localization sequences in THH
Mike Mandell reported on joint work with Andrew Blumberg establishing certain localization sequences in
THH . In earlier work [6], they established certain localization sequences in algebraic K-theory, the most
important example being the cofibration sequence

K(Z) → K(ku) → K(KU).

The main result described in this talk is a corresponding localization sequence for THH [7]. If R is a
discrete valuation ring with residue field k and fraction field F , there is a cofibration sequence

THH(k) → THH(R) → THH(F )

compatible with the corresponding cofibration sequence for algebraic K-theory.
Ausoni-Rognes and Hesselholt have conjectured that there should be a similar localization sequence in-

volving THH(ku) [4]. The most obvious approach does not work because THH(KU) is not connective, so
the homotopy fiber of the map THH(ku) → THH(KU) is something strange and definitely not THH(Z).

Instead, Blumberg and Mandell work with THH of spectral categories. Let C be the category of finite
cell ku-modules. For X,Y ∈ C one can define a connective spectral category CΓ by

C(X,Y )Γ(n) = |C(X,
∨
Sn
•

Y )|.

Then one can recover THH(ku) by applying the Bökstedt version of the cyclic bar construction to the
category S•Nw

• CΓ. Here Nw
• is the nerve of the subcategory where the maps are all the weak equivalences,

and S• is the Waldhausen construction.
If we instead use the category S•N

q
•CΓ, where Nq

• means taking the nerve of the category where all the
maps become weak equivalences after inverting the Bott element, we get a spectrum WΓTHH(ku|KU).

The homotopy fiber of this map is the cyclic bar construction on the category S•Nw
• (CΓ)q consisting of

torsion ku-modules. By a devissage theorem, they identify this with THH(π0ku) = THH(Z). Hence there
is a cofiber sequence

THH(Z) → THH(ku) →WΓTHH(ku|KU).

Moreover, this cofiber sequence is compatible with the Dennis trace.

2.5 K-theoretic assembly maps, Rips complexes, and equivariant phantom maps
Dan Ramras described recent progress on Loday’s assembly map and the integral Novikov conjecture: If G
is a discrete, torsion free group, then the map

α : BG+ ∧K(R) → K(R[G])

is injective in homotopy groups. He began by recasting the problem into a geometric one, analogous to
Segal’s description of the K-theory of a space [32]. This allowed more geometric tools and approaches
to be brought to bear. In particular, Ramras considered several families of groups that have buildings with
particularly nice geometric structure. The additional geometry allowed, for this family of groups, descent-
style arguments showing the Novikov conjecture. Ramras finished with several conjectures, based on of Rips
complexes, which would establish the Novikov conjecture in a wide variety of cases.
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3 Recent Developments in Equivariant Stable Homotopy Theory
Complementing the talks on algebraic K-theory proper were a series of talks on new work in the foundations
of equivariant stable homotopy theory, as well as applications of recent foundational work to other areas.

3.1 G-spectra as presheaves of spectra
Bert Guillou and Peter May have developed a model of the category of G-spectra as a category of enriched
presheaves of spectra. Both researchers presented on these results at the workshop. By a result of Schwede
and Shipley, any stable model category is equivalent to a category of presheaves enriched in a chosen cat-
egory of spectra [30]. However, the domain category can be rather mysterious. Guillou and May give an
explicit construction of the domain category in their case by applying an infinite loop space machine, K, to
an elementary category of finite G-sets enriched in permutative categories, GE . They prove the following.

Theorem 2. Let G be finite. The the category K(GE) is equivalent to GB.

Here GB denotes an enriched version of the Burnside category of G. This new model extends a description
of the homotopy category given in [20], recasting equivariant stable homotopy theory in terms of elementary
point-set level categories of G-spans and nonequivariant spectra.

This work requires a number of ingredients of independent interest, such as the theory of classifying
G-spaces for equivariant bundles. Guillou and May also define and give examples of genuine permutative
G-categories, and more generally E∞ G-categories. Further contributions of the work include:

1. equivariant infinite loop space theory and infinite loop space machines,

2. the equivariant Barratt-Priddy-Quillen theorem,

3. the tom Dieck splitting theorem for suspension G-spectra,

4. equivariant algebraic K-theory, and

5. pairings of permutative G-categories.

3.2 Equivariant commutative ring spectra
Bjørn Dundas reported on work (in part by his student Stolz) aimed at providing foundational underpinnings
to study the redshift conjecture and the answering the question: “What are the slices of the equivariant THH
spectrum?” Rognes’ redshift conjecture asserts that K-theory increases chromatic (telescopic) complexity;
this is supported by calculation in the cases for n = 0 and n = 1 [3]. The conjecture suggests studying
iterated K-theory and consequently iterated THH and TC. In previous work, Dundas (with Brun, Carlsson,
and Douglas) has studied iterated THH for commutative ring spectra in terms of tensoring with higher tori,
and associated “TC-like” limit constructions [10, 11]. In this talk, Dundas described a model structure on
commutative ring spectra (constructed by Stolz) which provides a formal home for interpreting the equivariant
nature of these tensor constructions and, more generally, the equivariant nature of smash powers of ring
spectra. This work leads to interesting equivariant filtrations on smash powers.

3.3 Global equivariant homotopy theory
Both Anna-Marie Bohmann and Stefan Schwede reported on work aimed at constructing a “global” equiv-
ariant stable homotopy theory.

Anna-Marie Bohmann’s report was devoted to conceptual foundations for these categories. She motivated
global equivariant homotopy theory as describing a family of compatible G-equivariant homotopy types as
G varies, with the goal of understanding “change of groups” phenomena.

In Bohmann’s version, a global spectrum is a compatible family of equivariant spectra. To make sense of
this, one needs compatibility of the universes for maps of groups, and Bohmann described a categorical frame-
work for this work, based on universe-indexed spectra such as those employed by Lewis-May-Steinberger
and Elmendorff-Kriz-Mandell-May [20, 14]. Given an appropriately compatible family of G-equivariant
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universes for all groups G, a global equivariant spectrum consists of a section of a certain functor of cate-
gories. She also described the roles of several canonical examples in the global equivariant world, including
the sphere spectrum, the equivariant K-theory spectrum, and equivariant bordism theories.

By contrast, Stefan Schwede described a notion of G-equivariant spectra based a new model structure on
the orthogonal spectra introduced in Mandell-May-Schwede-Shipley [25]. Orthogonal spectra are equivalent
to certain “enriched” functors on equivariant vector spaces; this is based on previous observations published
by Shimakawa, and played an important role in the solution of the Kervaire invariant problem [33, 19].

Stefan also reported on some calculational work in global equivariant homotopy theory. Global equiv-
ariant homotopy groups take values in the category of global functors. These have the feature that, unlike
Mackey functors or abelian groups, they are not rationally semisimple, and so rational equivariant homotopy
types do not naturally decompose as products of Eilenberg-Mac Lane objects.

The bulk of Schwede’s talk focused on a particular example: the homotopy groups of the symmetric pow-
ers of the sphere spectrum. Schwede completely computed π0 as a global functor (showing the fantastically
simple solution in the global context), and he used this to produce explicit examples of nontrivial extensions
naturally occurring in rational global homotopy theory.

3.4 An algebraic model for rational G-spectra
Brooke Shipley and John Greenlees both reported on their joint work on developing models for rational
G-spectra. The category of rational spectra, with no group action, is Quillen equivalent to the category of
Q-DG modules [30]. By previous work of Schwede and Shipley we also know that, given certain technical
conditions, any rational stable homotopy theory with a single generator is Quillen equivalent to the category
of DG modules over some Q-DGA (or over a DG category in the case of a set of generators). This result
applies to free rationalG-spectra, but it is only an existence result and we would like a small, explicit algebraic
model.

The first talk, by Brooke Shipley, focused on the category of free Q-G-spectra, which is Quillen equivalent
toHQ[G]-module spectra, whereHQ[G] = HQ∧G+. IfG is finite then π∗HQ[G] is concentrated in degree
0 and we simply get Q-DG modules with a G-action.

If G is an arbitrary connected compact Lie group, we can use Koszul duality in spectra:

HQ[G] F (BG+,Q)

The latter is commutative and the homotopy is a polynomial algebra concentrated in even degrees, hence
formal. From this we get the following result:

Theorem 3 (Greenlees-Shipley). For any connected compact Lie group G we have a Quillen equivalence

free-Q-G-Sp 'Q torsion DG HQ∗(BG)-modules.

In the nonconnected case, let N be the identity component of G and W = G/N the component group.
Then we can combine the above result with the simpler behavior for finite groups to get the following:

Theorem 4 (Greenlees-Shipley). Define B̃N = EG/N , which has a W -action. Then we have a Quillen
equivalence

free-Q-G-Sp 'Q torsion DG H∗(B̃N)〈W 〉-modules,

where H∗(B̃N)〈W 〉 denotes the twisted group ring.

The second talk, by John Greenlees, discussed the case where we no longer assume that the G-action is
free. John started with a conjecture:

Conjecture 1. For any compact Lie group G we have

Q-G-Sp 'Q DGA(G)

for some “nice” abelian category A(G) of injective dimension equal to the rank of G.

There are several applications of this.
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1. It enables us to do calculations by using an Adams short exact sequence or spectral sequence with
finitely many rows.

2. It lets us construct of G-spectra algebraically.

3. It has applications to other theories such as G-equivariant elliptic cohomology.

The idea is as follows: A(G) should be some category of sheaves over the category of subgroups Sub(G)
with fiber over H capturing H-geometric isotropy information.

When G is a torus, then they have verified their conjecture.

Theorem 5 (Greenlees-Shipley). There is a Quillen equivalence

Q-G-Sp 'Q DGA(G)

for G a torus.

3.5 The Gap theorem at 3
Ravenel described ongoing, and largely conjectural, work with Hill and Hopkins concerning the 3-primary
Arf-Kervaire problem, and specifically the survival of the family β3i/3i in the Adams-Novikov spectral se-
quence. The Hill-Hopkins-Ravenel solution to the Kervaire invariant one problem (at the prime two) used
several equivariant techniques which port over directly to the odd primary case. In particular, there is a nat-
ural slice filtration described by Hill-Hopkins-Ravenel for any finite group, and the norm machinery allows
the construction of commutative ring spectra for larger groups.

Ravenel described a large snag: we do not have a 3-primary analogue of the spectrum MUR of Real
bordism. This was the start of the Kervaire solution, as from this C2-equivariant spectrum one can build
a C8-equivariant spectrum that detects the Kervaire classes and for which their non-existence follows from
straightforward computations. The desired properties of a C3-analogue, called MUA, are fairly simple:

1. The underlying spectrum should be MU ∧MU with a kind of “reduced regular” action.

2. The geometric fixed points should carry the “universal formal group law in which the 3-series is zero”.

Assuming the existence of such a spectrum, and basic properties connecting it to MU , Ravenel sketched
out a proof of the 3-primary analogue of the “Gap Theorem”: the homotopy group π−2 of any regular
representation suspension ofMUA (or its norm toC9) is torsion free. In particular, coupled with a periodicity
theorem (provable via homotopy fixed point arguments), we see that only finitely many of the classes β3i/3i

survive the Adams-Novikov spectral sequence.

3.6 Equivariant A∞ bundle theory
John Lind described work using “rigid” models of infinite loop space theory to study bundle theory [21].
Based on work of Blumberg, Cohen, and Schlichtkrull [5], there now exist various categories of “spaces”
with a symmetric monoidal product such that monoids and commutative monoids modelA∞ andE∞ spaces.
This is akin to the situation with modern categories of spectra (and there is a strong mathematical analogy in
the technology used). Lind is applying this technology to study principal fibrations where the structure group
acting is an A∞ space; this is already interesting non-equivariantly, as it allows us to talk about bundles
of spaces that are “groups up to coherent homotopy” without having to fixed an equivalent group. This
talk focused also on the extension to the equivariant setting (for both finite and compact Lie groups). Lind
described versions of the standard classification results in this context and sketched applications to equivariant
twisted cohomology theories and modeling iterated algebraic K-theory classes.
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3.7 Modeling stable n-types
Angelica Osorno described a joint project with Niles Johnson studying the relationship between homotopy
n-types and higher category theory. A homotopy n-type is a space X whose homotopy groups vanish in
degrees above n for all choices of basepoint. It is a classical result that groupoids model homotopy 1-types,
in the sense that the classifying space and fundamental groupoid functors establish an equivalence between
their homotopy categories. In higher category theory this is known as the “homotopy hypothesis” and has
long been a motivating principle.

Johnson and Osorno have extended this result to an equivalence between stable homotopy 1-types and
Picard groupoids. A Picard groupoid is a symmetric monoidal groupoid in which every object has a weak
inverse under the monoidal structure. Using an algebraic description of Picard groupoids, they have identified
the Postnikov data associated to a stable 1-type:

1. the group π0 is the set of isomorphism classes,

2. π1 is the automorphism group of the unit object, and

3. the unique k-invariant is determined by the twist automorphism.

Their ongoing work has also explored the case for n = 2, where they expect stable homotopy 2-types to
be modeled by Picard bigroupoids. In this direction, they have already identified a Picard bigroupoid which
acts as the homotopy cofiber of a map between Picard groupoids.

3.8 Fusion categories and field theories
Chris Douglas, Chris Schommer-Pries, and Noah Snyder have explored the relationship between fusion cat-
egories and 3-dimensional topological field theories. Chris Douglas reported on this work at the workshop.
Fusion categories are monoidal categories that have the nice properties of the category of representation of a
finite group:

1. each object has a dual,

2. there are finitely many simple objects, and

3. any object decomposes into a finite sum of simple objects.

In particular, fusion categories are a type of tensor category. Any fusion category gives rise to a 3-dimensional
topological field theory.

A key question about the algebraic structure of a fusion category is whether the double dual operation is
trivial, as it is in the representation category of a finite group. The following is known:

Theorem 6 (Etingof-Nikshych-Ostrik). The quadruple dual is trivial.

Etingof, Nikshych, and Ostrik also conjecture that the double dual is trivial. While this interesting question
remains open, Douglas reported on new perspectives on this question provided by the work of Douglas,
Schommer-Pries and Snyder. This question corresponds to the question of whether the 3-manifold invariants
of the associated field theory depend on a spin structure. Douglas then connected the problem to various other
structures on 3-manifolds, linking the problem to classically known homotopy computations.

4 Scientific Progress Made
By bringing together the experts in equivariant homotopy and algebraic K-theory, the workshop established
several large projects which helped define the scope of the field for the next several years. In particular,
several dominant themes arose:

1. Understand G-equivariant infinite loop space machines and more generally what is meant by a G-
symmetric monoidal categories.
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2. Use new constructions and approaches in equivariant homotopy to compute algebraic K-groups.

The first point was spearheaded by the talks of Guillou and May. Their talks outlined a construction of
a G-equivariant infinite loop space machine on G-permutative categories (along the way, discussing what is
meant by a G-permutative category). This meshed with a philosophy expounded by Hill for G-symmetric
monoidal categories as symmetric monoidal categories for which we have “products indexed byG-sets”. The
talk and philosophy underscore several big, outstanding questions in equivariant homotopy: how to recon-
cile G-equivariant as diagrams indexed by the category G and other notions of G-objects with symmetric
monoidal structures. This should give rise to new interpretations of previously confusing topics (such as the
difference between Green and Tambara functors), and allow a very natural explanation of the Hill-Hopkins
result about equivariant localizations [18].

The second point comes from the specifics of constructions of THH as an S1-equivariant spectrum.
Blumberg, Dundas, Hesselholt, and Mandell all spoke about such constructions and the computational ram-
ifications. Together they provide a picture of equivariant homotopy which is computationally approachable.
Tethered to the models described by the first point, we see new way to interpret the homotopy groups provided
by trace methods. The modern constructions spell out the connection quite clearly and cleanly.

Based on the work presented at this conference and some of the collaborations initiated, we are optimistic
that the new foundations of equivariant stable homotopy theory wil facilitate and support continued progress
in the use of trace methods to understand algebraic K-theory.

5 Outcome of the Meeting
This meeting gathered together experts from around the world in the areas of equivariant stable homotopy
theory and algebraic K-theory. Recent advancements in these areas were presented at the workshop, and
the talks all sparked lively discussion. Time was also set aside for participant discussion, and extensive
collaboration took place during the week. A number of participants commented how unique and valuable it
was to have this meeting of experts. We felt that the meeting was a tremendous success, far exceeding our
hopes and goals for the week.
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