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1 Overview of the Field
Free probability theory is an area of research which parallels aspects of classical probability, in a non-
commutative context where tensor products are replaced by free products, and independent random variables
are replaced by free random variables. It grew out of attempts to solve some longstanding problems about
von Neumann algebras of free groups. In the almost thirty years since its creation, free probability has be-
come a subject in its own right, with connections to several other parts of mathematics: operator algebras, the
theory of random matrices, classical probability, the theory of large deviations, and algebraic combinatorics.
Free probability also has connections with some mathematical models in theoretical physics and quantum
information theory, as well as applications in statistics and wireless communications.

There exist two different approaches to free probability theory at a very basic level; one is analytic and
the other one is combinatorial. These approaches complement each other, and in many situations it is the
interaction between both of them which drives the subject forward.

A main theme of the workshop was the discussion of a number of important extensions of free probability
that were studied during the recent years, and continue to provide an intense active topic of research at
present. In the basic theory of free probability both the combinatorial and the analytic structure, as well as
the interaction between them, are quite well understood. However, in these recent extensions of the setting of
free probability, the development of these features is not yet clear; progress on these subjects will surely rely
on an interaction between analytic and combinatorial considerations.

In the following we present (not exhaustively) several such developments that were covered by the work-
shop. Most of the sections below are based on write-ups made by workshop participants who work in those
directions, and we thank Octavio Arizmendi, Serban Belinschi, Camille Male, Paul Skoufranis, and Moritz
Weber for their contributions to this report.

2 Recent Developments and Open Problems

2.1 Bi-freeness and pairs of faces
Although the simplest way to define free independence is via the “alternating centred moments vanish” con-
dition, the connection between free probability and operator algebras is most easily seen by defining free
independence as the ability to represent algebras on reduced free product spaces using the left regular repre-
sentation. As there is also a right regular representation on reduced free product spaces, in [21] Voiculescu
introduced a generalization of free independence, known as bi-free independence, which is defined as the
ability to represent pairs of algebras on reduced free product spaces where one algebra from each pair acts
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via the left regular representation and the other acts via the right regular representation. This ability to
simultaneously study the left and right regular representations allows for a wider variety of behaviours to
be observed and modelled thereby permitting bi-free probability to investigate problems untouched by free
probability.

In Voiculescu’s inception of bi-free probability [21, 23] it was demonstrated that bi-free independence
is well-defined, bi-free probability has a notion of cumulants, and there exists a bi-free partial R-transform.
Due to the difficulty of working with reduced free product spaces, Mastnak and Nica in [17] began the
process of introducing combinatorial techniques into bi-free probability. The combinatorial approach to bi-
free probability reached fruition in [7, 8] where Charlesworth, Nelson, and Skoufranis demonstrated that
lattices consisting of permutations of non-crossing partitions produced the correct cumulants to characterize
bi-free independence. Since free independence is characterized using non-crossing partitions, many of the
combinatorial results from free probability directly had bi-free analogues.

The influx of combinatorial techniques has allowed for a rapid expansion of the theory of bi-free proba-
bility, with a flurry of activity going on throughout 2015 and 2016. Here are some recent contributions made
in this direction.

• Skoufranis demonstrated that all five natural notions of independence (classical, free, Boolean, mono-
tone, and anti-monotone) can be studied through bi-free independence.

• Freslon and Weber developed bi-free de Finetti theorems to study bi-free independence over tail alge-
bras.

• Gu, Huang, and Mingo developed the theory of bi-free infinitely divisible distributions for bi-partite
systems, which was then generalized to arbitrary systems by Gao.

• Skoufranis developed the bi-free analogue of random matrix models by demonstrating that several
pairs of matrices tend to bi-free independent distributions and by characterizing the notion of bi-freely
independent pairs amalgamated over diagonal matrices.

An overview of combinatorial techniques in bi-free probability was presented at the workshop by Paul
Skoufranis, with ample illustrations drawn from his recent paper [18]. These combinatorial techniques will
very likely continue to be important in further developing the theory of bi-free probability.

There have also been many advances via analytical techniques.

• Voiculescu developed the bi-free partial S-transform, with Skoufranis later discovering a combinatorial
proof.

• Voiculescu also developed the notion of bi-free extremes in the plane, thereby computing the distribu-
tions of the maximum and minimum of bi-partite bi-free pairs.

• Dykema and Na obtained the principal function of non-normal bi-free central limit distributions.

• Huang and Wang developed analytical aspects of the bi-free partial R-transform.

At the workshop, the opening talk was given by Dan Voiculescu on his work [22] on bi-free extremes.
Another talk on the analytic side of bi-free probability was given by Jiun-Chau Wang, who reported on recent
joint work with Hasebe and Huang on analytical aspects of additive and multiplicative bi-free convolution.

Further developments of analytical techniques in bi-free probability are ongoing, and are likely to lead to
many interesting avenues of inquiry.

One-sided free probability was known to have intimate connections to other brands of non-commutative
probability, and two such connections were extended to the bi-free framework in recent work by Gu and
Skoufranis. One of these connections is with the theory of “conditional free independence” (upgraded by
Gu and Skoufranis to “conditional bi-free independence”), which is a notion of independence with respect to
pairs of states on an algebra of random variables; the framework of conditional bi-free independence widens
even more the range of behaviours that can be displayed by two-faced systems of noncommutative random
variables, and offers many new examples that are now possible to study. The other connection, which was the
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topic of the talk given by Yinzheng Gu at the workshop, concerns the relation of free probability to Boolean
probability – now upgraded to bi-Boolean probability.

Finally, we mention the interesting point that (unlike the development of one-sided free probability, where
the whole theory started from the “alternating centred moments vanish” condition), a description of bi-free
indpendence in terms of moments was only found very recently by Ian Charlesworth, who reported on this
in his talk at the workshop. It is still unknown to what extent the moment condition of Charlesworth extends
to the operator valued setting. Nevertheless, this condition promises to offer a new approach, in future
developments, for proving that pairs of algebras are bi-freely independent.

Bi-free probability is a rapidly expanding area of free probability. As there are many interesting ques-
tions and potential applications to this theory, bi-free independence will be an active area of research in free
probability for the foreseeable future.

2.2 Finite Free Probability
The theory of finite free (polynomial) convolutions is very recent. It started with the paper by Marcus, Spiel-
man, and Srivastava [16], where they established a connection between different polynomial convolutions
and addition and multiplication of random matrices, which in the limit is related to free probability. The new
feature of this convolution is that instead of looking at distributions of eigenvalues of random matrices, one
looks at the (expected) characteristic polynomial of a random matrix.

To be precise, for a matrix M , let χM (x) = det(xI −M) be the characteristic polynomial of the matrix
M . Then, for d × d Hermitian matrices A and B with characteristic polynomials p and q, respectively, one
defines the finite free additive convolution of p and q to be

p(x) �d q(x) = EQ[χA+QBQT (x)],

where the expectation is taken over orthogonal matrices Q sampled according to the Haar measure.
Similarly, when A and B are positive semidefinite, the finite free multiplicative convolution of p and q is

defined to be
p(x) �d q(x) = EQ[χAQBQT (x)],

where, again, the expectation is taken over random orthogonal matrices Q sampled according to the Haar
measure.

Both these convolutions turn out to not depend on the specific choice of A and B, but only on p and q.
The connection with free probability is that, because of the concentration of measure phenomenon for

random matrices, as d → ∞, these polynomial convolutions approximate free additive convolution and free
multiplicative convolution. This connection is quite remarkable since, as proved in [16], these convolutions
have appeared before and there are very explicit formulas to calculate the coefficients of the finite free con-
volutions of two polynomials.

The original motivation in [16] was to obtain new inequalities between polynomials by using free proba-
bilistic tools. In [16] they proved the following inequalities between the R-transform and the S-transform of
the resulting polynomials:

Rp�dq(w) ≤ Rp(w) +Rq(w), Sp�dq(w) ≤ Sp(w)Sq(w).

These inequalities are translated into inequalities of polynomials and were used, in [15], to prove the existence
of bipartite Ramanujan graphs on an arbitrary number of vertices, improving on results from [14].

There is not yet much literature on finite free convolution. Indeed, apart from the original work of Marcus,
Spielman and Srivastava [16], there are presently only two more papers [1, 13] on the subject.

The purpose of [13] is to make precise the above mentioned connections to free probability. In this paper,
the analytic machinery of finite free additive convolution and finite free multiplicative convolution were
introduced, in the sense that finite versions of Voiculescu’s R transform and S-transform which “linearize”
finite convolutions were found. To be precise, there are transforms Rd and Sd such that

Rdp�dq
(w) = Rdp(w) +Rdq(w), Sp�dq(w) = Sdp(w)Sdq (w).

In particular, using the transform Rd, the law of large numbers, central limit theorems and law of rare events
have been established for finite free additive convolution. It was an important highlight of the workshop
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to have Adam Marcus as a speaker presenting these exciting new developments; his presentation prompted
many private discussions around further possibilities of continuing this line of research.

On the other hand in [1] the authors gave a combinatorial treatment of finite free additive convolution by
introducing cumulants for finite free additive convolution and by deriving moment-cumulant formulas. These
cumulants approximate free cumulants, when the degree of the polynomials tends to infinity. This allowed
them in [1]

• to give criteria for infinite divisibility;

• to show that there exist T > 1 such that for all t > T , the polynomial p�dt is well defined and real
rooted;

• to prove the existence of a counterexample for Cramer’s Theorem.

Such examples of properties, that were known before for free additive convolution and that are now shown to
already appear in the level of finite free additive convolution, may lead to a better insight on free convolution.
These ideas were presented in the talk given at the workshop by Octavio Arizmendi.

There are many open problems and interesting directions related to this topic, which will surely be the
subject of future research. Some of them are:

• Combinatorial aspects of finite free multiplicative convolution.

• Free entropy and free Fisher information in the finite setting.

• Extensions of finite free probability, like freeness with amalgamation or second order freeness.

• Multivariate finite convolution or a notion of finite independence.

More specific problems that should serve as leading guides for understanding differences and similarities
between finite free convolution and free convolution are the following.

• Give qualitative and quantitative aspects of the central limit theorem in finite free additive convolution,
such as superconvergence or a Berry-Esseen Theorem.

• Describe properties of free convolution with “gaussian law”, γd, appearing in the central limit theorem.
In particular it is expected that γd has no multiple roots.

• Find the minimum T > 1 such that for all t > T , the polynomial p�dt is well defined and real rooted.

• Describe the multiplicity of the roots of p�d q in terms of the multiplicity of the roots of p and of q.

• Improve the relation between theR-transform and finite free additive convolution as follows: for k ∈ N
we expect to have

Rdp�dq
(w) ≤ Rkdpk (w) +Rkdqk (w),

and similarly for the S-transform and the finite free multiplicative convolution.

2.3 Spectral theory for large random matrices.
One of the most important results in free probability is the asymptotic freeness of large unitarily invari-
ant random matrices, obtained by Voiculescu in his 1991 paper [20]. The result roughly states that if
{A1(N), . . . , Aj(N)} are properly normalized N × N independent Gaussian random matrices or indepen-
dent Haar distributed unitary random matrices and (D1(N), . . . , Dk(N)) is a k-tuple of deterministicN×N
diagonal matrices which converges in distribution to a k-tuple (d1, . . . , dk), then there are noncommutative
random variables a1, . . . , aj such that {A1(N), . . . , Aj(N), (D1(N), . . . , Dk(N))} converges in distribu-
tion as N tends to infinity to {a1, . . . , aj , (d1, . . . , dk)}, and the sets {a1}, . . . , {aj}, {d1, . . . , dk} are free.
This result has been strengthened numerous times by, among others, Voiculescu, Speicher, Mingo-Speicher,
Haagerup-Thorbjørnsen, Male, Collins-Male. One obvious candidate for improvement in the above result
is the quality of convergence. The most spectacular first result in this direction is due to Haagerup and



5

Thorbjørnsen [9]: they show that if {A1(N), . . . , Aj(N)} are properly normalized independent Gaussian
random matrices and P = P ∗ ∈ C〈X1, . . . , Xj〉 is a selfadjoint polynomial in j non-commuting self-
adjoint indeterminates, then ‖P (A1(N), . . . , Aj(N))‖ converges almost surely to ‖P (a1, . . . , aj)‖, where
a1, . . . , aj are free identically distributed semicircular random variables. This kind of convergence is re-
ferred to as strong convergence, and the strong convergence to a free family of random variables as strong
asymptotic freeness. Male improved this result to include strongly converging deterministic matrices: if the k-
tuple (D1(N), . . . , Dk(N)) of deterministic selfadjointN×N matrices (not necessarily diagonal) converges
strongly to (d1, . . . , dk) as N → ∞, then so does the family {A1(N), . . . , Aj(N), (D1(N), . . . , Dk(N))}
to the family {a1, . . . , aj , (d1, . . . , dk)}. A further extension to include independent Haar unitary random
matrices has been obtained in joint work by Collins and Male.

The recent paper [3], presented by Mireille Capitaine at the workshop, extends the above result of Male to
Wigner matrices, i.e. selfadjoint random matricesX whose entries satisfy the conditions thatXii, 1 ≤ i ≤ N ,√

2<Xil,
√

2=Xil, 1 ≤ i < l ≤ N , are all centered, independent, identically distributed, and of variance
1/N . Gaussian random matrices are a particular case of Wigner matrices. The main result of [3] can be stated
as follows.

Theorem: Assume that {A1(N), . . . , Aj(N)} are independent N × N Wigner matrices whose entries
have finite fourth moments. Let D1(N), . . . , Dk(N) be deterministic N × N matrices and assume that
{D1(N), . . . , Dk(N), D1(N)∗, . . . , Dk(N)∗} converges strongly to a 2k-tuple of bounded random vari-
ables. Then {A1(N)}, . . . , {Aj(N)}, {D1(N), . . . , Dk(N), D1(N)∗, . . . , Dk(N)∗} are strongly asymptot-
ically free.

The requirement of finite fourth moments can be replaced by a slightly weaker, but more technical con-
dition. The proof involves a fairly broad array of methods and tools coming from both classical and free
probability, matrix theory and analytic noncommutative functions theory. The main steps involve a trunca-
tion of the entries of the Wigner matrices (idea due to Bai-Yin and Bai-Silverstein), a linearization trick that
reduces the study of noncommutative polynomials of arbitrary degree and complex coefficients to the study
of linear polynomials with coefficients that are n × n selfadjoint matrices for a fixed n depending on the
polynomial (this idea was first introduced in free probability by the above-mentioned work of Haagerup and
Thorbjørnsen [9], but was already well-known in other fields) and an application of some analytic properties
of Voiculescu’s operator-valued subordination functions.

As byproducts of the proof of the main result, a spectral inclusion property is also obtained. It can be
roughly outlined as follows: assume that {a1, . . . , aj} are free semicircular random variables and the k-tuple
(d1(N), . . . , dk(N)) is free from {a1, . . . , aj} for all N ∈ N. Assume also that (d1(N), . . . , dk(N)) has
the same distribution as the constant selfadjoint matrices D1(N), . . . , Dk(N) ∈ MN (C). If P = P ∗ ∈
C〈X1, . . . , Xj+k〉 is such that for all N sufficiently large the spectrum of P (d1(N), . . . , dk(N), a1, . . . , aj)
does not intersect the interval [b, c], then for any δ > 0, the spectrum of P (D1(N), . . . , Dk(N), A1(N), . . . ,
Aj(N)) does not intersect [b+ δ, c− δ] almost surely as N →∞. This yields also a characterization of the
outliers generated by spikes of the constant matrices.

In this context, it is worth to point out that it is a quite surprising, and also very exciting, realization in the
last couple of years (see, eg, [4]) that free probability is able to address also asymptotic properties of special
single eigenvalues; this is surely a direction which will be followed up in the future.

2.4 Traffics and their independence
Random matrices are important in free probability since canonical models of random matrices are free in the
large dimension limit. The most basic of these results is that a collection of independent Wigner matrices
converges to free semicircular variables, see [20]. Nevertheless, the notion of non-commutative distribution is
sometimes too restrictive to treat certain models of large matrices. For any N ≥ 1 let X`,N , ` = 1, . . . , L, be
independent symmetric random matrices with i.i.d. sub-diagonal entries distributed according to the Bernoulli
distribution with parameter c`

N , c` > 0. Then (X`,N )`=1,...,L converges toward non-free random variables
[12]. If moreover YN is a sequence of deterministic matrices, then the possible limiting distributions of X`,N

and YN depend on more than the limiting non-commutative distribution of YN . A similar problem appears
when considering matrices Z`,N = V`,NA`,NV

∗
`,N , ` = 1, . . . L, where the matrices V`,N are independent

random permutation matrices uniformly chosen. When A`,N are diagonal, so is Z`,N and so (Z`,N )`=1,...,L



6

cannot be asymptotically free.
It was in order to remedy this point that Male [11] introduced another non-commutative framework:

the traffic spaces, which come with an associated notion of distribution and of independence. Traffics are
non-commutative variables, with additional structure, given by a generalization of polynomials called graph
polynomials. In particular, given a collection A`, ` = 1, . . . , L, of N by N random matrices, the traffic
distribution of AN = (A`)`=1,...,L encodes the data, for any finite connected graph T = (V,E) and any map
γ from E to {1, . . . , L}, of the observable

τAN
(T, γ) = E

[ 1

N

∑
φ:V→{1,...,N}

∏
e=(v,w)∈E

Aγ(e)
(
φ(w), φ(v)

)]
.

For instance let T be a simple cycle, with edges ep = (vp, vp+1), p = 1, . . . , n where vn+1 = v1 and
v1, . . . , vn are pairwise disjoint. Then τAN

(T, γ) is the normalized trace E 1
NTr of the monomial Aγ(1) · · ·

Aγ(n). For another example, if T denotes a graph consisting of two simple cycles that are connected at one
vertex, then τAN

(T, γ) is the normalized trace of the the entry-wise product of monomials. The convergence
in traffic distribution of AN is the pointwise convergence of τAN

.
Traffic distributions come together with a notion of independence, which is more complicated to introduce

since it involves non-algebraic (combinatorial) formulas. However, this notion of independence allows one
to describe uniquely the joint traffic distribution of several families of variables, in terms of the separate
distributions of those families. Traffic-independent variables can be freely independent, but in general we
obtain a different relation.

Traffic independence applies to a large class of random matrices:

• Independent matrices with i.i.d. entries that converge in non-commutative distribution (for instance
when the entries are truncated heavy tailed variables) are asymptotically traffic-independent [12]. Their
limiting distribution is characterized by a kind of Schwinger-Dyson system of equations.

• Traffic is the good notion at the intersection of free probability and random graph theory. For sparse
random graphs (when the degree of a generic vertex is bounded), the traffic convergence of the adja-
cency matrix of a graph is equivalent to the so-called local weak convergence of Benjamini-Schramm
[11]. Independent adjacency matrices are asymptotically traffic-independent, but not asymptotically
freely independent in general.

• A class of large graphs with large degree was studied in joint work of Male and Peché. In particular
adjacency matrices of independent regular graphs uniformly chosen with growing degree are asymp-
totically freely independent.

• In 2015, Gabriel introduced the concepts of P-algebras and of P-independence, which slightly gen-
eralized traffic independence, and he defined a notion of cumulant for traffic distributions. His work
implies a result of convergence for the additive and multiplicative matricial Lévy processes invariant in
law by conjugation by permutation matrices, and then for random walk on the symmetric group.

• Cébron, Dahlqvist and Male studied in [5] canonical constructions associated to traffic spaces. In
particular they proved the positivity of the free product of distributions. They also proved that every
non-commutative probability space can be endowed with a structure of traffic space. Benson Au and
Camille Male are presently studying the non-commutative structure of this canonical construction; both
of them presented their current work in talks at the workshop.

2.5 Free quantum groups
The study of symmetries has always been a central topic in the history of mathematics. Since about two
hundred years ago, symmetries are mostly modelled by actions of groups. However, modern mathematics
requires an extension of the symmetry concept to highly non-commutative situations. This was the birth of
quantum groups in the 1980’s due to the pioneering work of Drinfeld and Jimbo in the purely algebraic setting,
and Woronowicz in the topological one. The latter one is more relevant for this workshop. His approach to
quantum groups is based on the concept of “non-commutative function algebras” by Gelfand-Naimark, using
C∗-algebras as underlying algebras. Main features of compact quantum groups are:
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• Every compact group is a compact quantum group, but the converse is not true; hence compact quantum
groups are honest generalizations of compact groups.

• Every compact quantum group possesses a Haar state. This is an analogue of the well-known result
that every compact group admits a Haar measure. Hence, Haar integration is possible both on compact
groups as well as on compact quantum groups.

• We have a quantum version of Schur-Weyl or Tannaka-Krein duality. Given a compact matrix quantum
group, its space of finite-dimensional unitary representations is a tensor category of a certain kind;
conversely, to any such tensor category we may find a universal compact matrix quantum group whose
representation theory is exactly given by this tensor category.

In the past few decades, the investigation of compact quantum groups has developed into a rapidly grow-
ing field of mathematics with many links to other domains. The link to free probability is mainly given by
compact matrix quantum groups of combinatorial type. Their construction relies on the Tannaka-Krein dual-
ity. The main idea is to identify a certain set of combinatorial objects equipped with operations resembling
those of a tensor category; then to associate a tensor category to it; and then to obtain a compact quantum
group by the Tannaka-Krein Theorem. The examples of combinatorial type discussed in the workshop were
the following.

1. The so called Banica-Speicher quantum groups (also called easy quantum groups), were introduced in
2009 in [2]. Given a partition p of the set {1, . . . , k + l} into disjoint subsets (called blocks), we may
associate a linear map Tp : (Cn)⊗k → (Cn)⊗l to it by sending a basis vector ei1 ⊗· · ·⊗ eik to the sum
over all eik+1

⊗ · · · ⊗ eik+l
such that the indices (i1, . . . , ik+l) match with the partition p in a suitable

way (i.e. is = it, if s and t are in the same block of p). If a set of partitions is closed under certain
natural operations, the linear span of the associated maps Tp forms a tensor category in Woronowicz’s
sense, and we obtain a compact matrix quantum group, a so called Banica-Speicher quantum group.
The definition of Banica and Speicher (requiring self-adjoint entries of the matrices) has been extended
by Tarrago and Weber to unitary easy quantum groups (non-selfadjoint case).

Easy quantum groups are linked to free probability theory by de Finetti theorems: Köstler and Speicher
proved in [10] a characterization of free independence by distributional invariance under the quantum
symmetric group S+

n . This is parallel to the classical de Finetti theorem, where independence is char-
acterized by distributional invariance under the symmetric group Sn. This result has been extended
also to other quantum groups, see also the case of Boolean independence.

2. Spatial partition quantum groups were introduced by Cébron and Weber in 2016 in [6]. The idea is sim-
ilar to the one of Banica-Speicher quantum groups, but the underlying objects are three-dimensional
partitions rather than two-dimensional ones. This allows for finding new examples of quantum sub-
groups of Wang’s free orthogonal quantum group; there are new kinds of products of quantum groups
coming from new products of categories of partitions; and there is a quantum group interpretation of
certain categories of partitions which do neither contain the pair partition nor the identity partition.

3. Partially commutative quantum groups have been introduced by Speicher and Weber in 2016 in [19].
They fit with the mixtures of classical and free independence by Młotkowski and Speicher-Wysoczański.
The main idea of partial commutation is the following. Given a symmetric matrix ε = (εij)

n
i,j=1 with

εij ∈ {0, 1} and εii = 0, two coordinates xi and xj shall commute if and only if εij = 1. Imposing
such partial commutation relations has a long history in various contexts, for example, on the level
of groups partial commutation relations have been studied extensively under names such as “right an-
gled Artin groups”, “free partially commutative groups”, or “graph groups”; on the level of monoids
“Cartier-Foata monoids”, “trace monoids” are common notions; there is also the general notion of a
“graph product of groups” introduced by Green in the 1990’s; recently, a corresponding version of a
graph product for von Neumann algebras was introduced and investigated by Caspers and others.

A quantum probabilistic version of the idea of imposing partial commutation relations is given by the
notion of Λ-freeness. This concept was defined by Młotkowski in 2004 and revived and refined by
Wysoczański and Speicher in 2016. This mixture of classical and free independences goes as follows.
Let ε = (εij) be a symmetric matrix as above. If variables x1, . . . , xn are ε-independent, then:
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• xi and xj are free in the case εij = 0

• xi and xj are independent in the case εij = 1 (in particular, xixj = xjxi in this situation).

If all entries of ε are zero, we obtain Voiculescu’s free independence; if all non-diagonal entries of ε are
one, we obtain classical independence. The notion of ε-independence arises naturally in the context of
graph products of groups by considering subgroups with respect to the canonical trace state.

The partially commutative quantum groups defined by Speicher and Weber in [19] relate to Λ-freeness
in a de Finetti sense, hence characterizing the distributional symmetries related to Λ-freeness. However,
the study of these quantum groups reveals many other aspects. For instance:

• they act maximally on noncommutative spheres with partial commutation relations for the coor-
dinates;

• they provide new quantum versions of the orthogonal group;

• they contain Bichon’s quantum automorphism groups of graphs as quantum versions of the sym-
metric group.

A survey of the ideas mentioned above was presented in the talk given at the workshop by Moritz Weber.
Some further recent developments concerning Λ-freeness were presented by Frédéric Patras, who reported a
recent work on this topic done jointly with Ebrahimi-Fard and Speicher.

2.6 New developments around older concepts
2.6.1 Second order freeness

Second order freeness was introduced by Mingo and Speicher around 2003, and has had some impact on
describing global fluctuations of random matrices. Second order freeness should be seen as a refinement of
the question about global eigenvalue distributions of random matrices. (The later can be described by the
usual, or first order, free probability theory.) Whereas we have by now a quite advanced and satisfactory
combinatorial theory of second order freeness (by Collins, Mingo, Sniady, Speicher), we have no good grasp
on positivity problems in this context. In particular, we do not know a satisfying answer to the relevant
“moment problem” here, i.e., to the question which fluctuations can really arise in a random matrix context.
Building an analytic theory of the Cauchy transforms for this theory will be an important step. As a long
term goal one also hopes to find an operator-valued version of second order freeness, which would be of
relevance for dealing with fluctuations of more general classes of random matrices. A first promising step in
this direction was reported at the workshop by Mario Diaz.

2.6.2 Free stochastic analysis

Free stochastic analysis, the foundation of which was laid quite early in the development of free probability,
has become a very active area in recent years. On one hand, it can be seen as the large N limit of stochastic
analysis on N ×N matrices – and many new results on making this rigorous for various quantities have been
derived by Cébron, Kemp, and Ulrich, following the basic work of Biane from the 90s. On the other hand,
working directly with the free version provides powerful tools via stochastic differential equations to inves-
tigate the structure of operator algebras which are given as the large N limit of random matrix models. We
mention here just recent break-throughs by Guionnet and Shlyakhtenko and by Dabrowski, which resulted,
amongst others, in the solution of the 20 year old problem on the isomorphism of the q-deformed free group
factors. In another direction, work of Kemp, Nourdin, Peccati, and Speicher transferred theorems from clas-
sical stochastic analysis to the free setting, thus giving criteria for the convergence of a sequence of variables,
under some constraints (for example living in a fixed chaos with respect to free Brownian motion) to specific
limits, like the semicircular distribution. These results rely on a mixture of diagrammatic and analytic consid-
erations. However, quantitative versions of these convergence results are not yet well understood and we are,
for example, in need of a better understanding of adequate notions of distances between non-commutative
distributions. Refinements of the technical tools that are being used (like free Malliavin calculus) will also be
instrumental for making more precise statements about the regularity of the involved non-commutative distri-
butions. First progress on such questions, namely the absence of atoms for various distributions, was achieved
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recently by Shlyakhtenko and Skoufranis and by Mai, Speicher, and Weber. Another interesting progress on
such questions, on improving the free logarithmic Sobolev inequality, was reported at the workshop by Brent
Nelson.

3 Outcome of the Meeting
The topics highlighted above (which cover not all, but a substantial part of the workshop programme) indicate
very clearly that free probability theory, having reached a quite mature status in some of its original directions,
is rejuvenating itself with the emergence of new problems, ideas, and concepts.

Free probability is a very active area, with many unsolved problems ahead, as well as various recent new
exciting developments. This meeting brought together various mathematical backgrounds – in particular,
analytic and combinatorial – with an emphasis on the connections. The meeting was very timely and useful,
and will surely have a strong impact on the further developments of free probability and related subjects.

The organisers were in particular pleased to observe the large number of young people interested in the
subject; many of them have already made substantial contributions (as witnessed by the large number of talks
given by junior researchers) and will surely continue to advance the subject.
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[5] G. Cébron, A. Dahlqvist, and C. Male, Universal construction for traffic spaces, arXiv:1601.00168
(2016).
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1-15.

[24] D.V. Voiculescu. Free probability for pairs of faces III: 2-variable bi-Free partial S-transform and T -
transforms, Journal of Functional Analysis 270 (2016), Issue 10, 3623-3638.


