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This report summarizes the organization, presentation highlights, and scientific progress made at the first
workshop for women in noncommutative algebra and representation theory at the Banff International Re-
search Station in Banff, Canada. The workshop had 42 participants from 10 countries (Argentina, Australia,
Austria, Brazil, Canada, France, Germany, Israel, USA, UK) in varying stages of their career, all with strong
connections to the research themes of the workshop. The workshop featured several 45-minute introductory
talks from world experts in noncommutative algebra and representation theory and a panel discussion on
collaboration, while the rest of the time was dedicated to (group) research activities. Overall, this workshop
was a great success and we look forward to having follow-up events.

1 Objectives
The goals of this workshop were the following.

• To have accessible introductory lectures by world experts in the themes of the workshop.

• To have each participant engaged in a stimulating research project and/ or be involved in a expansive
research program in noncommutative algebra and/or representation theory.

• To have each participant provide or receive training toward this research activity (before and at the
workshop) and to have made significant progress in such directions by the end of the workshop.

• To set-up mechanisms so that the collaborative research groups formed before/ at the workshop can
continue research after the workshop, so that their findings will be published eventually.

• To provide networking opportunities and mentoring for its participants at and beyond the workshop.

2 Organization
In this section, we discuss the organization of WINART 2016 in great detail as organizers of future workshops
at BIRS and other venues may be interested in this format.
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In early July 2014, the organizers decided to submit a proposal to BIRS for the first workshop for women
in noncommutative algebra and representation theory (WINART), modeled on past workshops at BIRS in-
cluding women in number theory (WIN) and women in topology (WIT). Namely, the participants of the
workshop were going to be split up into 7-8 research teams each led by two experts.

Soon after our proposal was accepted by BIRS (in mid-December 2014), we confirmed the participation
of the group leaders and set up an external website

https://math.temple.edu/events/winart/WINARTsite.html

for our workshop. The website went live in mid-February 2015, and included

– the format of the workshop (later, this page contained the schedule of the workshop),
– descriptions of each group leaders’ research interests and broad research topic,
– possible sources of funding, and
– an application for individuals to apply to participate in the workshop.

The process for selecting the non-leader participants was as follows. To ensure that we had a good number
of top-notch graduate students and postdocs attending this workshop, we invited 10 of these individuals (with
a wide range of interests) before the application was launched. Depending on the discretion of organizers of
future WINART workshops, we may not do this next time in order to generate more open slots for applicants.

It is very important that the organizers did not only invite women they knew, particularly as this
is often how many women are excluded from conferences, workshops, and other research events
as participants or speakers.

The participant application was available on the external website above, via a Google document; it re-
quested the applicants full name, email address, university/ affiliation, position, year of Ph.D, top 3 choices
of research group, reasons for research group preferences, and a description of previous work relevant to the
themes of WINART. The site/ application was then heavily circulated through various email listserves for
women in mathematics, algebraists, representation theorists, and social media. The deadline for the applica-
tion was June 30, 2015; we received about 40 applicants for 12 open slots.

Soon after the application deadline, the organizers made use of the applicant data, including the prefer-
ences of the accepted junior participants, to form the research groups. The top priority was to ensure that each
non-leader had a very strong interest/ connection to the leaders’ research interests. Other factors for select-
ing participants included experience (we wanted each group to have a mix of junior, mid-career, and senior
participants, if possible), location (preferably, the non-leaders should not already be at a leader’s institution),
and previous connections (we tried to avoid having junior members teamed up with their thesis or postdoc
advisor, when possible). We also aimed to have a diverse collection of the geographic locations and the type
of institutions from which the participants originate, and to have a significant number of members of racially/
culturally underrepresented groups.

Even with all of the participants being women, the vast majority of these secondary goals was
achieved without sacrificing our top priority of having first-rate mathematicians, mathematical
training and research activity occur at our workshop.

The participants were notified of their group placement and received an introductory email in mid-July
2015; this email included the following information.

• Names and links to website of the group members.

• Timing/ mechanics of the group. (Leaders were encouraged to send out reading materials and non-
leaders were encourage to meet regularly to discuss these materials before the workshop. But these
were only suggestions, as everyone works differently.)

• Tentative schedule.

• Notification that participants must accept an official invitation from BIRS.

• Travel, accommodation, child care (which is exceptional at BIRS), and funding information.
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Moreover, due to the overwhelming interest in the workshop, in July 2015 we also launched the website

http://women-in-ncalg-repthy.org/

to serve as a networking resource for women in noncommutative algebra and representation theory. Appli-
cants who were not chosen as workshop participants were encouraged to join the site.

Closer to the workshop, the organizers needed to replace 3 participants with alternates (which worked out
well, as there was a long list of applicants). Also, two research groups (led by Balagovic and Stroppel and
by Gorelik and Serganova) merged into one ‘supergroup’ (pun intended), which again, worked out very well
because they have common research goals.

The format of the workshop included introductory talks by some of the research leaders during the first
two days, a panel discussion and a social activity at the end of the last full day, and the rest of the time was
dedicated to group discussion/ research. The final schedule of the workshop is given below.

Sunday
19:30-21:00 Feel free to drop by and say Hello in Corbett Lounge

Monday
7:00-8:30 Breakfast
8:30-8:40 Introductory Remarks from BIRS Station manager
8:40-9:25 Anne Shepler
9:30-10:15 Susan Montgomery & Sonia Natale
10:15-12:15 Group Discussions 1 (with Tea 10:15-10:45)
12:15-13:30 Lunch
13:30-14:15 Rosa Orellana & Monica Vazirani
14:30-15:15 Karin Baur & Gordana Todorov
15:30-17:30 Group Discussions 2 (with Tea 15:20-15:50)
17:30-19:30 Dinner

Tuesday
7:00-8:30 Breakfast
8:45-10:15 Maria Gorelik & Vera Serganova & Catherina Stroppel
10:15-12:15 Group Discussions 3 (with Tea 10:15-10:45)
12:15-13:30 Lunch
13:30-15:30 Group Discussions 4 (with Tea 15:00-15:30)
15:30-16:15 Susan Sierra & Michaela Vancliff
16:30-17:15 Maria Redondo & Andrea Solotar
17:30-19:30 Dinner

Wednesday
7:00-8:30 Breakfast
8:45-11:45 Group Discussions 5 (with Tea 10:15-10:45)
11:45 Group Photo (meet in TCPL foyer)
12:00-13:30 Lunch
13:30-17:00 Group Discussions 6 (with Tea 15:20-15:50)
17:30-19:30 Dinner

Thursday
7:00-8:30 Breakfast
8:45-11:30 Group Discussions 7 (with Tea 10:15-10:45)
11:30-13:30 Lunch
13:30-17:00 Group Discussions 8 (with Tea 15:20-15:50)
17:30-19:00 Dinner



4

19:00-19:30 Group Summaries from 3 groups
19:30-20:30 Panel (Pamela Harris, Ellen Kirkman, Gail Letzter, Monica Vazirani,

moderated by Van Nguyen)
20:30-22:00 Social time at Corbett Hall

Friday
7:00-8:00 Breakfast
8:00-9:15 Group Summaries from the remaining 4 groups
10:15-10:45 Tea

The groups always had the option to adjust the group discussion slots as they saw fit; the time of Group
Discussions 6 was changed for most groups, for example. Many of the research groups met in the evenings,
as well, and there was some collaboration across groups.

BIRS offers several rooms for break-out discussions and the organizers had initially planned a rotating
day schedule for rooms for group discussion so that every group had access to some of the bigger rooms
that were available. But on the first day, the group leaders expressed interest in keeping their room (so that
mathematics can be left on the board, for instance); the group discussion rooms were fixed for the week as
follows:

201: Balagovic-Gorelik-Serganova-Stroppel research group
202 : Shepler-Witherspoon research group
101 : Sierra-Vancliff research group
102 : Benkart-Orellana research group
105 : Baur-Todorov research group
106 : Redondo-Solotar research group
107 : Montgomery-Natale research group

Corbett Hall Reading Room and Lounge were free.

3 Introductory Lectures
There were several introductory lectures given at the workshop; we provide a brief description of each below.

From the Balagovic-Gorelik-Serganova-Stroppel research group: There were two introductory talks from
this group: “Lie Superalgebras” by Maria Gorelik and Vera Serganova and “Representation Theory via Cat-
egorification” by Catharina Stroppel.

In the Lie Superalgebras talk, Maria Gorelik first introduced the notion of a Lie superalgebra
g = g0 ⊕ g1 and the examples of gl(m|n), osp(m|2n), and strange Lie superalgebras p(n) and q(n). For
classical Lie superalgebras (whose even part g0 is a reductive Lie algebra), she then discussed the structure
theory: questions of existence of nondegenerate invariant bilinear forms (such as supertrace on gl(m|n)),
triangular decompositions, root systems, and even and odd reflections.

Vera Serganova then discussed some aspects of the representation theory of Lie superalgebras. Let F be
the category of finite dimensional integrable representations of g, that is finite dimensional representations
which are semisimple over g0. F is a monoidal category and in general it is not semisimple. It has enough
projectives and injectives. In the special case of g = gl(m|n), by a theorem of Zou, F is a highest weight
category with irreducible objects L(λ) parametrized by pairs of increasing m-tuples and decreasing n-tuples
of integers. The module L(λ) can be realised as a quotient of an induced Kac module K(λ). The question of
calculating the multiplicities [K(µ) : L(λ)] for gl(m|n) has been solved by Serganova 1996. using geometry,
then reproved by Brundan 2003, and then further refined via weight diagrams by Brundan-Stroppel 2008. who
finally obtained a complete description of the endomorphism ring of a projective generator using categorifi-
cations. It is known that for g = q(n) (Penkov-Serganova 1998. and Brundan 2004.) and g = osp(m|2n)
(Gruson-Serganova 2010, Ehrig-Stroppel 2016), F is not a highest weight category. For g = p(n), F is a
highest weight category, with many questions about it still open (see [32]).

In the Representation Theory via Categorification talk, Catharina Stroppel explained how the combina-
torics of weights for the Lie algebra gl(a+ b) and for the Lie superalgebra gl(m|n) leads to several different
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levels of categorification. Let C be the parabolic integral category O for the parabolic subalgebra of block
upper triangular matrices with blocks of sizes (a, b) in gl(a + b), and F the category of finite dimensional
gl(m|n)-modules semisimple over g0. In both categories, the irreducible objects are quotients of standard
(induced) modules, which are parametrized by highest weights: in case of C, the parabolic Verma modules
parametrized by pairs of increasing sequences of integers of lengths a and b, and in case of F , the Kac mod-
ules parametrized by pairs of an increasing sequence of integers of length m and a decreasing sequence of
integers of length n. Let W = CZ. The weakest level of categorification is to establish the bijection be-
tween (the complexification of) the Grothendieck group K0(C) and the vector space ΛaW ⊗ ΛbW , and (the
complexification of) the Grothendieck group K0(F) and the vector space ΛmW ⊗ ΛnW ∗, both obtained by
sending the class of the standard module of highest weight λ to the standard basis vector labelled by λ.

The second level of categorification, which describes more of the structure of these categories and not just
the labeling of the objects, relies on the observation that in both C and F , every indecomposable projective-
injective module is a summand of M ⊗ V d, where M is a standard module, V is the vector representation,
and d is large enough. Studying the functors − ⊗ V and its adjoint − ⊗ V ∗ on C, it is possible to construct
endofunctors Fi and Ei of C which categorify the action of the elements Ei, Fi of the Lie algebra glZ on the
space ΛaW ⊗ΛbW . This is Brundan’s weak categorification; by introducing a grading on C, it is possible to
consider this as a categorification of a Uq(glZ)-module.

The third level of categorification is based categorification, where one looks for nice bases of K0(C) and
K0(F) corresponding to standard/ projective modules/ simple. For C, this leads to different bases (standard /
Kazhdan-Lusztig / dual Kazhdan-Lusztig) of the Hecke algebra. A similar construction is available for F .

Finally, the fourth level is to consider morphisms between compositions of the functors Fi and Ei. This
is given by some affine Hecke algebra (work of Brundan-Stroppel).

For g = p(n), the categorification results do not yet exist, and were part of the discussions of the week.

From the Baur-Todorov research group: We recall the description of cluster categories ([6], [8]) and cluster
algebras ([14]) and their relation. One of the guiding principles in cluster theory is the concept of mutation.
We explain the beautiful connection of both of them to triangulations of polygons and show how these are
related with frieze patterns in the sense of Conway and Coxeter ([10, 11]). This leads to many natural ques-
tions, in particular, the question of describing the effect of mutations on friezes.

From the Benkart-Orellana research group: In Part I, Rosa Orellana discussed Schur-Weyl duality and its
role in connecting the representation theory of two centralizer algebras. The main example was the Schur-
Weyl duality between the partition algebra and the symmetric group algebra acting on tensor powers of the
permutation module and how this can help explain open problems related to the Kronecker product.

In Part II, Monica Vazirani described connections between the space of class functions of the symmetric
group and the ring of symmetric functions. The group algebra of the symmetric group can be identified with
functions on Sn, and the center of the algebra can be identified with the space of class functions. When these
are glued together over all n, the resulting space is isomorphic as a Hopf algebra to the ring of symmetric
functions. Under this isomorphism, the functors of induction and restriction are intimately tied to the product
and coproduct. The two spaces are also isomorphic as highest weight representations of sl∞. The refinement
of restriction (resp. induction) that gives the action of the Chevalley generators of sl∞ can be constructed
from the Jucys-Murphy operators. This idea can also be extended to other highest weight representations (of
higher level).

From the Montgomery-Natale research group: In Part I, we recall some definitions and results on fu-
sion categories over an algebraically closed field of characteristic zero. In particular we discussed group
extensions and equivariantizations of fusion categories, and their relation with the notions of solvability and
nilpotency of a fusion category, due to Etingof, Gelaki, Nikshych and Ostrik, and some connections with
the extension theory of Hopf algebras. We discussed as well some known classification results for semisim-
ple Hopf algebras of certain dimensions which admit few prime numbers in their factorizations, posing the
question of obtaining related classification results using methods and techniques from classification of fusion
categories.

In Part II, we introduced an invariant to help study fusion categories. This invariant, the Frobenius-
Schur indicators, were originally defined for representations of a finite group over the complex numbers.
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They were extended to finite-dimensional semisimple Hopf algebras by V. Linchenko and the speaker, and
eventually to any pivotal fusion category by Ng-Schauenburg, using work of Kashina-Sommerhauser-Zhu.
Ng-Schauenburg show that the indicators are gauge invariants, that is invariants of the fusion category un-
der equivalence of categories. Thus it is important to find for which fusion categories the indicators are a
complete set of invariants. This is true for Tambara-Yamagami categories, in which there is only one non-
invertible simple object, by recent work of Basak-Johnson. Note an old result of Seitz says that if Rep(G) has
only one non-invertible simple, then G is an extra-special 2-group.

From the Redondo-Solotar research group: Marı́a Julia Redondo explained in the first part of the talk the
Gerstenhaber algebra structure of the Hochschild cohomology HH∗(A) of an associative algebra A, as well
as a problem related to the concrete description of the cup product and of the Gerstenhaber bracket. She listed
some families of algebras (radical square zero [30], toupie [2], string [29]) for which this problem has been
solved, or at least the Lie structure of the first Hochschild cohomology group has been described (monomial
algebras [34]).

In the second part of the talk, Andrea Solotar described in detail a new method developed by Mariano
Suárez-Álvarez [35] that can be used to compute the Lie action of HH1(A) on HHn(A) via the Gersten-
haber bracket.

From the Shepler-Witherspoon research group: An associative algebra satisfies a Poincaré-Birkhoff-Witt
property when its homogeneous version coincides with its associated graded version. However, the homo-
geneous version of a given algebra is somewhat in the eyes of the beholder. It depends on the choice of
generators for the ideal of relations. When generators are taken with appropriate degrees, the PBW property
often allows us to identify the algebra with a graded deformation of the homogeneous version. We discuss
examples of this phenomenon in combinatorics and representation theory. We then contrast in particular the
Drinfeld Hecke algebras defined by Drinfeld with the graded affine Hecke algebras defined by Lusztig. We
end with an example to show how a new kind of PBW deformation arises over fields of positive characteristic.

From the Sierra-Vancliff research group: In their opening talks, the group leaders Michaela Vancliff and
Sue Sierra introduced workshop participants to projective algebraic geometry à la Artin, Tate and Van den
Bergh. Vancliff’s talk touched on the history and motivation for this area, including the ideas of point mod-
ule, line module and Artin-Schelter regular algebra. Artin-Schelter regular algebras are often viewed as a
non-commutative analog of the polynomial ring, and geometric methods have been used in classifying Artin-
Schelter regular algebras of global dimension three. Sierra’s talk focused on providing particular motivation
for the study of point modules, outlining how they can be used–under appropriate restrictions–to construct
the underlying ring and thus have provided a tool in the classification of Artin-Schelter regular rings. Sierra
also described joint work with Špela Špenko, in which they used similar ideas to study certain “point-like”
representations of the Witt algebra, an important infinite-dimensional Lie algebra.

4 Scientific Progress Made

4.1 Balagovic-Gorelik-Serganova-Stroppel research group on Lie superalgebras and
categorification

Group members (leader*): Martina Balagovic* (Newcastle University), Zajj Daugherty (City College of
New York), Maria Gorelik* (Weizmann Institute), Iva Halacheva (University of Toronto), Johanna Hennig
(University of Alberta), Mee Seong Im (United States Military Academy), Gail Letzter (Department of De-
fense), Emily Norton (Kansas State University), Bea Schumann (University of Cologne), Vera Serganova*
(University of California, Berkeley), Catharina Stroppel* (Universität Bonn).

Schur-Weyl duality for gln. Let V be the vector representation of the Lie algebra gln. The symmetric group
Sd acts on V ⊗d by permuting the tensor factors, and this action commutes with the gln action. The action of
the transposition sij ∈ Sd coincides with the action of the Casimir element Ω ∈ gln ⊗ gln on the i-th and
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j-th tensor factor, sij = Ωij . This gives a map of algebras

C[Sd]→ Endgln(V ⊗d).

The classical Schur-Weyl duality theorem states that this map is always surjective, and is injective if n ≥ d.

Higher Schur-Weyl duality for gln. LetM be any representation of gln, and consider the analogous problem
for the module M ⊗ V ⊗d. Label the tensor factors as 0, 1, 2, . . . , d. The degenerate affine Hecke algebra Hd

of Sd now acts on M ⊗ V ⊗d (see [1]): the action of transpositions in Sd is given as above by sij = Ωij , and
the action of xi ∈ Hd is given by xi =

∑i−1
j=0 Ωji. This action commutes with the action of gln, and hence

gives a map of algebras Hd → Endgln(M ⊗ V ⊗d). For p(x1) the minimal polynomial of the action of x1,
the map factors through the quotient and gives a map of algebras

Hd/ 〈p(x1)〉 → Endgln(M ⊗ V ⊗d).

In general this map is neither surjective nor injective, except for special choices ofM (eg. a certain projective-
injective generator of a block of a parabolic category O, see [4] Theorem B, and [5] Corollary 8.6).

In the special case of M = C = the trivial representation, the action of x1 is by 0, the action of xi is by
Jucys-Murphy elements in C[Sd], p(x1) = x1, and the map reduces to the classical Schur-Weyl duality map

Hd/ 〈x1〉 ∼= C[Sd]→ Endgln(C⊗ V ⊗d).

Schur-Weyl duality for p(n). Consider the strange Lie superalgebra

p(n) =

{[
A B
C −Aτ

]
|A,B,C ∈ Matn×n(C), Bτ = B, Cτ = −C

}
,

and let V = C2n be its natural representation. The paper [24] constructs an action of the signed Brauer
algebra Brpd (see [19], [3]) on V ⊗d, which commutes with the p(n) action. The signed Brauer algebra Brpd is

a certain diagram algebra generated by si = and ei = , i = 1, . . . , d−1, which agrees

with the classical Brauer algebra over F2. The action on V ⊗d is given by si and ei acting on the i-th and
i+ 1-st tensor factor as the super permutation s(v ⊗w) = (−1)v̄w̄w ⊗ v and e : V ⊗ V ev−→ C coev−→ V ⊗ V .
The map

Brpd → Endp(n)(V
⊗d)

is an isomorphism if n is large enough in comparison with d.

Higher Schur-Weyl duality for p(n). The question we want to answer is:

Can we describe Endp(n)(M ⊗ V ⊗d) for V the vector representation of p(n)

and M some “nice” representation (e.g. the Kac module K(λ) or K̃(ρ))?

The strategy and progress so far:

• Constructing the map Braff,pd → Endp(n)(M ⊗ V ⊗d).

– Define the affine signed Brauer algebra Braff,pd . (Should be a straightforward generalisation
of the affine Brauer algebra and the signed Brauer algebra, generated by Brpd and a polynomial
algebra C[y1, . . . , yd].)

– Let Ωp be the equivalent of Casimir element. Show that Ωp|V⊗V = + . (Done).

– Define the action of Braff,pd onM⊗V ⊗d by letting Brpd act as before, and setting yi =
∑i−1
j=0 Ωp

j,i.
Show that this satisfies the relations of Braff,pd and commutes with the action of p(n). For
M = C = trivial, y1 acts by 0 and the action of Braff,pd / 〈y1〉 coincides with the action of Brpd
from before. (We have shown some relations, others should be straightforward.)
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– Calculate the minimal polynomial p of the action of y1 = Ωp
0,1 on M ⊗ V . (To be done. It is

enough to solve the problem for M=Kac module or M = K̃(ρ).)

– This gives a map Braff,pd / 〈p(y1)〉 → Endp(n)(M ⊗ V ⊗d). (Follows immediately from above.)

• Showing that the map Braff,pd / 〈p(y1)〉 → Endp(n)(M ⊗ V ⊗d) is injective for M = K̃(ρ).

– Find a nice basis and the dimension of Braff,pd / 〈p(y1)〉. (To be done.)

– Using the explicit description of the action of the generators of Braff,pd / 〈p(y1)〉 on M ⊗ V ⊗d,
show that Braff,pd / 〈p(y1)〉 ↪→ Endp(n)(M ⊗ V ⊗d). (To be done.)

• Showing that the map Braff,pd / 〈p(y1)〉 → Endp(n)(M ⊗ V ⊗d) is surjective for M = K̃(ρ).

– Describe the composition series of K(λ)⊗ V for any (suitable) λ. (To be done.)

– Describe the composition series or a filtration by Kac modules of M ⊗ V ⊗d; or a recursive rule
for deducing it from those for M ⊗ V ⊗d−1. (Should follow from the previous point.)

– Find (or bound from above) dim Endp(n)(M ⊗ V ⊗d). (Using the previous point.)

– Comparing dim Braff,pd / 〈p(y1)〉 and dim Endp(n)(M ⊗V ⊗d), deduce that the injective algebra
homomorphism between them is an isomorphism. (Follows immediately from above.)

4.2 Baur-Todorov research group on cluster categories
Group members (leader*): Karin Baur* (Universität Graz), Eleonore Faber (University of Michigan),
Sira Gratz (Leibniz Universität Hannover), Khrystyna Serhiyenko (University of California, Berkeley),
Gordana Todorov* (Northeastern University).

We study the omnipresent concept of mutation in cluster theory. There is a close link between cluster
algebras and cluster categories. In type A, there is furthermore a link to triangulations of polygons which are
naturally related to friezes of positive numbers as studied by Conway and Coxeter ([12], [10, 11]): clusters
correspond to cluster-tilting objects and both correspond to triangulations of polygons. In particular, the
initial cluster corresponds to the initial cluster-tilting object which corresponds to the initial triangulation
which in turn corresponds to the 1’s in the frieze.

There is a direct route from cluster categories (or cluster variables) to friezes via the specialized Caldero-
Chapoton map (see [7] and [16])

M 7→
∑
e

χ(Gre(M))

where the sum is over all dimension vectors of submodules of M and χ(Gre(M)) is the Euler characteristic
of the corresponding Grassmannian.

In our case, this amounts to understanding the submodule structure of the indecomposable module M .
We have a formula for the number of submodules in terms of the shape of the module. The shape of M is
determined by the position of the entries 1 in the frieze which is the same as the shifted projectives in the
Auslander-Reiten quiver of the cluster category. Note that all the indecomposables are string modules. So we
can write M as tuple (k1, . . . , km) of the lengths of its maximal uniserial submodules (read in order).
Results

• Let s(M) be the number of submodules of M . Then we have

s(M) =

(
m∑
j=0

∑
I admissible,
|I| = m− j

∏
i∈I

ki

)
+ 1

• Description of s(M) in terms of various natural submodules and quotients.
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• We combine the above formula with these descriptions and develop methods to determine all entries in
the friezes by the positions of the 1’s in the frieze.

• Using all of the above, we are then able to describe the effect of cluster mutations on friezes which was
one of the goals of our project.

4.3 Benkart-Orellana research group on diagram algebras, tensor invariants, rep-
resentation theory

Group members (leader*): Georgia Benkart* (University of Wisconsin-Madison), Ana Ros Camacho (In-
stitut de Mathmatiques de Jussieu-Paris Rive Gauche), Pamela Harris (United States Military Academy),
Rosa Orellana* (Dartmouth College), Rebecca Patrias (University of Minnesota), Monica Vazirani (Uni-
versity of California, Davis).

Background: Spherical functions for a group-subgroup pair (G,H) are idempotents (up to scalars) in
the group algebra C[G] that determine the center of the centralizer algebra C[G]H of H acting on C[G]
by conjugation. When the restriction of the irreducible G-modules to H is multiplicity free, the nonzero
spherical functions form an orthogonal basis for the centralizer algebra C[G]H . This is true for the symmetric
group-subgroup pair (Sn,Sn−1) and for the alternating group-subgroup pair (An,An−1). The Jucys-Murphy
elements, which are defined for k = 2, 3, . . . , n as a sum of transpositions by the formula Xk = (1 k) +
(2 k) + · · · + (k − 1 k), belong to C[Sn]Sn−1 and play a critical role in the representation theory of Sn, as
indicated by the following results:
• (Jucys) The center Z(C[Sn]) of C[Sn] is generated by the symmetric polynomials in the Xk, and the

elements Xk satisfy the following polynomial identity in C[Sn][t]:

(∗) (t+X1)(t+X2) · · · (t+Xn) =
∑
σ∈Sn

tnumber of cycles of σ σ, (X1 = 0).

• (Okounkov-Vershik) The subalgebra of C[Sn] generated by the centers Z(C[S1]), Z(C[S2), . . . ,Z(C[Sn])
is exactly the subalgebra generated by the Jucys-Murphy elements Xk.
• The standard Young tableaux of partition shape λ form a basis for the irreducible Sn-module labeled by

λ and are eigenvectors for the Jucys-Murphy elements. Each tableau is uniquely determined by the eigenval-
ues of the Xk.

Group Investigations: The goal of the group discussions was to identify Jucys-Murphy elements for the
pair (An,An−1) (or more generally for other pairs (G,H)) by finding elements that satisfy many (all) of
the important properties above. These elements should live in C[An]An−1 , hence be linear combinations
of spherical functions, and should be able to separate the An−1-irreducible summands of an irreducible An-
module by acting as a different scalar on each summand. Ultimately, the analogues of Jucys-Murphy elements
for the Hecke algebras associated to the alternating groups having properties similar to the above ones would
be desirable.
• Various candidates and their representation-theoretic properties were examined during the workshop

and afterwards. Some seem promising.
• The spherical functions for An for values of n ≤ 6 have been explicitly computed.
• Analogues of equation (∗) for An are being investigated, and work on all these items has continued

since the BIRS WINART workshop.

4.4 Montgomery-Natale research group on fusion categories and semisimple Hopf
algebras

Group members (leader*): Luz Adriana Mejı́a Castaño (Universidade federal de Santa Catarina-Brazil),
Susan Montgomery* (University of Southern California, Sonia Natale* (Universidad Nacional de Córdoba
and CIEM-CONICET), Maria Vega (United States Military Academy), Chelsea Walton (Temple Univer-
sity).

Let k be an algebraically closed field of characteristic 0 and Zn denote the cyclic group of n elements.
Let p and q be distinct prime numbers. The direction of our research is the classification of finite-dimensional
Hopf algebras of specific dimensions (See Problems 1-3 below).
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Pertaining to the semisimple case, there are important results of Etingof, Nikshych and Ostrik [13] on
fusion categories of dimension paqb, for a, b > 0, but the full classification of semisimple Hopf algebras of
these dimensions is not known in the case where a+ b > 3.

Here is a list of some known facts about semisimple Hopf algebras H:

• Hopf algebras of dimension p or p2 are classified in [36, Theorem 2] and [23], and are commutative
and co-commutative.

• Semisimple Hopf algebras of dimension p3 are classified by Masuoka in [22, Theorem 3.1]. The non-
commutative, non-co-commutative Hopf algebras are of the form H = Aζ,g where ζ is a primitive
p-th root of unity and g is a certain group-like element; these Hopf algebras are also self-dual. Further-
more, H arises from an exact sequence of Hopf algebras (an abelian cocentral extension, in particular).
Therefore, such H are group-theoretical.

• Semisimple Hopf algebras of dimension 24 are classified by Kashina in [18]. Kashina uses the fact
that the Galois objects over semisimple Hopf algebras of dimension 23 are trivial (cf. Problems 4
and 5 below) and that every nontrivial semisimple Hopf algebra of dimension 16 has a commutative
Hopf subalgebra of dimension 8 [18, Theorem 9.1] . These algebras H also arise as abelian cocentral
extensions.

• On the other hand, semisimple Hopf algebras of dimension 2232 do not necessarily arise via extension
[15]. These algebras are semi-solvable up to cocycle deformation [26], and there exists non-group-
theoretical examples [28]. (Compare to Problem 8 below.)

• Hopf algebras of dimension pq2 are group-theoretical and are classified by Natale in [25]. However,
there are examples of fusion categories of FP-dimension pq2 which are not group-theoretical, see [17].

Problems that we are considering; the problems marked with (*) are long-term goals.

1. (*) Classification of semisimple Hopf algebras of dimension p4: these can be obtained by central Zp-
extensions from k and are group-theoretical.

2. (*) Classification of semisimple Hopf algebras of dimension p3q, for p and q odd.

3. (*) Classification of semisimple Hopf algebras of dimension p2q2. These are not necessarily group-
theoretical; see Nikshych [28] for dimension 4p2. Moreover, these Hopf algebras are not all extensions.

4. Classification of Galois objects for semisimple Hopf algebras of dimension p3.

5. Classification of Galois objects for semisimple Hopf algebras of dimension pq2.

6. Study cocycle deformations/ coMorita equivalences of semisimple Hopf algebras of dimension p3:
In [31], Schauenburg, establishes a coMorita equivalence between two Hopf algebras H and L, via
(L,H)-biGalois objects R, where all monoidal equivalences between the categories Comod(H) and
Comod(L) are given by R�H−. So, this is related to Problem 4.

7. Study of cocycle deformations/ coMorita equivalences for semisimple Hopf algebras of dimension pq2.
For the reasons given above, this is related to Problem 5.

8. Study the conditions under which fusion categories of FP-dimension p2q2 are group-theoretical, where
p and q distinct odd primes.

9. Classify the pointed module categories over the fusion categories of Problem 8.

10. (*) Applications to physics.
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4.5 Redondo-Solotar research group on Hochschild (co)homology
Group members (leader*): Joanna Meinel (Universität Bonn), Van Nguyen (Northeastern University),
Bregje Pauwels (Australian National University), Maria Redondo* (Universidad Nacional del Sur),
Andrea Solotar* (Universidad de Buenos Aires).

The aim of this group is to consider a particular family of algebras, compute their Hochschild cohomol-
ogy and describe its structure as Gerstenhaber algebras, that is, the cup product and the Lie bracket. These
structures were defined by Gerstenhaber using the bar resolution. When the Hochschild cohomology is com-
puted using a more convenient projective resolution instead of the bar resolution, a general formula for these
structures is not known yet. Clearly, one can use comparison morphisms between the convenient projective
resolution and the bar resolution to relate these structures. However, in general these formulas are awk-
ward and the computations are rather technically difficult. Our objective is to try two different approaches,
developed in [27, 35].

We consider the algebras Am,N := kQ/I over a field k, where Q = (Q0, Q1) is the quiver given by

Q0 = {1, . . . ,m},

and
Q1 = {ai : i→ i+ 1, ai : i+ 1→ i}i=1,...,m,

that is, Q has m vertices and 2m arrows. The ideal I is generated by the relations

{ai+1ai, aiai+1, (aiai)
N − (ai+1ai+1)N}.

It is known that for N = 1, the algebra Am,N is Koszul. When applying the approaches [27, 35], we
thus have some assurance knowing that we can always use the Koszul complex in our computations, though
we haven’t actually used the Koszulness yet. We first focus in the particular case m = 3 and N = 1. Let
A := Am=3,N=1. We construct an alternative projective resolution of A as an A − A-bimodule, which is
easier to handle than the bar resolution. This resolution is given in terms of “n-ambiguities” An, that is, An
is generated by words sni,k of length n containing exactly k arrows of form a and ending at either the vertex i
(if sni,k ends with arrow ai) or the vertex i+ 1 (if sni,k ends with arrow ai). Using this resolution, we compute
the Hochschild cohomology groups of A in low degrees HHi(A), i = 0, 1, 2, and we try to get results on
the Lie brackets. Our first approach was to use the method introduced by Negron and Witherspoon [27], but
we concluded that the needed computations were as difficult as in the comparison morphism method. Finally,
we turned to the method introduced by Suárez-Álvarez [35]. We prove that [HH1(A), HH1(A)] = 0 and
that any representative f of an element in HH1(A) can be characterized by two elements C, γ ∈ k, such that
the map

[f,−] : HHn(A)→ HHn(A)

has a natural basis of eigenvectors associated to eigenvalues involving C, γ and n.
After WINART at Banff, we will continue working on an explicit description of HHn(A) for all n ≥ 0,

as well as the cup product in relation with the Gerstenhaber bracket. Our future direction is to extend this
work for cases N = 1 and m > 3, or more generally for any N ≥ 1 and any m ≥ 1.

4.6 Shepler-Witherspoon research group on algebraic deformations
Group members (leader*): Sian Fryer (University of Leeds), Tina Kanstrup (Hausdorff Center for Mathe-
matics), Ellen Kirkman (Wake Forest University), Anne Shepler* (University of North Texas),
Sarah Witherspoon* (Texas A&M University).

We examined algebraic deformations that arise from groups acting on quantum polynomial rings. The
quantum polynomial ring SQ(V ) is a noncommutative analog of the commutative polynomial ring S(V )
on a finite dimensional vector space V with each pair of indeterminates commuting up to a nonzero scalar.
Specifically, let x1, . . . , xn be a basis of V and let Q = {qij | 1 ≤ i < j ≤ n} where each qij is a nonzero
element of the underlying field k. Then SQ(V ) is the associative algebra generated by x1, . . . , xn subject
to the relations xixj = qijxjxi. Certain finite subgroups G of GL(V ) act by graded automorphisms on the
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quantum polynomial ring SQ(V ) giving rise to the natural semi-direct product algebras SQ(V ) o G. PBW
deformations of SQ(V ) oG are algebras of the form

HQ,κ = Tk(V ) oG/(xixj − qijxjxi − κ(xi, xj) | 1 ≤ i < j ≤ n)

where Tk(V ) is the tensor algebra of V over k and κ : V × V → kG ⊕ (V ⊗k kG) is a bilinear quantum
anti-symmetric map satisfying some additional conditions (see, e.g., [33]). These conditions are well un-
derstood and many examples are known in the classicial setting where all qij = 1; some examples are the
Drinfeld Hecke algebras and graded affine Hecke algebras. We explored these conditions more generally, and
investigated how different kinds of deformations impose different kinds of constraints on the group action.

We focused on analogs of universal enveloping algebras in particular. The original Poincare-Birkhoff-
Witt theorem gives a canonical basis for the universal enveloping algebra U(V ) of a Lie algebra V that
identifies U(V ) with a polynomial ring. We studied analogs of this theorem involving a quantum polynomial
ring carrying the action of a finite linear group G by graded automorphisms. Some analogs correspond to
new PBW deformations. We found a framework for identifying and understanding these algebras for some
classes of examples. We discussed work towards a classification.

4.7 Sierra-Vancliff research group on noncommutative projective algebraic geome-
try

Group members (leader*): Susan Sierra* (University of Edinburgh), Spela Spenko (University of Edin-
burgh), Michaela Vancliff* (University of Texas at Arlington), Padmini Veerapen (Tennessee Tech Univer-
sity), Emilie Wiesner (Ithaca College).

During the workshop, the group focused on connections between Lie-theoretic structures and projective
algebro-geometric structures. In particular, for a finite-dimensional Lie algebra g, consider the homogeniza-
tion,H(g), of the universal enveloping algebra of g and its linear subspaces (i.e. point modules, line modules,
etc). Building on the work of Le Bruyn and Smith [20] for sl(2,C), Le Bruyn and Van den Bergh [21] showed
that for any finite-dimensional Lie algebra g, a correspondence exists between d-linear subspaces associated
toH(g) and pairs (h, f), where h is a subalgebra of g of codimension d and f ∈ h∗ such that f |[h,h]= 0.

The group’s goal was to pursue possible extensions of these results to other Lie-theoretic settings, includ-
ing Lie superalgebras and, more generally, color Lie algebras. Color Lie algebras (including Lie superalge-
bras) are graded by some abelian group G, and the techniques outlined in [20, 21] appeared likely to respect
this grading. Thus, our central research question was to determine, for g a Lie superalgebra or a color Lie
algebra, links between G-graded subalgebras of g and G-graded linear subspaces associated toH(g).

The group began work in this direction by investigating the color Lie algebra slc2 (cf. [9]) and the Lie
superalgebra sl(1 | 1). In the case of slc2, we determined all subalgebras of slc2; however, these subalgebras
were not graded, in general, and thus do not appear to be connected in a clear way to the linear subspaces
associated toH(slc2).

In the case of sl(1 | 1), the presence of nilpotent elements in the standard construction of H(sl(1 | 1))
presented a challenge in adapting the ideas from [21]. To address this, we considered a modified version
H̃(sl(1 | 1)) of the homogenized algebra, where the nilpotent relations were removed. We were able to
establish a correspondence between the Z2-graded two-dimensional subalgebras of sl(1 | 1) and the Z2-
graded line modules of H̃(sl(1 | 1)). However, we believe that the presence of nilpotent elements cannot
be handled in this way for Lie superalgebras in general, and thus different techniques (or research questions)
will likely be needed in the general Lie-superalgebra setting.

5 Outcome of the Meeting
As described above, very significant scientific progress was made before and during the WINART workshop.
Moreover, a number of common themes emerged across groups (e.g. involving certain homological, Lie-
theoretic, diagrammatic techniques), which will be explored between members of different groups after the
workshop. In any case, every group set concrete plans to continue research activities, and all look forward to
stay in touch with their group members and other participants in the future. We close with some testimonials
from the workshop participants.
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“Organizers planned conference more than a year in advance contacting potential participants
very early so that the workshop was on everyone’s calendar. Then stayed in frequent contact with
participants after advertising and attracting large numbers of female mathematicians applicants.
Better organized than most conferences by far!!!”

“I wasn’t sure how this would all work before coming here, but any expectations I had have
been far exceeded. My research group is going quite well, and we likely will write a paper. The
organization has been superb, just the right mix of organized activities and leaving the groups to
themselves to get their work done. And best of all, everyone I’ve talked with seems to be having
a great time as well as a very productive time.”

“It would be great to have a 2nd WINART [workshop] at BIRS. We’ve made a lot of progress
on our project in these days. The environment was perfect: time to discuss, a few introductory
lectures, [then] time to discuss, many hours. And [what] a great group! It helped that as group
leaders we met up before to discuss possible projects.”

“It was great to be able to talk about family & pregnancy with worrying about people thinking
that ‘she’s thinking of family– she’s not career-oriented enough’.”

“It was wonderful to see so many women of color participating. Although all participants were
women, there was more cultural diversity than is usually present at research conferences I at-
tend.”

“Lots of strong women in mathematics can’t travel much because of caring for aging parents or
young children. But they make a point of coming to BIRS for women-centered workshops for
opportunity to interact with leaders in the field while giving and getting support and encourage-
ment. We are often invisible at other conferences! This workshop has been an exceptional mix
of senior and junior researchers and resulted in new collaborations and the start of a new paper.”

“Extremely interested in WINART at BIRS in 2019!!!”

“This was a great workshop. The organizers did a wonderful job in putting this all together.
Everything was well thought out, from the choice of topics, to the schedule that made it so easy
for people to work with each other. It was nice to see that we could indeed have a workshop
with just women and, at the same time, with such top notch mathematicians as group leaders and
participants. Seeing all these impressive young women in algebra and representation theory was
particularly heartwarming to me. I got a chance to work closely on mathematics with a few of
them this past week and it was truly a blast. I am hoping that this cohort will find support with
each other as they progress through their careers.

There were many things about the workshop that would work in general. I liked the idea of
really learning new math and working on problems in this kind of collaborative environment.
Everybody belonged to a group so all had a chance to participate. There were many network-
ing opportunities. At the same time, it was clear how important it is to sometimes just have
women get together. It gave us all an opportunity to share difficult stories of working in mostly
male environments – something most of us are not comfortable doing at regular conferences
and workshops. My sense was that this was just as important as the chance to do mathematics
together.”
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[35] M. Suárez-Álvarez, A little bit of extra functoriality for Ext and the computation of the Gerstenhaber
bracket, personal communication, 2016.

[36] Y. Zhu, Hopf algebras of prime dimension, Int. Math. Res. Not. 1 (1994), 53–59.


