
Random Partitions and Bayesian Nonparametrics

Stefano Favaro (University of Torino and Collegio Carlo Alberto),
Shui Feng (McMaster University)

April 17, 2016–April 24, 2016

1 Overview of the Field
Random partitions arise naturally in many subjects including but not limited to Bayesian nonparametric,
ecology, machine learning, number theory, physics, population genetics, and the theory of random matrices.

The basic framework for a Bayesian nonparametric model involves a two stage generation of data: a
probability P is first chosen from the support of a prior distribution on the space of probability measures,
followed by a sample of (conditionally) independent and identically distributed random variables from P .
The main goal consists in determining and investigating the posterior distribution, that is the conditional
distribution of P given the observable sample. The prior in a nonparametric Bayesian model corresponds to
the law of the random probability measure P , and probability theory provides a large arsenal for studying
distributional properties of P , especially under the assumption that P is discrete almost surely.

The natural link between random partitions and Bayesian nonparametric is through the celebrated de
Finetti representation theorem. Exchangeable random partitions are the cornerstone of Bayesian nonpara-
metric inference for a broad class of statistical problems, referred to as species sampling problems.

2 Recent Developments
Let N denote the set of natural numbers. A partition π of N is a collection of disjoint subsets {πi : i ≥ 1} of
N ordered by their least elements with ∪∞i=1πi = N. Denote the collection of all partitions of N by Π. For any
n ≥ 1, a partition πn of Nn = {1, 2, . . . , n} is defined similarly. The set of all such partitions is denoted by
Πn. A random partition of Nn or N is a probability on Πn or N. Under certain consistency assumptions, one
is able to construct a random partition on N from those on Nn by letting n tend to infinity. When the random
partition depends only on the number of subsets and the size of each subsets of a partition πn, it corresponds
to a family of probability partition functions

{p(n1, n2, . . . , nk) : 1 ≤ i ≤ k ≤ n, 1 ≤ ni ≤ n,
k∑
i=1

ni = n}

where k is the number of subsets and ni is the size of the i-th set.
The most studied family of probability partition functions is the Ewens sampling formula ([4]) describing

in the genetics context the sampling distribution of a neutral population. This is followed by the study of
Kingman’s partition structures and coalescent ([9],[10]). After the discovery of Pitman sampling formula
([12]) and the coalescent with multiple collisions ([13],[15]), there have been intensive studies on various
generalizations of these models ([2],[14]).
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In the Bayesian nonparametric settings, one starts with a discrete random probability measure P =∑
i≥1 piδξi on an arbitrary space S, where (pi)i≥1 are nonnegative random weights such that

∑
i≥1 pi = 1

almost surely, and (ξi)i≥1 are S-valued random locations, or random labels, independent of (pi)i≥1 and
independent and identically distributed according to a nonatomic distribution. By virtue of de Finetti repre-
sentation theorem, there exists an exchangeable sequence of random variables (Xi)i≥1 such that

Xi |P ∼ iid P, i = 1, 2, . . . , (1)
P ∼ P,

for any n ≥ 1, with P being the distribution of limn→+∞ n−1
∑

1≤i≤n δXi . Due to the discreteness of P ,
we expect ties in (X1, . . . , Xn). Let Kn = k ≤ n denote the number of different types or species in the
sample, labelled by X∗1 , . . . , X

∗
Kn

, with corresponding frequencies (N1,n, . . . , NKn,n) = (n1, . . . , nk) such
that

∑
1≤i≤Kn

Ni,n = n. The sample (X1, . . . , Xn) induces a random partition Πn of the set {1, . . . , n}, in
the sense that any index 1 ≤ i 6= j ≤ n belongs to the same partition set if and only if Xi = Xj . As shown
by Kingman [9], for any n ≥ 1 the distribution of the random partition is exchangeable.

Exchangeable random partitions are the cornerstone of Bayesian nonparametric inference for a broad
class of statistical problems, referred to as species sampling problems, where samples are assumed to be
drawn from a population of individuals belonging to an (ideally) infinite number of species (X∗i )i≥1 with
unknown proportions (pi)i≥1. In such a species sampling framework, (1) takes on the natural interpretation
of a Bayesian nonparametric model, where P is the prior distribution on the unknown species composition
(pi)i≥1 of the population. Species sampling problems have originally appeared in ecology, and their impor-
tance has grown considerably in recent years, driven by challenging applications arising from bioinformatics,
genetics, linguistics, design of experiments, machine learning, etc. Given an initial sample (X1, . . . , Xn)
featuring Kn = k species with frequencies (N1,n, . . . , NKn,n) = (n1, . . . , nk), interest lies in making in-
ference on certain statistics of the random partition induced by an additional unobserved sample of size m.
Statistics of interest are, among others, the K(n)

m new species and the M (n)
l,m species with frequency l to be ob-

served in the additional sample. Given that, Bayesian nonparametric inference for species sampling problems
relies on the study of the conditional distribution of the random partition induced by the additional sample
given (X1, . . . , Xn), i.e., the distribution of the random partition of a sample of size m from the posterior
distribution of P . More details are found in [5] and [6] and references therein.

3 Objectives and Outcome of the Meeting
The random partitions discussed above are all associated with random measures describing the equilibrium
behaviour of certain population. But in probabilistic literature, there are a plethora of random measures aris-
ing from stochastic processes. Random partitions constructed from these measures are thus associated with
the non-equilibrium population structures. Models in this aspects include but not limited to the Fleming-Viot
process ([8]), infinitely-many-neutral-alleles model ([3]), Petrov diffusion ([11]), coagulation and fragmen-
tation processes ([2]), GEM process ([7]), and general coalescents ([1]). From a statistical perspective, these
more general random structures suggest potential applications in modelling samples arising from populations
with more complex compositional structures.

Our first objective is concerned with the equilibrium random partitions. Under the prior assumption that
P is the two parameter Poisson Dirichlet process, we want to study the large m asymptotic behaviour of
the posterior distribution of K(m)

m and M (n)
l,m, given an initial observed sample of size n. From a Bayesian

nonparametric perspective, this asymptotic analysis is mainly motivated by the need of deriving approxima-
tions of the posterior distributions K(m)

m and M (n)
l,m. Indeed, while the two parameter Poisson Dirichlet prior

leads to explicit expressions for these posterior distributions, such expressions involve combinatorial coef-
ficients and special functions whose evaluation for large m is cumbersome, thus preventing their concrete
implementation. In [5] and [6] we studied the large m asymptotic behaviour, in terms of fluctuations and
large deviations, of the posterior distribution of K(m)

m and M (n)
l,m. Recently we made progresses on the related

problem of deriving central limit theorems and moderate deviation principles, for the posterior distribution
of K(m)

m . Of course such a result is of direct applicability for deriving large m asymptotic credible intervals
for the Bayesian nonparametric estimator of K(n)

m . We are able to complete this project during our stay at
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BIRS. We also intend to discuss the problem of deriving, by means of tools from the theory of concentration
inequalities, non-asymptotic credible intervals for the Bayesian nonparametric estimator of K(n)

m . This part
of research is currently an open project.

Our second objective is to study certain non-equilibrium random partitions. More specifically it is re-
lated to the genealogical structure of the Kingman’s coalescent and, in particular, to the problem of making
Bayesian nonparametric (predictive) inference on such a structure. Let Ln(t) be the number of non mutant
lineages at time t back in a Kingman’s coalescent tree of a sample of n genes. While this distribution is
well-known from Kingman [9], what seems unknown is the distribution of the number Ll,n(t) of non mutant
lineages with frequency l at time t back in a Kingman’s coalescent tree of a sample of n genes. Recently we
derived the distribution of Ll,n(t), as well as related conditional distributions. These conditional distributions
may be interpreted as genuine posterior distributions. During our stay at BIRS we completed this project by
investigating some large n asymptotic properties of Ll,n(t). A different project, still related to the Kingman’s
coalescent, concerns with the problem of making Bayesian nonparametric (predictive) inference on the ge-
nealogical structure of the Kingman’s coalescent. Specifically, we aim at deriving the conditional distribution
of the number of lineages in a Kingman’s coalescent tree of a sample of n+m, given a Kingman’s coalescent
tree of a sample of n genes. From a Bayesian nonparametric perspective, such a conditional distribution takes
on the interpretation of the posterior distribution of the number of lineages, and its expected value provides
the corresponding Bayesian nonparametric estimator. Analogue of the celebrated Good-Turing and Good-
Toulmin estimators has been introduced in the framework of lineages. This is also completed during our visit
to BIRS.
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