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1 Overview of the Field

Reconfiguration is the study of relationships among solutions to an instance of a problem, and in particular
the step-by-step transformation from one solution into another such that the intermediate result of each step is
also a solution. As a concrete example of a reconfiguration problem, we consider the assignment of customers
to power stations such that each customer obtains as much power as is required without exceeding the capacity
of what each station can produce. Each such assignment can be viewed as a solution. When a station needs
to be repaired, it may be necessary to change to another assignment, moving a single customer at each step
in order to minimize disruptions. Commonly-asked questions in the area of reconfiguration include both
structural questions concerning the solution space and algorithmic questions about the complexity of solving
various related problems.

For any combinatorial problem, there are multiple ways of defining the solution space, and for each such
definition, there are a variety of related problems. A reconfiguration graph for an instance of a problem can
be defined as a set of nodes, one for each solution to the problem (where there may be constraints with respect
to solution size), and a set of edges, where there is an edge between any two nodes that are adjacent (for some
definition of adjacency). The definition of adjacency gives rise to the notion of a reconfiguration step, an
operation by which a solution is transformed into an adjacent solution. The sequence of solutions traversed
in a sequence of reconfiguration steps, or equivalently, a path in the reconfiguration graph through the nodes
associated with those solutions, is called a reconfiguration sequence.

Typical questions that arise include the following:

• Given two solutions, does there exist a reconfiguration sequence transforming one into the other? This
is known as the reachability problem.

• Given two solutions, what is the length of the shortest reconfiguration sequence transforming one into
the other? This is the decision version of the shortest transformation problem.

• Given two solutions, produce a reconfiguration sequence (or a shortest reconfiguration sequence). This
is the search version of the shortest transformation problem.

• Given a problem, under what additional constraints (if any) is it guaranteed that for any instance the
reconfiguration graph is connected? This is the connectivity problem.
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• Given a problem, under what additional constraints (if any) is it guaranteed that for any instance the
reconfiguration graph has a bound on the diameter?

For a given problem, there may be more than one natural definition of adjacency (and, corresponding to
each such definition, the notion of a reconfiguration step). For the problem of independent set, where the
solution is a subset of the vertices such that there is no edge between any of the vertices in the set, we can
view a reconfiguration step as changing the position of a token, where there is a token on each vertex in the
independent set. This immediately implies at least three possible ways of moving tokens: token jumping
(TJ) [14], in which a token is moved from a vertex to any other vertex in the graph, token sliding (TS) [8, 14],
in which a token is moved from a vertex along an edge to a neighbouring vertex, and token addition/removal
(TAR) [11, 14], where in each step a token is added or removed. For the problem of k-colouring, where
each vertex in a graph is assigned a colour such that for each edge the endpoints have different colours, a
reconfiguration step could consist of changing the colour of a single vertex or swapping two colour classes.
In yet another example of adjacency, for the problem of satisfiability of Boolean formulas, a reconfiguration
step might consist of the flipping of a single variable in the truth assignment (from true to false or from false
to true).

For the reconfiguration steps of token jumping and token sliding, all feasible solutions have the same
number of tokens. In other situations, it may be necessary to give a bound on the size of solutions under
consideration. As an example problem, we consider the problem of vertex cover, where the goal is to de-
termine a subset of the vertices of a graph such that each edge in the graph has at least one endpoint in the
set. If we take as our feasible solutions all vertex covers, of any size, then it is easy to see that we can find a
reconfiguration sequence from any vertex cover to any other: at each step we add one of the vertices in the
target solution (adding a vertex to a solution gives another solution) and after all have been added, removing
a vertex that is not in the target solution (which is still a solution, as it contains all the vertices in the target
solution). A more interesting problem results from restricting the size of solutions to be at most k or k + 1,
where k is the size of a minimum solution.

In addition to characterizing the solution spaces of classical computational problems (as well as solutions
to puzzles), reconfiguration is related to problems in a variety of areas. In the area of network security, a
network can be represented as a graph where each vertex corresponds to a server and each edge to a commu-
nication link; a step-by-step change in firewalls corresponds to the reconfiguration of a cut. In the Frequency
Assignment Problem, the goal is to assign frequencies to users of a wireless network such that the interfer-
ence between them is minimized and the range of used frequencies is as small as possible. Frequencies can
be viewed as colours, giving rise to a colouring problem. Due to the frequent changes in demand and addition
of new transmitters as well as the difficulty of finding optimal assignments, there is a need to change between
assignments. Reconfiguration gives a method of doing so without interrupting service for all customers. As
a final example, the moving of objects on a plane (modeled by moving tokens on a graph) has applications
in the 3D-printing industry, where a “head” follows a path in laying down a layer of material. The use of
multiple heads to reduce printing time necessitates ways to plan movement without collisions and, ideally,
minimizing the distance traveled.

2 Recent Developments and Open Problems
As the field is quite young, all progress in the field qualifies as recent developments. Below are listed various
types of results along with related open problems.

2.1 Defining Adjacency
Relations among different types of reconfiguration steps have been demonstrated; for independent set recon-
figuration, TJ and TAR are equivalent [14], and for clique reconfiguration, TJ, TAR, and TS are all equiva-
lent [12]. In this context, problems are equivalent if an instance is solvable using one type of reconfiguration
step if and only if it is solvable using another type of reconfiguration step.

Open problems in this area include defining adjacency for problems with solutions that are, for example,
given as sequences rather than sets, or for areas such as computational geometry.
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2.2 Structural Results
Structural results focus on properties of the reconfiguration graph; most results in the category specify when
the reconfiguration graph is connected. Most of the results of this type focus on the problems of k-colouring
and dominating set. In the latter problem, the goal is to find a set of vertices such that each vertex outside the
set has a neighbour in the set.

There are many open problems with respect to not only connectivity of the reconfiguration graph, but
also other properties, such as k-connectivity, properties of isolated vertices, and characteristics of various
connected components.

2.3 Hardness Results
In many cases, there is a correspondence between the complexity of a classical problem and the complexity
of the related reachability reconfiguration problem: often both can be solved in polynomial time, or both
are intractable (NP-complete and PSPACE-complete, respectively). Many of the PSPACE-hardness proofs
follow the chain of reductions used for NP-hardness reductions, starting with the PSPACE-completeness of
3SAT reconfiguration [5].

There are, however, a few exceptions to this general pattern. Although the problem of 3-colouring is
NP-complete, its reachability reconfiguration problem can be solved in polynomial time [13]. Conversely,
the shortest path problem can be solved in polynomial time, but its reachability reconfiguration problem is
PSPACE-complete [1]. Although exceptions to the general rules are known, currently there are no results
explaining the reasons for such exceptions.

2.4 Algorithms
Greedy algorithms have been developed for matching, independent set, and minimum spanning tree, and dy-
namic programming algorithms for list colouring, shortest path, and k-colouring. In addition, the complexity
of problems has been considered using the framework of parameterized complexity, where the goal is to
find algorithms with running times that are polynomial in the size of the input but possibly exponential (or
worse) in terms of one or more parameters of the problem. Various results consider as parameters the sizes
of solutions, the lengths of reconfiguration sequences, and other attributes of inputs and problems [16].

One area with many open problems is that of finding shortest transformations between solutions. Among
the few known results are algorithms for satisfiability [15] and independent set using token-sliding on cater-
pillars [19].

3 Presentation Highlights
In order to facilitate as much collaboration as possible, the workshop time was divided among technical talks,
open problem presentations, and follow-up discussions. The first two types of activities are summarized here,
with a selection of completed work and work in progress detailed in Section 4.

Both the high quality of the contributions and the engagement of the participants led to exciting new
collaborations.

3.1 Technical Talks
3.1.1 Takehiro Ito (Tokohu University, Japan): Invitation to Combinatorial Reconfiguration

The workshop started with this introductory talk. It is possible to view the field of reconfiguration as middle
ground between standard search problems, which ask for one solution to an instance of a problem, and
enumeration problems, which ask for all solutions to an instance of a problem. It is important to note that since
it is a decision problem, a reachability problem does not require the generation of an actual reconfiguration
sequence, which may be super-polynomial in length.

The history of combinatorial reconfiguration was presented, showing both how the field was developed
and in what new directions it might go. Most of the content can be found in Sections 1 and 2.
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3.1.2 Nicolas Bousquet (Institut Polytechnique de Grenoble, France): Token Sliding on Chordal
Graphs

(Joint work with Bonamy)
The reconfiguration of independent sets using token sliding was first considered by Hearn and De-

maine [8], who showed that the reachability problem is PSPACE-complete on planar graphs. In later results,
polynomial-time algorithms have been found for trees, cographs, claw-free graphs, and bipartite permutation
graphs.

In new work, the authors show that both the reachability and connectivity problems can be solved in
polynomial-time on interval graphs. The algorithm makes use of the geometric representation of an interval
graph as an intersection graph of intervals on the line, which can be obtained in polynomial time. Using
this representation, one can define the leftmost independent set. Although a naive approach may not yield a
polynomial-time algorithm, dynamic programming can be employed to obtain algorithms for both problems.

In addition, the authors show that on split graphs (where the vertex set can be partitioned in two sets, one
inducing a clique and the other inducing a set of isolated vertices), the connectivity problem is co-NP-hard
and co-W[2]-hard. In particular, they use the fact that k-Dominating Set is NP-hard and W[2]-hard and then
show that the result still holds when there is no blocking set of size at most k + 1, where in a blocking set no
vertex has a private neighbour. Using a similar construction, the same hardness results can be derived for the
connectivity problem on bipartite graphs.

3.1.3 Akira Suzuki (Tohoku University, Japan): Reduction Tools on NCL

Nondeterministic Constraint Logic was first introduced by Hearn and Demaine [8] to show the hardness of
sliding block puzzles. In a constraint graph, the directed edges have weights of 1 or 2 and are either legal or
not. In the legal direction, each vertex is the head of at least two weight 2 edges. The NCL problem is to
determine whether a target edge can be reversed by a sequence of legal moves, where in a legal move an edge
is reversed such that the resulting direction is legal.

The problem NCL is difficult even if each vertex is either an AND vertex (the output edge is outgoing
if both input edges are incoming) or an OR vertex (the output edge is outgoing if at least one input edge
is incoming). Using this fact, PSPACE reductions are possible using NCL with just AND and OR gadgets.
Demonstrations were given for sliding blocks and for edge colouring.

In addition, NCL can be generalized by introducing the notion of a neutral, undirected edge. This new
version can accomplish all that can be accomplished using NCL, but often results in fewer gadgets. One of
the new types of gadgets (in addition to AND and OR gadgets) is a link gadget.

In new work [18], it can be shown that reconfiguration of list edge-colouring and edge-colouring are
PSPACE-complete using AND, OR, and link gadgets. This result completes the classification of the com-
plexity of the reconfiguration of list edge-colouring by showing that the problem is in P for k ≤ 3 and
PSPACE-complete otherwise. For edge-colouring, the complexity is still open for k = 4, though this result
proves PSPACE-completeness for k ≥ 5.

The talk ended with some open questions about the complexity of more restricted constraint graphs.

3.1.4 Karen Seyffarth (University of Calgary, Canada): Reconfiguring Vertex Colourings of 2-Trees

(Joint work with Cavers)
Recent work was presented in the area of the connectivity problem for k-colouring for various classes

of graphs. In 2008, Cereceda, van den Heuvel, and Johnson [3] proved that the reconfiguration graph for
k-colouring is connected for all k ≥ col(H) + 1, where col(H) = max{δ(G) | G ⊆ H}+ 1 is the colouring
number of H .

More recently, Choo and MacGillivray [4] proved a connection between colouring numbers and Hamil-
tonicity, namely, that k0(H) ≤ col(H) + 2, for k0(H) the Gray code number of H , the least integer such
that the reconfiguration graph for k-colouring has a Hamiltonian cycle for all k ≥ k0(H). In the same paper,
values of k0 were shown for complete graphs, trees, and cycles. Later, Gray code numbers were found for
complete bipartite graphs [2].

The presentation gave a proof of the Gray code numbers for 2-trees. Except for certain cases in which
k0(H) = 5, the Gray code number for 2-trees is 4.
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3.1.5 Matthew Johnson (Durham University, UK): Kempe Equivalence in Regular Graphs

(Joint work with Bonamy, Bousquet, Feghali, and Paulusma)
For a k-colouring, an (a, b)-component is a maximal connected subgraph whose vertices are coloured a

or b; such components are called Kempe chains. A Kempe change is the exchanging of the colours a and
b of the vertices in an (a, b)-component, resulting in another proper colouring. A Kempe class consists of
k-colourings that are Kempe equivalent (one can be obtained from another by a sequence of Kempe changes).

In 1981, Las Vergnas and Meyniel showed that the set of k-colourings of a d-degenerate graph form a
Kempe class, k > d, where a graph is d-degenerate if every induced subgraph has a vertex of degree at most
d. Mohar conjectured in 2007 that for k ≥ 3, the k-colourings of a k-regular non-complete graph form a
Kempe class, but in 2013 van den Heuvel found a counterexample for k = 3 [10].

Bonamy, Bousquet, Feghali, Johnson, and Paulusma have proved that for k ≥ 3, if G is a connected
k-regular graph that is neither complete nor the triangular prism, then the k-colourings of G form a Kempe
class. In their proof, they make use of the clique cutset lemma of Las Vergnas and Meyniel, and consider
separately k-regular graphs that are not 3-connected and k-regular graphs that are 3-connected. In the latter
case, they make use of a matching lemma, and consider k-regular 3-connected graphs of diameter 2.

The talk ended with several open problems, including the question of whether the 5-colourings of a
toroidal triangular lattice form a Kempe class (which would have an application in physics, proving the
validity of the WSK algorithm for simulating the antiferromagnetic Potts model) and what can be determined
about the number of Kempe changes needed to transform one colouring into another.

3.1.6 Jan van den Heuvel (London School of Economics and Political Science, UK): Token-Sliding
Problems

(Joint work with Brightwell and Trakultraipruk)
The classic 15-puzzle can be interpreted as a problem of moving tokens on a graph, which can then be

generalized to consider different graphs. A result by Wilson in 1974 shows that the reconfiguration graph for
a sliding block puzzle is connected except if the puzzle graph is a cycle on n ≥ 4 vertices, is bipartite and not
a cycle, or the exceptional graph Θ0 on 7 vertices.

To further generalize the problem, one can ask what would happen if there were more than a single uncov-
ered vertex and/or if not all tokens were considered to be identical. The authors show that the reconfiguration
graph is connected except if the puzzle graph is not connected, a path with at least two token labels, a cycle
with at least two token labels, a cycle with two token labels, with at least two of the same label, a 2-connected
bipartite graph with n− 1 distinct tokens, the graph Θ0 with one of four possible labelings of tokens, or has
connectivity 1 with at least two token labels and a separating path preventing tokens from moving between
blocks.

A related problem is that of finding the shortest reconfiguration sequence, which Goldreich showed to be
NP-complete for cases with n− 1 different tokens and van den Heuvel and Trakultriapruk (2014) showed to
be in P when all tokens are the same, but NP-complete when at least one token is special and all others are
identical. The proof is based on a result for robot motion by Papadimitriou, Raghavan, Sudan, and Tamaki
(1994).

3.1.7 Moritz Mühlenthaler (Technische Universität Dortmund, Germany): Reconfiguration in Ma-
troids Revisited

Reconfiguration properties of matroids have been studied, in different guises, at least since the 1970s. The talk
touched very briefly on several interesting results from the past 40 years in this area and put them in the current
unified setting of reconfiguration problems [11, 10]. Furthermore, some new aspects of reconfiguration in
matroids were investigated, namely the complexity of reconfiguring common independent sets of two or
more partition matroids. In particular, it was shown that reachability of two common independent sets of two
partition matroids can be decided in polynomial time, while for three or more matroids, the task becomes
PSPACE-complete. Since many combinatorial optimization problems can be phrased in terms of finding
maximum common independent sets of partition matroids, there are many interesting applications of these
results.
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3.1.8 Ruth Haas (University of Hawaii, USA): Reconfiguration of Dominating Sets

(Joint work with Seyffarth)
A subset S of the vertices of a graph is a dominating set if and only if every other vertex is adjacent to

a vertex of S. The domination number, γ(G), is the minimum cardinality of a dominating set of G, and the
upper domination number, Γ(G), is the maximum cardinality of a minimal dominating set of G. Various
models of domination reconfiguration have been studied, e.g. by Subramaniam, Sridharan, and Fricke and by
Hedetniemi, Hedetniemi, and Hutson; in addition, the γ-graph uses only γ sets and token jumping.

The goal is to find d0(G), the smallest value of k such that the reconfiguration graph is connected for all
k ≥ d0(G). The authors showed in 2014 that do(G) = Γ(G) + 1 for bipartite graphs and chordal graphs [6],
with further results obtained by Suzuki, Mouawad, and Nishimura. Alikhani, Fatehi, and Klavzar considered
which graphs might be reconfiguration graphs.

In the talk, the following new results were presented:

• All independent dominating sets are in the same connected component of the reconfiguration graph for
k = Γ(G) + 1, where an independent dominating set is a maximal independent set.

• IfG is both perfect and irredundant perfect, then d0(G) = Γ(G)+1, where a set is irredundant if every
vertex in the set has a private neighbour, and precise definitions of the terms relate sizes of independent
sets and clique cover numbers.

• For certain classes of well-covered graphs, d0(G) = Γ(G) + 1, where a graph is well-covered if every
maximal independent set has the same cardinality.

3.2 Open Problem Presentations
3.2.1 Henning Fernau (Universität Trier, Germany)

Various extensions and generalizations of reconfiguration were proposed, as detailed below.
Building on ideas on generalizing the notion of adjacency, Fernau proposed approaching problems by

determining what definition of adjacency would result in a connected reconfiguration graph. It was noted
that for many problems there is a trivial solution, such as in the case of vertex cover, when all intermediate
solutions are vertex covers of any size (a vertex cover V1 can be reconfigured to a vertex cover V2 by adding
all vertices in V2 and then deleting all vertices in V1).

Another proposal was to consider the relationship between reconfiguration and reoptimization, where
the goal is to determine a solution for an instance to a problem given a “similar” instance and its solution.
Combining and generalizing the concepts could lead to the notion of a sequence of steps that changes both
the instance and the solution.

It was further observed that although many reconfiguration problems turn out to be computationally dif-
ficult, it may be beneficial to focus on results in areas where hardness is a positive attribute. One example
could be taken from computational social choice, considering how easy it is for an election to be rigged.

Other possible topics include the reconfiguration of problems in computational geometry as well as that
of string editing.

3.2.2 Tatsuhiko Hatanaka (Tokohu University, Japan): Optimizing a Colouring via a Reconfiguration
Sequence

In this presentation, a new variant of reconfiguration was introduced. In the optimization variant, the goal is
to find the optimal solution over all solutions reachable from a given solution. In particular, for the problem
of colouring reconfiguration, an optimal solution is one that minimizes the number of colours used.

Preliminary results include a proof that the problem is NP-hard when the number of colours is at least
five, and a polynomial-time algorithm for numbers of colours no greater than three.
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3.2.3 Jan van den Heuvel (London School of Economics and Political Science, UK)

The focus of this presentation was the k-colouring reconfiguration problem, considering both the reachability
problem and the connectivity problem. The reachability problem can be solved in polynomial time when the
number of colours, k, is at most three, and is PSPACE-complete otherwise (as a consequence of [8]).

For the connectivity problem, the answer is always no when k = 2 and is co-NP-complete when k = 3.
The complexity remains open for k ≥ 4. There followed a discussion of the co-NP-completeness result, and
in particular the folding operation, where a vertex has two nonadjacent neighbours that can be folded together.
It can be shown that a bipartite instance G is a no-instance of the connectivity problem for k = 3 if and only
ifG can be folded to a cycle on six vertices. One might wish to try to generalize this to k = 4 by showing that
G can be folded to a cube; however, this is not the case. Further work is required on this problem, perhaps
using another technique, and also perhaps by considering techniques for nonbipartite graphs.

3.2.4 Nicolas Bousquet (Institut Polytechnique de Grenoble, France): Graph Recolouring on Sparse
Classes of Graphs

Based on a conjecture by Cereceda in 2007, one possible approach to characterizing the reconfiguration
graph for k-colouring is by considering the degeneracy of the graph and using that to determine the diameter
of the reconfiguration graph. In particular, the conjecture states that the reconfiguration graph is of quadratic
diameter when the number of colours is two greater than the degeneracy of the input. The conjecture has
been shown to be true for k-regular graphs, trees, chordal graphs, bounded treewidth graphs, and distance-
hereditary graphs.

So far, all the results have used nothing more than a tree decomposition of the input graph, raising the
question as to whether other techniques might be applied.

Another question concerns the relationship between mixing time and the diameter of the reconfiguration
graph, and in particular a characterization of classes of graphs for which the diameter of the reconfiguration
graph is linear. Results are known for trees and k-degenerate graphs.

3.2.5 Kunihiro Wasa (National Institute of Informatics, Japan)

This talk focused on the reconfiguration of optimal amidakujis. An amidakuji, also known as a ladder lottery,
is a way of generating a permutation by creating a series of vertical and horizontal bars. The number of
vertical bars is the number of items to be permuted. The placement of horizontal bars joining adjacent
vertical bars dictates the permutation, where from the top of each vertical bar, a path is traced following all
horizontal bars encountered. An amidakuji is optimal if it uses the minimum number of bars to achieve the
particular permutation.

The talk presented an algorithm that can be used to determine the shortest reconfiguration sequence
between optimal amidakujis, and presented open problems on various variants.

3.2.6 Ryuhei Uehara (Japan Advanced Institute of Science and Technology (JAIST), Japan)

Starting with a general overview of the complexity of various games and puzzles, it was observed that
most one-player games are NP-complete whereas most two-player games are PSPACE-complete or EXP-
complete [7]. As an exception to this general rule, many sliding block puzzles, in which it is possible to
return to the same state, are PSPACE-complete.

Uehara is the director of the JAIST Gallery, which houses NOB’s Puzzle Collection, a collection of about
10,000 puzzles from around the world. Although he did not bring the entire collection to share with us, he did
share his latest purchase, the Qubigon, which is a generalization of the well-studied slide-block 15-puzzle.
The observation that the puzzle makes use of 18 of the 20 possible locations at once led to questions about
the relationship between the number of tokens and the number of locations more generally. (This was later
addressed in a presentation by van den Heuvel.)

An additional open problem that was discussed related to token sliding for independent sets.
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4 Scientific Progress Made

4.1 Matching Shortest Transformation
Many techniques have been developed in the last few years in order to design polynomial time algorithms
to determine the existence of a transformation between two configurations (reachability). On the other hand,
very few of them have been proposed to compute shortest transformations between two configurations. One
of the main reasons is that the shortest transformation problem seems to be much harder than the reachability
problem even if only little evidence has been found so far in that direction (i.e. we need a very simple recon-
figuration problem in order to obtain a polynomial-time algorithm for the shortest transformation problem).
One of our motivations was to find problems on which the shortest transformation problem is hard while the
reachability problem is very simple. Another motivation consisted in developing new tools to prove that the
shortest transformation problem is hard.

During the workshop, Nicolas Bousquet, Tatsuhiko Hatanaka, Takehiro Ito and Moritz Muehlenthaler
found preliminary results on the hardness of shortest transformation for the matching problem on graphs of
maximum degree 4. In particular it implies that the shortest transformation is hard for the reconfiguration
of independent sets on the token jumping and token sliding variants on line graphs. It answers a question
of Ryuhei Uehara on the complexity of the TJ problem on claw-free graphs raised during the workshop.
The proof technique might be generalized in order to show that there is no constant factor approximation
algorithm for the Matching Shortest Transformation problem.

4.2 Equitable Colouring Reconfiguration
A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same
colour, whereas an equitable colouring of a graph is a colouring where the difference between the number of
vertices coloured by any two colours is at most one. Equitable colourings have many real-world applications
in scheduling, load-balancing, and timetabling, and has been the subject of much research interest. The
question of whether one colouring can be transformed to another colouring by changing the colour of only
one vertex at each step has also been studied in the field of reconfiguration problems and has been proved to
be PSPACE-complete.

Tatsuhiko Hatanaka, Haruka Mizuta, and Krishna Vaidyanathan considered the reconfiguration of eq-
uitable colourings, showing that the problem is PSPACE-complete, even for planar graphs using only four
colours.

4.3 String Editing Reconfiguration
Discussions among Henning Fernau, Ruth Haas, Matthew Johnson, Naomi Nishimura, and Karen Seyffarth
focused on the issues surrounding solution spaces in which each solution consists of a sequence (in this case,
a sequence of edit operations). Preliminary observations included the fact that a reconfiguration sequence is
itself a solution in the form of a sequence, allowing for the discussion of the metaproblem of reconfiguration
of reconfiguration.

Additional observations found connections to work on permutations, including Kunihiro Wasa’s open
problem presentation on amidakujis.

4.4 Homomorphism Reconfiguration
Vijay Subramanya and Ben Moore considered the homomorphism reconfiguration problem for graphs on at
most four vertices. They showed that H-reconfiguration is in P when H is C4 or the diamond graph.

Furthermore, they conjectured that if H1- and H2-reconfiguration are in P, then H-reconfiguration is also
in P, where H is obtained by joining H1 and H2 at a vertex. They proved the conjecture when H1 and H2

are both equal to C3. This result extends to the case where H is a series of C3’s.

4.5 NCL and Matroids
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Two open problems presented by Akira Suzuki about restricted variants of nondeterministic constraint
logic can be rephrased in terms of connectivity of common independent sets of two partition matroids. Since
NCL is a tool which has been developed for proving hardness of puzzles, this is quite an unexpected connec-
tion.

5 Outcome of the Meeting
The objectives of the workshop were all met, as elaborated below; further outcomes are listed in Section 5.5.

5.1 Providing an Opportunity for Joint Discussion by Researchers in Reconfigura-
tion from All over the World

The workshop was very successful in bringing together researchers from different countries and different
research groups. Unfortunately, funding and visa issues resulted in last-minute cancellations by researchers
from India and Lebanon.

In the interests of maintaining our world-wide inclusiveness, in our business meeting we decided to try
to alternate the continents on which future workshops will be held, with the 2019 workshop to be held in
France.

5.2 Identifying Future Research Directions
The many open problem sessions and follow-up discussions generated many future research directions. As
detailed in Section 4, progress has already been made in several of these directions.

5.3 Deepening the Area by Establishing a Set of Common Methods and Algorithmic
Techniques

At the business meeting we discussed possible approaches to collecting and displaying known results. The
prototype of a website was shown and discussed.

5.4 Broadening the Area by Making Connections to Related Areas and Problems
Several of the presentations introduced the audience to new applications of reconfiguration, such as the appli-
cation of colouring to the Potts model (Section 3.1.5). In other talks, unexpected connections were discovered,
such as between ladder lotteries, string editing, and permutations (Sections 3.2.5 and 4.4) and between NCL
and matroids (Section 4.5).

5.5 Additional Outcomes
In addition to the planned outcomes, to further the research community we are planning to hold a minisym-
posium on reconfiguration at the 6th biennial Canadian Discrete and Algorithmic Mathematics Conference
in 2017, and to have a special issue on reconfiguration in the journal Algorithms.

References
[1] P. Bonsma, The complexity of rerouting shortest paths, In Proceedings of the 37th International Sympo-

sium on Mathematical Foundations of Computer Science, 2012, 222–233.

[2] M. Celaya, K. Choo, G. MacGillivray, and K. Seyffarth, Reconfiguring k-colourings of complete bipartite
graphs, Kyungpook Math. J. 56 (2016), 647–655.

[3] L. Cereceda, J. van den Heuvel, and M. Johnson, Connectedness of the graph of vertex colourings,
Discrete Math. 308 (2008), 913–919.



10

[4] K. Choo and G. MacGillivary, Gray code numbers for graphs, Ars Math. Contemp. 4 (2011), 125–139.

[5] P. Gopalan, P. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou, The connectivity of Boolean satisfia-
bility: computational and structural dichotomies, SIAM Journal on Computing 38(6) (2009), 2330–2355.

[6] R. Haas and K. Seyffarth, The k-dominating graph, Graphs and Combinatorics, 30(3) (2014), 609–617.

[7] R. A. Hearn and E. D. Demaine, Games, Puzzles, and Computation, A K Peters, Wellesley Mas-
sachusetts, 2009.

[8] R. A. Hearn and E. D. Demaine, PSPACE-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation, Theoretical Computer Science,
343(1–2) (2005), 72–96

[9] R. Haas and K. Seyffarth, The k-dominating graph, Graphs and Combinatorics, 30(3) (2014), 609–617.

[10] J. van den Heuvel, The complexity of change, In Surveys in Combinatorics, Cambridge University Press
(2013), 127–160.

[11] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno On the
complexity of reconfiguration problems, Theoretical Computer Science, 412(12-14) (2011), 1054–1065.

[12] T. Ito, H. Ono, and Y. Otachi, Reconfigurations of cliques in a graph, In Proceedings of the 12th Annual
Conference on Theory and Applications of Models of Computation, 2015, 212–223.

[13] M. Johnson, D. Kratsch, S. Kratsch, V. Patel, and D. Paulusma, Finding shortest paths between graph
colourings, In Proceedings of the 9th International Symposium on Parameterized and Exact Computation,
2014, 221-233.
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