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The search for the particle nature of dark matter has given rise to a number of experimental,
theoretical and statistical challenges. Here, we report on a number of these statistical challenges
and new techniques to address them, as discussed in the DMStat workshop held Feb 26 – Mar 3 2018
at the Banff International Research Station for Mathematical Innovation and Discovery (BIRS) in
Banff, Alberta.a
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I. INTRODUCTION

The nature of dark matter (DM) is one of the most
pressing puzzles in modern particle physics and astron-
omy. Overwhelming evidence from galactic dynamics to
cosmology tells us that ∼ 85% of the matter content of
the Universe is in a very different form from the famil-
iar “baryonic” matter described by the Standard Model
(SM) of particle physics. Precision measurements of the
cosmic microwave background (CMB) suggest the exis-
tence of a new particle that is cold (i.e. non-relativistic
at sufficiently early cosmic times), dark (very weakly-
interacting with quarks, electrons and photons), and be-
haved like matter (a pressureless fluid) in the Early Uni-
verse [1].

Evidence for dark matter comes to us entirely via its
gravitational influence; however, there are many good
reasons to believe in a particle physics portal to the dark
sector. In fact, many theories of physics beyond the stan-
dard model (BSM) such as supersymmetry naturally pre-
dict a nonzero relic abundance of “dark” particles.

In the absence of a definitive non-gravitational sig-
nal of DM, the space of possible models of particle
dark matter has also thrived. Theoretical motivations
such as the “WIMP miracle,” the “baryon disaster,” the
Peccei-Quinn solution to the strong CP problem, and the
neutrino mass problem motivate such candidates as the
WIMP, asymmetric dark matter, the axion or the sterile
neutrino. The full list of DM candidates is as varied as
it is extensive.

Following several decades of searches, it has become
increasingly clear that discovery is less likely to happen
via a single “smoking gun” signal, but rather by scru-
tinizing data from many experiments in many disparate
fields. The main searches for dark matter are broadly
categorized into direct detection, indirect detection, and
production at colliders.

The next decade will present us with major advances
in experiments designed to search for dark matter, as
well as experiments with a broader focus on searches for
BSM physics. Even though current and past searches
have thus far come up empty, the parameter space that
has been explored pales in comparison with what will
become available in years to come. This includes an un-
paralleled quantity of astrophysical data, from e.g. the
Square Kilometre Array (SKA) radio telescope [2] that
will map the distribution of matter in the dark ages be-
fore the formation of the first galaxies via the 21 cm spin
transition line of the hydrogen atom [3]; gamma ray tele-
scopes such as the Cherenkov Telescope Array (CTA)
[4] that will yield important information about the high-
est energies in the universe; and the next generation of
galaxy surveys (eBOSS [5], DESI [6]) which will map the
distribution of structure in the universe. Starting in 2022,
the Large Synoptic Survey Telescope (LSST) [7] will sur-
vey the southern sky to unprecedented depth, allowing
for the discovery of new ultra-faint dwarf galaxies [8] and
increasing the sample of known galaxy-scale strong gravi-
tational lenses by a factor of 10 [9]. Taken together, these
new observations will dramatically improve our knowl-
edge of dark matter structure on kiloparsec scales and
below, hence stress-testing the standard cold dark mat-
ter paradigm in a new regime. Concurrently, space based
missions such as Gaia [10, 11] will map the distribution
of dark matter in our own neighbourhood for the first
time, with the promise of sub-milliarcsecond astrometry.
The PINGU upgrade to the IceCube neutrino detector
at the South Pole [12] will be able to detect light DM
candidates, as we embark on the first decade of neutrino
astronomy.

Meanwhile, DM-specific searches such as XENONnT
[13], LUX-ZEPLIN [14] and ADMX [15] (along with DM-
focused analyses of collider data) will provide the best
sensitivity for testing a large variety of hypotheses re-
garding the particle properties of DM.

Reconciling the vast landscape of theoretical models
and the many disparate data sets is not an easy task, and
it inevitably leads to a number of statistical challenges
on scales that range from the interpretation of a single
experiment, all the way to combination of models and
large datasets with one another.

Our aim in this short review is to outline major sta-
tistical challenges that came up over the course of the
DMStat workshop1, along with proposed approaches and

1 Held Feb 26 – Mar 3 2018 at the Banff International Re-
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solutions including software developed by the commu-
nity. We begin with a brief review of the problem of
dark matter (Sec. II), followed in Sec. III by a descrip-
tion of current strategies for experimental dark matter
searches and some challenges those searches have encoun-
tered. We then outline and discuss several statistical ap-
proaches (Sec. IV), including some novel techniques, and
present some simple examples in Sec V.

A. Disambiguation

Although statistics acts in some sense as a lingua
franca across the sciences, there are certain “regional di-
alects” that should be noted: we have identified a few
terms in particular that have very different meanings
when used by the astroparticle physics community versus
statisticians.

Model: In physics, the word “model” may be entirely
synonymous with “theory”, in the sense of refer-
ring to an entire physical theory that one may wish
to test with statistics – or it may refer to a specific
realisation of a theory. This can be a restriction
of the theory to a particular subspace of its possi-
ble forms, or very often, a specific numerical choice
for all values of the free parameters of a theory. In
contrast, in the field of statistics, the term “model”
refers to an incompletely-specified probability dis-
tribution; draws from this distribution are meant to
replicate the processes that generated the observ-
able data. Data are used to estimate the missing
components of the model, typically a vector of un-
known parameters. Such estimation problems are
fundamental in statistical inference.

Simulation: In statistics, this usually refers to the pro-
cess of generating a large number of random real-
izations from a probability model by Monte Carlo
methods, in order to characterize the distribution
of a quantity of interest, e.g. an estimator or a test
statistic. In physics, the word simulation will usu-
ally refer to modeling the outcome of a physical
experiment based on the model parameters (for ex-
ample, the angular power spectrum of the cosmic
microwave background, given a set of cosmological
parameters). A physicist’s simulation may or may
not be deterministic in nature.

Coverage: Often (mis)used in particle physics as a
loosely defined qualitative notion of the complete-
ness with which a theoretical parameter space has
been sampled. In statistics, coverage has a very
specific and well-defined meaning, referring to the

search Station for Mathematical Innovation and Discovery
(BIRS) in Banff, Alberta (http://www.birs.ca/events/2018/
5-day-workshops/18w5095).

fraction of repeated experiments in which the true
value of a quantity actually appears inside a con-
fidence interval/region. A 90% confidence inter-
val/contour is said to undercover if the true value
would actually appear inside the interval in less
than 90% of repeated experiments, or to overcover
if the true value would appear within the interval
in more than 90% of repeats. Overcoverage is in-
efficient but relatively benign, as it increases the
probability of a type II error (failure to reject a
false null hypothesis, a “false negative” finding);
undercoverage leads to an increase in the rate of
type I error (rejection of a true null hypothesis, a
“false positive” finding), so is generally considered
more serious.

Machine learning: A field that grew out of computer
science and the study of artificial intelligence, but is
concerned with many of the same challenges faced
by statisticians. Indeed, the line between these
fields is quite blurry, although each uses its own
terminology, e.g., supervised learning problems in
machine learning are closely aligned with regression
problems in statistics. Methods developed within
machine learning tend to be more focused on broad
applicability with computational efficiency, while
statisticians will often tailor their models more to
a particular application, and place more emphasis
on theoretical properties of methods.

II. THE DARK MATTER PROBLEM

While the flat rotation curves of spiral galaxies [16] are
often held up as conclusive evidence for a missing mat-
ter component in the Universe, equally strong evidence
for dark matter arises over a range of scales: the mo-
tion of nearby stars above and below the galactic plane
[17, 18]; the velocities of galaxies within clusters [19];
gravitational lensing by galaxies and clusters [20–23]; the
rapid formation time of galaxies [24, 25], as well as the
angular power spectrum of the cosmic microwave back-
ground [26]. Each of these points to a large nonbaryonic
component of matter in the Universe – about 85% of the
total matter, or ∼25% of the total energy density. If
this missing matter is in the form of particles, it should
be (almost) electrically neutral [27] and have only very
weak interactions with ordinary matter [28].

The Standard Model of particle physics does not pro-
vide a suitable particle to play the role of dark mat-
ter. However, a number of BSM theories of physics pro-
vide compelling candidates for this nonbaryonic particle.
In supersymmetric (SUSY) extensions of the Standard
Model, for example, the lightest new SUSY particle is
typically stable and can be produced with sufficient den-
sity in the early Universe to account for all of the dark
matter [29]. Such particles fall into the class of ‘Weakly
Interacting Massive Particles’ (WIMPs) [30]. Another

http://www.birs.ca/events/2018/5-day-workshops/18w5095
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popular candidate arises in solutions of the strong CP
problem, which hint at the existence of a new light pseu-
doscalar, the axion [31, 32]. Other exotic candidates are
also plausible: primordial black holes [33], sterile neutri-
nos [34], particles in a strongly-interacting dark sector
[35], or candidates motivated by potential problems on
small astrophysical scales such as self-interacting dark
matter [36, 37].

Each of these models and candidates comes with
its own set of parameters: particle masses, interaction
strengths, etc. While these parameters can in principle
be constrained by experiment, there is often little theo-
retical guidance as to which values should be preferred
and so choosing appropriate priors is often a challenge
[38–40]. Each model also provides its own set of experi-
mental signatures, requiring an ability to sort signal from
background, as we discuss shortly.

In what follows, we will focus on the standard WIMP
paradigm for DM, but of course many of the statistical
challenges we discuss are relevant also for other candi-
dates. Indeed, an interesting question arises if we remain
agnostic about the nature of the dark matter particle:
how do we compare models with very different param-
eter spaces and observational signatures? Most com-
monly used tools for model comparison require them to
be nested, so that a modification of the parameters of
one model yields the second model. We must therefore
be careful if we choose to compare fundamentally distinct
models such as the WIMP and the axion.

III. CONTEMPORARY CHALLENGES IN
DARK MATTER

Here we summarise some of the key observa-
tional challenges in the search for DM. This includes
searches for DM scattering of Standard Model particles
(Sec. III A), searches for the products from DM anni-
hilation (Sec. III B) and searches for DM production in
colliders (Sec. III C). We also discuss the impact of DM
on galaxy formation and the challenge of constraining its
properties with astronomical observations (Sec. III D).
Our goal is not to provide a thorough review of these
topics but to point out some of the statistical issues in-
volved and to provide a backdrop for the more detailed
discussion of statistical challenges in Sec. IV.

A. Direct searches

Direct searches are experiments searching for evidence
of interactions of individual dark matter particles in ter-
restrial detectors. This type of experiment can be carried
out for most dark matter candidates (except for very light
particles which have energies that are below the threshold
of existing particle detectors, and extremely heavy par-
ticles where the number density becomes too small and

interactions are too rare even in the case of high cross
sections).

1. WIMP Signatures

Here we concentrate on experiments originally devel-
oped for the detection of WIMPs or WIMP-like particles.
Due to simple scattering kinematics and the fact that
particles we can hope to detect would be gravitationally
bound to our galaxy (and thus must have a velocity of
less than ∼600 km/s [41]), the energy transfer through
interactions with electrons is at most in the eV range,
while interactions with nuclei yield typical recoil ener-
gies in the keV range. Thus, most of these experiments
concentrate on the identification of nuclear recoils (NR),
while discarding electron recoils (ER). However, recent
developments have yielded detectors with very low en-
ergy thresholds capable of detecting energies in the range
that can be expected from electron interacting dark mat-
ter [42, 43].

Other signatures that have been proposed for the iden-
tification of dark matter interactions include modulations
of the detected signal with time. Due to the motion of
the earth about the Sun and the Sun about the galaxy,
the relative velocity of the detector and the dark matter
particles changes over the course of the year, leading to
a weak modulation of the interaction rate [44].

If the direction of the incoming dark matter particles
can be identified in a detector, one would also expect a
modulation over the course of the day, since the rotation
of the earth about its axis leads to a change of the ori-
entation of the detector relative to the flux of incoming
dark matter particles [45].

2. Detection Channels

There are three main ways of detecting particles:

1. Particle interactions may ionize the target, and the
liberated charges can be collected; the amount of
charge detected allows for an estimate of the de-
posited energy. However, the amount of charge
produced is usually very different for different in-
teractions (ER interactions are usually much more
efficient in ionizing than NR interactions).

2. In some cases excited electrons de-excite via the
emission of photons in a process called scintilla-
tion. The fraction of energy converted to scintilla-
tion light is usually small (few percent) and again
the scintillation efficiency is usually much higher
for ER than for NR interactions.

3. Eventually, most of the energy of the interaction
is converted into thermal energy. This provides an
opportunity to measure the total energy transfer of
the interaction independent of the interaction type.
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Experiments have been designed to take advantage of
each of the detection channels, and in many cases two of
the channels are combined, allowing for the discrimina-
tion between ER background events and NR dark matter
candidate events.

Below we list a selection of current experiments, to give
an idea of the range of techniques:

• Inorganic scintillating crystals are used by the
DAMA/LIBRA experiment [46–48] which relies on
the annual modulation discussed above for signal
identification. Such a signal as indeed been ob-
served beyond any statistical doubt, but its inter-
pretation in terms of dark matter interactions is in-
consistent with the absence of a compatible signal
in other experiments. SABRE [49] and COSINE
[50] are upcoming attempts to test the DAMA sig-
nal using the same technique.

• Semiconductor detectors made out of Si (DAMIC
[51, 52]) and Ge (CoGeNT [53]) benefit from low
thresholds and very high intrinsic material purity.
CoGeNT observed a statistically significant rise of
the observed event rate towards low energy and
hinted at a possible interpretation as a dark mat-
ter signal. However, a careful reanalysis with a
more realistic background model was able to ex-
plain the observation with conventional interac-
tions [54]. This highlights that statistical signifi-
cance must be accompanied with a very good un-
derstanding of background and detector response
in order to avoid misinterpretations.

• Super-heated liquid detectors were developed by
COUPP [55] and PICASSO [56], now combined
to form the PICO collaboration [57]. The level of
superheat in these detectors is adjusted such that
they are insensitive to ER background and only NR
interactions trigger a phase transition.

• Cryogenic detectors combine the detection of ther-
mal energy with the measurement of a charge sig-
nal (SuperCDMS [58–61], EDELWEISS [62, 63]) or
scintillation light (CRESST [64, 65] and COSINUS
[66]) for an effective reduction of ER background.

• Gaseous detectors are either designed to reach very
low thresholds and thus access dark matter parti-
cles down into the sub-GeV mass range (NEWS-
G [67]) or aim at identifying the recoil direc-
tion (DRIFT [68], MIMAC [69], DMTPC [70] and
NEWAGE [71]).

• Noble liquid detectors often use dual-phase time
projection chambers, taking advantage of the high
scintillation light yield of Xe (LUX [72], XENON1T
[73, 74], PANDA-X II [75]) and Ar (DarkSide
[76, 77]) and the fact that electrons liberated in an
interaction can be drifted over long distances in the
inert material. Comparison of the initial scintilla-
tion light and the secondary scintillation produced

by the charges that are extracted from the liquid
into the gas phase allow for an effective ER back-
ground discrimination. In argon, an excellent ER
discrimination can also be achieved by just look-
ing at the pulse-shape of the scintillation light in a
simple liquid detector (DEAP [78]).

Finally, upcoming generations of these detectors (e.g.
LZ [79], XENONnT [80], DarkSide [81], PICO-500L [82],
SuperCDMS SNOLAB [83]) are aiming to push the sen-
sitivity to the ultimate limit given by NR interactions
from solar or atmospheric neutrinos.

3. Statistical methods in direct detection

A very good tool for the analysis of data from experi-
ments with very low background is the Optimum Inter-
val Method [84–86]. This gives the best sensitivity in the
presence of an unknown background. Since no assump-
tion is required about the origin or spectral shape of the
background, this is also a very conservative method. In-
stead of spectral information, other parameters (timing,
pulse shape parameters, etc.) could be used and it would
be very useful to have an expansion of this method to a 2-
or more-dimensional parameter space. This method can
by construction only produce limits on the dark matter
interaction rate and does not allow signal extraction.

Recently, many experiments have adopted an analysis
method in which known backgrounds are explicitly taken
into account. The spectral shapes of these backgrounds
are determined and included in a Maximum Likelihood
fit. This provides better sensitivity in the presence of a
background, but requires that the background features be
determined independently. It also allows the extraction
of a dark matter signal. A problem arises if there are
backgrounds whose distributions are not known, or not
well known.

Combining results from different experiments or in
some cases from different detectors in the same experi-
ment may also cause a challenge. In particular if the per-
formance and the backgrounds of the different detectors
are different, it is non-trivial to find an unbiased method
that extracts the best joint sensitivity (see Sec. V B for
a simple toy example).

B. Indirect searches

Indirect searches for DM mainly rely on a search for
the high-energy products of DM self-annihilation into
Standard Model particles (for a dedicated review, see
Ref. [87]). The WIMP hypothesis has been a com-
pelling driver of these searches, since thermal production
through annihilation in the early Universe implies ongo-
ing (albeit suppressed) annihilation today. Nonetheless,
WIMPs are not the only DM candidates that are ex-
pected to yield an indirect signal: asymmetric DM can
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annihilate with a relic symmetric DM component, and
axions and sterile neutrinos can decay or oscillate to stan-
dard model particles. Indirect searches make use of the
large DM concentrations present in astronomical bod-
ies including the Galactic centre, dwarf satellite galaxies,
galaxy clusters, as well as the full isotropic background
at high redshifts.

Signals of DM annihilation or decay can include:

1. Cosmic rays produced by nearby DM annihilation
in the MW halo can be detected by space obser-
vatories including PAMELA [88, 89] and AMS-02
[90], or balloon experiments such as ATIC [91, 92],
HEAO [93], TRACER [94], and CREAM [95]. Cos-
mic rays mainly probe local (within ∼1 kpc) cosmic
ray sources. Because they are composed of charged
particles, their arrival directions do not point back
towards their sources; rather, they diffuse through
the turbulent magnetic structures of the interstellar
medium (ISM).

2. Gamma rays, produced copiously by internal
bremsstrahlung, decay of heavy unstable DM an-
nihilation products, or interactions with the ISM,
are searched for with space-borne experiments such
as Fermi-LAT [96], DAMPE [97], INTEGRAL/SPI
[98] and Chandra [99] (among others). At very high
energies (and thus very high DM mass), ground-
based air Cherenkov telescopes such as MAGIC
[100], VERITAS [101], HESS [102] and in the fu-
ture CTA [4] can constrain signals from high-mass
DM.

3. Neutrinos from DM annihilation and decay can
be searched for at neutrino telescopes such
as SuperKamiokande [103], IceCube [104] and
ANTARES [105]. Because of the difficulty in de-
tecting neutrinos, these bounds are fairly weak.
However, neutrino telescopes are sensitive to DM
which is captured in the Sun via elastic scattering.
Since these particles sink to the Solar centre and an-
nihilate, the neutrino signal (or lack thereof) from
> GeV dark matter becomes one of the cleanest (if
model-dependent) indirect signals of DM [106].

4. Finally, DM annihilation at high-redshift into pho-
tons and charged particles change the ionization
floor during the post-recombination dark ages [107].
This extra fraction of free electrons rescatters CMB
photons, leading to a suppression in the angular
power spectrum at high multipoles, akin to a “blur-
ring” of the last scattering surface. Energy injec-
tion at lower-redshift (e.g., from DM decay or anni-
hilation in clusters) leads to an increase in correla-
tion on large scales. The polarization of the CMB
signal is particularly sensitive to this effect, because
Thomson scattering is polarized.

A common issue that plagues indirect searches for DM
is the simple fact that astrophysical backgrounds are

quite poorly understood. A DM-like signal will inevitably
come with a number of plausible astrophysical interpre-
tations.

Given known backgrounds, indirect searches neverthe-
less provide strong and fairly model-independent con-
straints on new physics. CMB bounds from Planck
[26], gamma ray observations of the Milky Way’s dwarf
satellite galaxies (e.g. [108]), and low-energy (∼10 GeV)
positron observations by AMS-02 [109] provide some
of the strongest limits on WIMP dark matter. Solar
neutrino observations provide the best limits on spin-
dependent WIMP-nucleus scattering [110, 111].

C. Collider searches

If non-gravitational interactions between DM and the
Standard Model (SM) exist, particles of DM could be
produced in proton-proton collisions at the Large Hadron
Collider (LHC) [112]. The LHC operates at the highest
center of mass energy and provides the highest luminosity
in current high energy experiments. Therefore, sensitiv-
ity to very low production cross-sections of DM particles
can be achieved at general purpose experiments like AT-
LAS [113] and CMS [114], while sensitivity to certain DM
models can be also obtained at specialized experiments
like LHCb [115] and ALICE [116]. As DM particles are
not expected to interact with the detector material, the
typical signature will have missing transverse energy in
the detector. The main backgrounds for the analyses
come from limited detector resolution, neutrinos in the fi-
nal states of SM processes, and non-collision background
processes.

Several approaches in DM searches are used at LHC
experiments [117]. The DM particles are not expected
to leave a signal in interaction with the material of the
detectors, but they can be observed if they are pro-
duced in association with a visible SM particle X(=
g, q, γ, Z,W, h). These are the so-called “mono-X” or

�ET+X searches, where �ET is the missing transverse en-
ergy in the detector. Another approach in DM searches
is to use effective field theories (EFT). They rely on the
assumption that production of DM occurs through a con-
tact interaction, involving a quark-antiquark pair (or two
gluons) and two DM particles. Kinematics of �ET+X
models can significantly differ from the contact interac-
tion approach. EFT assumes a heavy mediator in the
interaction of DM and SM particles, but if the media-
tor is not heavy, models that explicitly include media-
tors need to be used. They provide an extension to the
EFT approach, and use “simplified models”, constructed
for specific particles and their interactions. Models us-
ing a mediator can predict significantly different signals,
where decays back to SM particles are viable. In this
context, due to different kinematics, analyses can be op-
timized for two types of signatures. The first use the

�ET+X signature, and can be interpreted using both the
EFT and simplified models, and the second use simpli-
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fied models that probe DM – SM couplings. A number
of additional physics scenarios account for DM. These
include e.g. the two Higgs doublet model (2HDM) [118],
or various models in the framework of Supersymmetry
(SUSY) [119–124].

A few assumptions are made in DM searches at LHC
experiments. To ensure that DM particles are produced
in p-p collisions, it is assumed that interactions between
SM and DM particles exist. Most of the analyses assume
DM to be a weakly interacting massive particle (WIMP),
which is stable on collider time scales and does not inter-
act with the detector material. Typically, minimal flavor
violation (MFV) is assumed [125], which results in the
same flavor structure of couplings of DM to ordinary par-
ticles as in the SM. Results of�ET+X and simplified mod-
els that probe DM – SM couplings are typically presented
using vector and axial-vector mediators; fixed values of
mediator couplings to quarks, leptons and DM; mediator
width set using the minimal width formula; and the me-
diator and DM particle masses as free parameters [126].
Other physics scenarios have their results presented as
a function of free parameters in the model under study,
e.g. Higgs branching ratio or SUSY particle masses, for
2HDM and SUSY models respectively.

1. Collider signatures

A wide range of models are tested and dedicated DM
searches are performed at ATLAS and CMS. These in-
clude the �ET + X and searches using simplified models
that probe DM - SM couplings. Since the interactions
of DM with SM particles are not known, a number of
additional scenarios are considered:

• In the �ET+X search, DM is produced in associ-
ation with the particle X coming from an Initial
State Radiation (ISR) jet, photon, W boson or
Z boson. The DM production cross-section scales
with quark-X coupling, and the signal is expected
as an excess in the tail of the �ET distribution. The
analysis typically has a requirement on �ET , and
a selection for the particle X, and the interpreta-
tion is done for different mediator and DM particle
mass. The highest cross-section is for gluon ISR,
and the highest sensitivity in the mediator and DM
particle mass can be achieved using the �ET+jet
analysis, compared to �ET+γ, �ET+Z and �ET+Z
searches.

• In analyses that probe the DM - SM couplings, the
mediator can decay back to SM particles. Then
the signal appears as a localized excess in the in-
variant mass distribution of two fermions. Typical
searches perform a scan on a di-fermion invariant
mass distribution. The search for dijet resonance
represents one of the most important analyses due
to the high production cross-section and a num-
ber of approaches are used, while the dilepton res-

onance search is well motivated by the clean sig-
nature which provides strong constraints for small
mediator-lepton couplings. The exclusion is done
using different sets of assumptions on the DM, me-
diator and couplings. For an axial-vector mediator,
dijet searches have smaller sensitivity for very low
mediator masses, but very high exclusion for high
mediator masses, for any mass of DM particles.

• At LHC energies there is no top quark content in
protons, and a mono-top final state is a clear sig-
nature of new physics, and represents an important
scenario in DM searches.

• DM can be produced in association with heavy fla-
vor particles, and interesting searches are �ET+tt̄
and �ET+b.

• Since ISR of Higgs bosons is strongly suppressed,
models where the Higgs couples to DM represent
an interesting scenario. The typical signature has
visible decays of the Higgs (e.g.H → bb orH → γγ)
and �ET .

• Invisible Higgs decay occurs for a model where DM
couples to the Higgs boson, and the mass of the
DM particle is smaller than half of the Higgs boson
mass. This gives rise to an ‘invisible’ branching
fraction for the Higgs boson.

• The two Higgs doublet model with a light pseu-
doscalar mediator which decays to DM produces
an enhanced �ET+X signature. Due to resonant
production of heavy scalar and heavy pseudoscalar
Higgses, enhancement occurs in the �ET+Z and

�ET+h channels.

• Supersymmetry (SUSY) predicts a DM candidate
(e.g. neutralino, gravitino), and systematic searches
are done for different productions of SUSY parti-
cles. A typical signature has a long chain of cascade
decays of SUSY particles, with the lightest SUSY
particle (LSP) at the end of the chain.

2. Statistical approaches at the LHC

In LHC searches analyses are optimized to maximize
signal and reduce the background in the signal region
(SR) selection [127]. The SM background is estimated us-
ing data-driven techniques, from the control region (CR)
selections, designed to be dominated by one type of SM
background, and orthogonal to the SRs, where normal-
ization factors for each background are estimated using
data. Statistical interpretation is performed using the
frequentist approach, where a hypothesis is tested us-
ing statistics only. For an analysis with multiple bins
in the discriminating variable distribution, the likelihood
for the observed number of events is modeled by the
Poisson distribution, which considers the expected and
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observed number of events in each bin, and nuisance pa-
rameters to account for uncertainties in each bin as:

L(µ, θ) =

N∏
i=1

P (µsi(θ) + bi(θ))×
M∏
j=1

Pj(θ) , (1)

where µ is the signal strength, s is the expected number
of signal events, b is the expected number of background
events, θ are the nuisance parameters, N is the number of
signal region bins, and M is the number of backgrounds
considered.

In order to quantify a possible excess, a local p-value
is calculated using the profiled log-likelihood ratio test
statistic

qµ = −2 ln
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
, (2)

where L(µ,
ˆ̂
θ) maximizes the likelihood for a specific sig-

nal strength µ, and L(µ̂, θ̂) is the global maximum likeli-
hood. For the case of a statistical test for the discovery
of a positive signal, a one-sided likelihood for the back-
ground hypothesis only (µ = 0) is used:

q0 =

{
−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(3)

where λ is the likelihood ratio [128]. The test statis-
tic’s distribution asymptotically follows a χ2 distribu-
tion [129], and the p-value is calculated as an integral
for values higher than the observed test statistic q0,obs.
The significance is calculated using the inverse Gaussian
cumulative distribution function (Z = Φ−1(1 − p)). For
a case of high significance, the global significance needs
to be calculated, as a probability for finding such an ex-
cess from statistical fluctuations of the background when
looking in a large number of SR bins. As the number
of SR bins considered increases, the global significance
becomes smaller.

If no significant excess is observed, upper limits on
the visible production cross-section are set using the one-
sided profile log-likelihood (with the signal strength µ as
a free parameter) using the test statistic:

qµ =

{
−2 lnλ(µ) µ̂ ≤ µ,

0 µ̂ > µ.
(4)

To set exclusion limits, the CLS technique [130] is used.
It accounts for a small number of expected signal events
compared to the number of expected background events.
Exclusion limits are calculated using:

CLs =
ps+b
pb

, (5)

where ps+b = P (q ≥ qobs|s + b) using µ = 1, and
pb = P (q ≥ qobs|b) for µ = 0. The pb is a conditioning fac-
tor to account for the goodness of fit of the background-
only hypothesis, designed to prevent downwards fluctu-
ations in the background leading to the unreasonably

strong exclusion of signal models. The exclusion limits
are typically set at 95% CL, for each DM model point,
and exclusion regions are drawn for CLs ≤ 0.05.

With recent developments of machine learning (ML)
techniques, a number of improvements are being devel-
oped in DM searches. Firstly, performance in object re-
construction can be improved using ML which allows for
better signal separation. A number of applications are
being implemented for e.g. lepton reconstruction or b-
jet tagging. Secondly, signal separation in the analy-
ses can be improved using ML techniques with a num-
ber of new methods being investigated for DM searches,
e.g. Boosted Decision Trees [131], Deep-learning Net-
works [132], Generative Adversarial Networks [133], etc.
Further details of ML techniques in DM searches can be
found in Sec. IV B 3.

Collider searches represent an important avenue in
DM searches, as they provide precise constraints on DM
masses, for given assumptions on the mediator and cou-
plings. The �ET+jet and a dijet resonance searches are
expected to have good sensitivity to many DM models us-
ing the full Run 3 integrated luminosity [134]. If DM is
not found, this would represent an important constraint.
Current analyses use simplified models for optimization
but more complex models of DM interactions need to
be considered for the future. Additionally, initial as-
sumptions on the DM particles need to be relaxed, e.g.
additional scenarios with long-lived DM particles need
to be considered to extend the reach of DM searches.
Statistical interpretation represents a crucial aspect in
quantifying the significance of a potential excess and for
setting exclusion limits. In addition, better sensitivity
can be achieved through improved object reconstruction
and signal separation by using modern machine learning
techniques.

D. Gravitational probes and structure formation

Predictions for the distribution of large scale structure
from cold dark matter (CDM) cosmology are in excellent
agreement with observations on large scales [135]. On
smaller scales, it may be possible to probe the micro-
physics of DM by studying the properties of galaxies and
comparing with the results of numerical simulations of
galaxy formation [136].

For around a decade, a number of discrepancies be-
tween the results of numerical simulations and obser-
vations of galaxies have been put forward as indicators
of physics beyond the standard CDM paradigm. These
“small-scale” problems include the presence of bulge-less
disk galaxies [137], the core-cusp problem [138, 139], the
missing satellites problem [140] and the Too-Big-To-Fail
problem [141, 142]. However, many of these issues were
first observed in DM-only simulations. The inclusion of
gas and stars (and associated feedback mechanisms) in
more realistic hydrodynamical simulations has alleviated
many of these “small-scale” tensions (see e.g., [143–150]).
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The effects of baryonic feedback must be included in
any realistic simulation of galaxy formation, even those
which include non-standard dark matter models. These
include Self-Interacting dark matter [151–154] (originally
invoked to solve the core/cusp problem [155, 156]) and
warm dark matter [157–159] (which may suppress struc-
ture on small scales). Simulations involving even more
exotic models, such as ultra-light fuzzy dark matter
[160, 161], could yield testable predictions but are still
in their infancy. In all cases, the complicated (and some-
times poorly understood) sub-grid physics of baryonic
feedback can make it difficult to derive strong constraints
on the DM properties from galaxy simulations.

Perhaps the most promising probe will be in the prop-
erties of ultra faint dwarf galaxies, many more of which
will be detected and studied in the LSST-era [162–164].
In such galaxies, the effects of baryonic feedback tend to
be less pronounced, and thus small-scale problems (such
as the presence of cored density profiles) in ultra faint
dwarfs would be strongly suggestive of new physics be-
yond the CDM paradigm [165, 166]. Unfortunately, mod-
eling uncertainties in dwarf galaxies means that detecting
the presence of large cores may be difficult. In particular,
different approaches, assumptions and priors tend to pro-
duce different estimates for the density profiles of dwarfs
[167, 168], even when the same data set is used. Rec-
onciling these estimates in a statistically meaningful way
represents a key challenge for using galaxy formation to
probe the properties of DM (see Sec. IV B 1).

This challenge has motivated the development of new
techniques to probe even smaller DM structures. Due to
their small masses and shallow gravitational potentials,
these structures are likely to be devoid of stars and gas,
and are thus essentially dark [8, 169]. Techniques to de-
tect these small DM subhalos thus rely on the latter’s
gravitational influence on their surrounding. These in-
clude phase-space perturbations to local stellar streams
[170–184], to the Milky Way disk [185, 186], or to halo
stars [187] that could be detected with precise astromet-
ric observations such as those enabled by the Gaia satel-
lite [10, 11]. Other techniques rely on the gravitational
lensing signatures of these small, dark subhalos, both
in our local neighborhood [188–190], and at cosmologi-
cal distances from our galaxy (see e.g. Refs. [191–206]).
Although promising, these different methods of probing
the small-scale DM structure all come with their own
statistical challenges, including the delicate balance be-
tween allowing for enough model complexity while avoid-
ing over-fitting the noise.

IV. STATISTICAL CHALLENGES AND
APPROACHES

The two important reasons for scientists to turn to
statistics can be summarized as 1) discovery and 2) pa-
rameter estimation. In this review, we will focus mainly
on the first question, that of discovery, since it is ob-

viously the ultimate goal of dark matter searches. The
question therefore becomes one of model comparison, i.e.,
answering the question: given available data, does this
theory of dark matter do better than the null hypothesis
H0?

The statistical approach to such a problem then de-
pends on a number of criteria: whether H0 is the pre-
sumed model, or if we are comparing two equally “plau-
sible” alternatives (for example, the normal vs inverted
neutrino mass hierarchies); whether H0 is a special case
of – nested within – the alternative; whether parameters
have unknown or meaningless values under H0, and fi-
nally whether one adopts a Bayesian or frequentist frame-
work.

The p-value is the most commonly used discovery crite-
rion. In this framework, the conclusion of the statistical
test for discovery is based on a test statistic TS which has
the property that larger values of TS represent stronger
evidence against H0 and in favor of H1. The p-value has
the intuitive definition

p = Pr(TS(y) ≥ TS(yobs)|H0), (6)

or: the probability that the test statistic TS(y) is more
extreme than the observed TS(yobs) under the null hy-
pothesis. The logarithm of the likelihood ratio

−2 log
maxθPH0(y|θ)
maxθPH1

(y|θ) (7)

is a convenient test statistic, since Wilks’ theorem tells us
that for nested models, and under certain regularity con-
ditions, its probability distribution follows a chi-squared
distribution with degrees of freedom equal to the differ-
ence in the dimension of the parameter space under H0

and H1 [207].
More often than not, Wilks’ theorem will not be ap-

plicable. This is usually due to comparison between non-
nested models, or boundary issues where a given param-
eter has no meaning under H0. In these cases, the “boot-
strap” method of generating a PDF via Monte Carlo sim-
ulation must be used, which can be prohibitively expen-
sive when searching for a 5-sigma effect.

The question that a phenomenologist seeks to answer
when performing a statistical analysis is: how likely is
the model to be true, given the data. However, p-values
do not measure the relative likelihood of hypotheses, nor
do they accurately reflect P (θ|y). Instead, they can be
viewed as a measure of the “false alarm” rate: how often
one should expect data this extreme if the null hypothesis
is true. However, a large p-value does not validate the
null hypothesis H0, nor does a small p-value, in itself,
suggest that P (H0|y) is small. In this sense, the p-value is
anti-conservative: typically p � P (H0|y), meaning that
interpreting the p-value as the probability that the null
hypothesis is true may significantly overstate evidence for
New Physics.

One way to help reduce this confusion is to report
(in addition to the p-value) what is referred to as
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P (H0|y)min. Here, P (H0|y)min is a lower bound on the
probability of the null hypothesis given the data P (H0|y):
the smallest possible value of P (H0|y) which can be ob-
tained over a large class of priors. These two summary
statistics provide different information about the prob-
lem at hand. In addition, reporting both numbers – p
and P (H0|y)min – highlights to the reader that they are
not the same thing and encourages a more careful inter-
pretation of the results. We present a toy example of this
in Sec. V C.

On the practical side, it is not always trivial to find
the maximum likelihood, especially when the parameter
space is complicated and high-dimensional. A number
of tools are available for efficiently exploring parameter
spaces and calculating likelihoods, posterior probabilities
and Bayesian evidences. These include: Markov Chain
Monte Carlo samplers such as CosmoMC [208] and GreAT
[209]; ensemble samplers such as emcee [210]; nested
samplers such as MultiNest [211–213] and POLYCHORD
[214]; differential evolution samplers such as Diver
[215]; and global optimizers such as AMPGO2 [216].
A number of these were compared in Ref. [215] but in
general the best tool will depend (unfortunately) on the
particular problem under investigation.

The rest of this section is split into two subsections.
First we describe the details of a number of novel tech-
niques that were primarily developed to overcome issues
in modern DM data analysis. Second, we discuss recent
progress in tackling some specific statistical problems in
DM searches, as well as a number of opportunities and
challenges that still remain in the field.

A. Novel Techniques

1. Selecting between non-nested models

How do we perform model selection between wildly
different, non-nested models? For example, how do we
choose which DM model (axions vs. WIMPs; scalar vs.
fermion) is preferred by the data when the parameter
spaces differ? In a frequentist framework, Wilks’ the-
orem fails in this setting, and thus comparisons based
on the χ2 approximation of the Likelihood Ratio Test
(LRT) become meaningless. In a Bayesian framework,
comparing evidences can be misleading, as the compar-
ison between prior volumes becomes arbitrary. For ex-
ample, the weight of a decade in axion masses versus a
decade in WIMP masses are certainly not equivalent to
one another.

One proposed solution is to make the models nested by
means of a comprehensive model which includes the mod-
els to be tested as special cases [217, 218]. For instance,

2 See http://infinity77.net/global_optimization/ampgo.html

for an implementation.

φ(Ac) = 1 φ(Ac) = 2 φ(Ac) = 3

FIG. 1. From Ref. [217]. Euler characteristic in two dimen-
sions.

let f(y,ψ) and g(y,θ) be the models to be compared with
vectors of parameters ψ and θ respectively. Consider the
mixture model

(1− η)f(y,ψ) + ηg(y,θ) (8)

where η ∈ [0, 1]. Despite the fact that η does not have
any physical interpretation (as the data are assumed to
be generated by either f or g), the asymptotic normality
of its Maximum Likelihood Estimate (MLE) allows one
to approximate the distribution of the LRT when testing

H0 : η = 0 vs η > 0. (9)

Specifically, as described in Refs. [219, 220], in order to
circumvent the problem of non-identifiability of θ, one
can construct the profile LRT statistic for each value of
θ fixed, i.e.,

LRT (θ) = −2

n∑
i=1

log
f(yi, ψ̂0)

(1− η̂θ)f(yi,ψθ) + η̂θg(yi,θ)
,

(10)

where ψ̂0 is the MLE of ψ under H0, η̂θ and ψθ are
the MLEs of η and ψ under H1 with θ fixed. Let-
ting θ vary, {LRT (θ)} corresponds to a random field3

with index θ. A p-value for the test in (9) is given by
P (supθ{LRT (θ)} > c), where c is the maximum of (10)
observed over a grid of values for θ. Although the asymp-
totic distribution of LRT (θ) is known to be a 50:50 mix-
ture of χ2

1 and zero [221], we can only approximate the
asymptotic distribution of the supremum of the random
field {LRT (θ)}.

One possible way to do so is to consider the so-called
Euler characteristics of the set Ac of points Ac = {θ ∈
Θ : LRT (θ) > c}. We denote with φ(Ac) the Euler char-
acteristic of Ac. In two dimensions, φ(Ack) corresponds
to the numbers of connected components less the number
of holes (see Figure 1). In an arbitrary number of dimen-
sions one can consider a quadrilateral mesh over Ac. In
this case, φ(Ac) is computed by adding and subtracting

3 A random field is a stochastic process where the index is multi-
dimensional.

http://infinity77.net/global_optimization/ampgo.html
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hypercubes of increasing dimensionality (i.e., number of
points − number of edges + number of squares − num-
ber of cubes + number of 4-dimensional hypercubes etc).
The p-value of interest can then be computed as

P (sup
θ
{LRT (θ)} > c) ≈ E[φ(Ac)]. (11)

As originally investigated by Ref. [220], the advantage
of referring to the expected Euler characteristic E[φ(Ac)]
in Eq. (11) is that it can be estimated via a small Monte
Carlo simulation of {LRT (θ)} under H0 as described be-
low. Following Ref. [222], we write E[φ(Ac)] as

E[φ(Ac)] =

D∑
d=0

Ld(Θ)ρd(c), (12)

where D is the dimensionality of θ, and the function-
als ρd(c), namely the Euler characteristic densities, are
known in the statistical literature and only depend on the
marginal distribution of each component of {LRT (θ)},
i.e., the above-mentioned 50:50 mixture of χ2

1 and zero.
For instance, if D = 2, Eq. (12) takes the form

E[φ(Ac)] =
c

1
2 e−

c
2

(2π)
3
2

L2(Θ)+
e−

c
2

2π
L1(Θ)+

P (χ2
1 > c)

2
L0(Θ).

(see Ref. [217] for more details.) The functionals Ld(Θ)
in Eq. (12) are known as the Lipschitz-Killing curvatures
and their analytical expression for d > 0 is typically hard
to compute in practice. However, this problem can be
overcome using the following steps:

• Step 1: Simulate y1, . . . , yn from f(y,ψ) 100–1000
times via Monte Carlo.

• Step 2: For each Monte Carlo replicate in Step 1
compute (10) over a grid of values for θ.

• Step 3: Select c1, . . . , cD arbitrary small thresh-
olds.

• Step 4: For each ck, k = 1, . . . , D, in Step 1 com-
pute E[φ(Ack)] over the Monte Carlo simulation
obtained in Steps 1-2.

• Step 5: Obtain the solutions L∗d(Θ) of the system
of D linear equations

E[φ(Ac1)]− L0(Θ)ρ0(c1) =
∑D

d=1 Ld(Θ)ρd(c1)
E[φ(Ac2)]− L0(Θ)ρ0(c2) =

∑D
d=1 Ld(Θ)ρd(c2)

...
E[φ(AcD )]− L0(Θ)ρ0(cD) =

∑D
d=1 Ld(Θ)ρd(cD).

• Step 6: Compute E[φ(Ac)], and consequently
P (supθ{LRT (θ)} > c), as

E[φ(Ac)] =
L0(Θ)P (χ2

1 > c)

2
+

D∑
d=1

L∗d(Θ)ρd(c),

where L0 is the Euler characteristic of Θ, (e.g. it is
one if Θ is a disc, a square, a cube or it is zero if
Θ is a circle).

A more detailed discussion on the computation of the
expected Euler characteristics E[φ(Ack)] is given in
Ref.[217]. Applications to realistic simulated data from
the Fermi LAT are discussed in Refs. [217, 218].

2. Exploiting the count statistics of the signal

DM detectors are typically counting experiments, i.e.
looking for signal events above a background.

In the case of DM indirect detection the observed signal
is pixelized observed counts, e.g. as seen in data from
the Fermi -LAT gamma-ray telescope. In this case the
data would be a Poisson realization of the modeled dark
matter signal, which could represent emission from large-
scale structures such as the smooth Galactic halo, as well
as point/extended structures such as dwarf spheroidal
galaxies, extragalactic halos and Galactic subhalos.

The associated likelihood is then a product of the Pois-
son probabilities associated with the observed counts npi
in each pixel of the region-of-interest:

L(d|θ) =
∏
p

µp(θ)n
p

e−µ
p(θ)

np!
, (13)

where d denotes the data, θ represents the set of model
parameters (e.g. modeled backgrounds or signal) and
µp(θ) is the number of expected counts in a given pixel
and energy bin, usually characterized through spatial
templates which model the emission associated with one
or more physical process and/or source class.

A particular problem with indirect detection is distin-
guishing the signal events on top of a complex and uncer-
tain background. One particular background of common
interest comes from point sources in the signal region of
interest, for example millisecond pulsars, which have non-
power-law gamma-ray spectra similar to those expected
from annihilation of weak-scale DM. Typically, known
point sources are masked or individually modeled in an
analysis, but this cannot be done when point sources can-
not be detected individually. In this case, the collective
emission of dim, sub-threshold point sources could be
confused with a diffuse DM signal.

In the presence of unresolved sources with unknown
positions, detections of multiple photons from the same
pixel no longer behave as independent events, as the
detection of one photon increases the probability that
a source is present in the pixel. The likelihood conse-
quently deviates from the Poissonian form, and is in-
stead characterized by non-Poissonian noise in the data.
Following [223], the non-Poissonian likelihood can be
conveniently cast in the language of probability gen-
erating functions, which for a discrete probability dis-
tribution with pk with k = 0, 1, 2, . . . are defined as
P (t) ≡ ∑∞k=0 pkt

k and allows us to recover the associ-

ated probabilities as pk = 1
k!

dkP (t)
dtk

∣∣∣
t=0

. Exploiting the

fact that the probability generating function for a sum of
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independent random variables is simply the product of
the respective generating functions, the generating func-
tion for a smooth (Poissonian) template (associated with
the likelihood in Eq. 13) takes the form

PP(t;θ) =
∏
p

exp [µp(θ)(t− 1)] , (14)

while for a non-Poissonian template characterizing the
distribution of an underlying unresolved point source
population this takes the form

PNP(t;θ) =
∏
p

exp

[ ∞∑
m=1

xp,m(θ)(tm − 1)

]
, (15)

where the xp,m have the interpretation of being the av-
erage number of point sources contributing m photon
counts within a pixel p. Further details on characteriz-
ing the non-Poissonian likelihood associated with a point
source population, and numerical recipes, may be found
in [224–226].

While DM emission from individual sources has been
traditionally studied in the context of Poissonian tem-
plate fitting [108, 227–232], a comprehensive study
taking into account all potential DM emitters (dwarf
galaxies, sub- and above-threshold extragalactic halos,
sub-threshold subhalos as well as the smooth Galac-
tic halo) would require accurate modeling of the un-
derlying sources and robust characterization of the
(non-)Poissonian signal likelihood.

3. Euclideanized signals

Efficient forecasting of experimental sensitivities is key
for developing the most relevant searches for dark mat-
ter particles. The sensitivity of future experiments can
be quantified in various ways. This includes the discov-
ery reach, expected exclusion limits, and — assuming a
significant detection has been made — the ability to dis-
criminate various models and regions in the model pa-
rameter space. Traditionally, the latter is done by defin-
ing a number of ‘benchmark points’ in the model param-
eter space of interest, and studying with simulated mock
data how well this scenario – if realized in nature – could
be constrained with the experiment at hand.

The ‘Euclideanized signals’ approach that was intro-
duced in Ref. [233] provides a way to study the model
discrimination power of future instruments in a funda-
mentally benchmark-free way. This is achieved by effi-
cient approximation methods for calculating the expected
log-likelihood ratios, which in turn allow us to consider
a very large number of reference points in the param-
eter space simultaneously. Instead of considering, say,
10 benchmark points, one would consider thousands or
millions of points, covering the entire parameter space of
interest exhaustively.

Euclideanized signals are a mapping of a compli-
cated model parameter space into a (typically high-
dimensional) space where statistical distinctness corre-
sponds to the Euclidean distance. Various clustering al-
gorithms allow for the efficient pair-wise comparison and
grouping of points according to their Euclidean distance,
even for millions of points. Once the mapping is done, it
is then easy to study which parts of the parameter space
are in principle distinguishable from other regions.

In Ref. [234] a mapping of model parameters θ 7→ x
was defined, which allows one to approximate the log-
likelihood ratio with Euclidean distances,

TS(~θ′)D(~θ) ≡ −2 ln
L(D(~θ)|~θ′)

max
~θ′′
L(D(~θ)|~θ′′)

' ‖~x(~θ)− ~x(~θ′)‖2 .

(16)
This mapping is valid for Poisson likelihoods (which triv-
ially includes also Gaussian likelihoods), with arbitrary
signal parameterization, and general background uncer-
tainties modelled as Gaussian random fields. In Ref. [234]
it was shown with randomly generated signal and back-
ground models that the approximation technique yields
estimates for the log-likelihood ratio that are correct to
within 20% (for up to 5σ distances).

The Euclideanized signal method makes two analyses
computationally possible:

• Benchmark-free forecasting: an exhaustive study
of the model-discrimination power of experiments
without resorting to a small number of benchmark
scenarios,

• Signal diversity: estimating the number of dis-
criminable signals that are predicted by a specific
model.

We further discuss these in detail below focusing primar-
ily on benchmark free forecasting.

Benchmark-free model comparison — Here we want to
calculate, based on the collection of Euclideanized sig-
nals, whether two subsets of a global model can exist
within a confidence region, with radius r, of each other.

We define the radius as rα(M) =
√
χ2
k=d,ISF(1− α)

where χ2
k=d,ISF is the inverse survival function of the Chi-

squared distribution with k = d degrees of freedom such
that for k = 2 and α = 0.046 (corresponding to 95.45%
CL) r0.046(M) = 2.486. Here the two subsets of the
global model correspond to the distinct models (A and
B) we wish to compare and distinguish. Both model A
and B are nested within (subsets of) the global model.

If within r0.046(M) of a parameter point from model
A there exists a parameter point from B, then the point
in A is not discriminable from B. On the other hand,
if there exists no point from model B within r0.046(M)
then the models can be in principle distinguished at 95%
CL. Here is a step by step guide to performing these
calculations with reference to a direct detection (DD)
example as presented in Ref. [233].
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• Step 1: Sample the parameter space of M, calcu-
lating signals for each point. For the problem at
hand, we found that one obtains stable results if
there are more than around 10 points within every
1σ (68% CL) confidence contour. In the case of DD,
the global model M may correspond to the non-
relativistic effective field theory operators O1 and
O4 (these are simply the usual spin independent
and dependent interactions, respectively) [235]. We
then have a three-parameter model i.e. the mass
of the dark matter particle and the two individual
DM-nucleon couplings to each operator. The sub-
models A and B then correspond to two boundaries
of M where one or the other of the DM-nucleon
couplings is set to zero.

• Step 2: Euclideanize the signals using experimen-
tal parameters such that each parameter point has
an associated new vector ~xi. This step can be done
using swordfish [234].

• Step 3: For each point i in model A (i.e. points

with model parameters ~θi corresponding to model
A), find all points within r0.046(M). We denote
the set of model parameters for these neighboring

points as {~θ(i)j }.
The number of degrees of freedom used to calcu-
late r0.046(M) for model comparison is equal to
the difference in the dimensionality of the models
of interest. If we consider comparison of the over-
all modelM, which has d degrees of freedom, with
the sub-model A with d′ then k = d− d′. For the
DD example, d = 3 and d′ = 2 therefore k = 1 and
r0.046(M) = 2.0.

• Step 4: Each point i is then defined as discrim-
inable or not according to the list of parameter

points {~θ(i)j }. If {~θ(i)j } contains a point from model
B then i is not discriminable and vice versa.

In this way we are able to make benchmark-free state-
ments about the discriminability of models such as those
presented in Ref. [233] and shown in Fig. 2.

Signal Diversity — The number of discriminable mod-
els is approximately defined as the number of points one
could fit in to a parameter space whilst maintaining 2σ
discrimination between all points. We can visualize these
regions by tightly packing confidence contours into the
parameter space, as is shown in Fig. 3 for the case of a
typical direct detection experiment. As can be seen in
Fig. 3, this number is O(10− 100) but calculating ναM,X

(defined below) in higher dimensional models with mul-
tiple experiments can be difficult. We therefore estimate
the quantity using the following method:

• Step 1: Same as previous step 1

• Step 2: Same as previous step 2
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FIG. 2. Taken from Ref. [233]. Blue and Orange Lines: 90%
confidence limits (CL) on the standard spin-independent cross
section for XENON1T (2017) [73], and a future experiment
with 100 times the exposure. To the left/below each broken
line, it is not possible to discriminate an O1-signal (with the
indicated cross-section and DM mass) from the corresponding
best-fit O4, O11 or magnetic dipole signal. Above/right of
each broken line, such a discrimination is possible with at
least 2σ significance. All lines include DM halo uncertainties.

• Step 3: Calculate the number of points wi within
r0.046(M)/2 of the point ~xi. The number of degrees
of freedom is equal to the number of free parame-
ters of the model. Again, for the DD example we
have a three parameter model therefore k = 3 and
r0.046(M) = 2.833.

• Step 4: The volume (here defined) is then approx-
imated by ν0.046M,X = cff

∑
i wi where cff is a filling

factor dependent on the dimensionality.

We can visualise the diversity and global degener-
acy breaking abilities of experimental configurations (for
nested models) using Infometric Venn diagrams as intro-
duced in Ref. [233].

4. ABC: when you can’t actually afford a likelihood

The increasing complexity of the models we use to de-
scribe physical processes have made the computation of
a likelihood often difficult to handle or even impossible.
Fortunately many methods have been developed to allow
for the forward simulation of these complex situations,
for example calculating the end state observables from an
LHC event or the distribution of galaxies from a ΛCDM
cosmological simulation.

Approximate Bayesian Computation (ABC) is a
computationally-intensive framework for approximating
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FIG. 3. Taken from Ref. [233]. Blue and Orange Lines: 90%
confidence limits (CL) on the standard spin-independent cross
section for XENON1T (2017) [73], and a future experiment
with 100 times the exposure. Green Ellipses: 68% confidence
contours for tightly packed set of points. Approximately de-
scribes the number of discriminable signals in the parameter
space between blue and orange lines.

a Bayesian posterior distribution when a likelihood func-
tion is not available or intractable [236, 237]. The basic
ABC algorithm was introducted in [238, 239], but was
also hinted at conceptually in [240]. ABC has proved to
be a useful tool for several problems in astronomy (e.g.
[241–244]).

The basic ABC algorithm proceeds simply, with only
a few steps. The overall idea is to use a forward model
to generate a simulated dataset given draws from the
prior distribution(s). If that simulated dataset is “close
enough” to the real observations, then the draws from the
prior(s) that produced the simulated dataset are consid-
ered “good” draws, and those values are retained. If not,
the values are discarded. This is repeated until enough
draws from the prior are accepted, and those values are
used to approximate the Bayesian posterior.

More precisely, the steps of the basic ABC algo-
rithm proceed as follows given unknown parameter(s)
θ, prior(s) p(θ), observations yobs, and forward model
F (y | θ):

(i) sample θprop ∼ p(θ),

(ii) compute yprop ∼ F (y | θprop),

(iii) if yprop = yobs, then keep θprop, if not, discard θprop,

(iv) repeat until desired number of values of θprop have
been accepted.

Rather than waiting until yprop is equal to yobs exactly,
lower-dimensional summary statistics are used. For ex-
ample, rather than comparing the full set of observations,

one could compare only their sample means. The sum-
mary statistics are crucial for good performance of the
ABC algorithm. The summary statistics will only be as
good as the amount of information they contain about
the data. There are some methods for developing sum-
mary statistics (e.g. [245, 246]), but physically-motivated
summary statistics can also be effective. The perfor-
mance of the summary statistics and distance functions
should be checked in a similar scenario where the true
posterior is available (which will likely require a simpli-
fied model).

In order to define what is meant by “close enough”,
a tolerance (or tolerances) ε is set. Then for distance
function ∆, θprop is accepted if ∆(yobs, yprop) ≤ ε. The
desire is for ε to be small.

For observations yobs with summary statistic(s)
S(yobs), distance function ∆, (small) tolerance ε, and
desired particle sample size N , an ABC posterior can be
based on {θ(1), θ(2), . . . , θ(N)} = {θ(i)}Ni=1 {θ(i)}Ni=1 from
Algorithm 1.

Algorithm 1 Basic ABC Algorithm

1: for i = 1 to N do
2: while ∆ (S(yobs), S(yprop)) > ε do
3: Propose θprop by drawing θprop from prior p(θ)
4: Generate yprop from forward process F (x | θprop)
5: Calculate summary statistics {S(yobs), S(θprop)}
6: end while
7: θ(i) ← θprop
8: end for

Selecting a small enough ε can be challenging be-
cause setting ε too low leads to a lower acceptance rate
and hence (possibly significantly) more computational re-
sources and time. One popular option for getting around
this issue is to use the ABC-Population Monte Carlo
(ABC-PMC) algorithm proposed in [247]. The general
idea with ABC-PMC is to set up a sequential version
of ABC that uses the accepted particles from the pre-
vious iteration as the proposal for the current iteration,
rather than drawing from the prior distribution. This
provides improved proposals at each iteration, which is
coupled with a shrinking tolerance at iteration t, εt. The
important point is that in order to target the correct pos-
terior distribution (assuming everything else is selected
correctly), importance weights need to be computed at
each iteration. Details about the importance weights and
the specific steps of the algorithm can be found in [247].
Ref. [244] also has a nice overview of the ABC-PMC with
an astronomy application and a Python implementation.
There are other sequential extensions of the ABC algo-
rithm (e.g. [248, 249]).
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B. Progress and Challenges

1. Quantifying nuisances

The signal expected in both direct and indirect
searches depends sensitively on quantities of astrophys-
ical nature: for indirect searches the DM distribution
within the target (along the line of sight), and for di-
rect searches, the amount of DM in the proximity of the
Sun/Earth, as well as its velocity distribution (in prin-
ciple also important for indirect searches, but generally
ignored in simplified scenarios). The lack of knowledge
(i.e. uncertainties of statistical and/or systematic nature)
on these quantities can be considered as “nuisances” for
the interpretation of the signal in terms of DM parti-
cle properties (mass, self-annihilation, or scattering cross
section). The local DM density can be extracted from lo-
cal and global measurements [17, 250, 251], while recent
state-of-the-art hydrodynamical simulations of galaxy
formation provide information on the local DM velocity
distribution [252–255], as well as the DM density profile
of Milky Way-like galaxies [256]. Each of these astro-
physical quantities are estimated with their associated
uncertainties, yet little work has been done to properly
quantify all known astrophysical uncertainties in the in-
terpretation of DM signals. The impressive precision and
refinement of both statistical tools, and searches at col-
liders, to which direct and indirect searches must be cou-
pled, compel us to cope with these issues by addressing
the state of our ignorance, and to properly treat the im-
pact of astrophysical uncertainties within the budget of
overall nuisances affecting the signal.

One example of quantifying nuisances is the case of
how uncertainties on quantities in our own Galaxy, the
Milky Way, affect particle DM constraints: how can we
quantify the effect of astrophysical uncertainties in the
determination of new particle physics parameters?

The reconstruction of the DM distribution in the en-
tire Galaxy –when obtained through a method based on
global properties such as the “Rotation Curve”– relies
on a host of ancillary measurements and determinations,
among which are those related to the motion of the Sun
within our own Galaxy (the Local Standard of Rest, and
the relative motion between the Sun and the Galactic
Centre, in the following generically referred to as “Galac-
tic Parameters”), and the spatial distribution of the vis-
ible component of the Milky Way (stars and interstellar
gas). The latter is affected by a statistical uncertainty
related to the overall normalization of the stellar mass,
and from a (currently) irreducible systematic on the de-
termination of the shape of stellar morphological com-
ponents (disc-s, and bulge). The impact of both classes
of uncertainties on the determination of the DM profile
(expressed in terms of the local DM density, and the in-
ner slope of a generalized NFW profile) has been assessed
in recent studies [250, 257], with the conclusion that al-
though none of them can hinder the certainty of the pres-
ence of a dark component of matter in the Galaxy – even

within the solar circle – the effect of both classes of uncer-
tainties is sizable in the actual determination of the local
DM density and its distribution, especially towards the
region of the Galactic bulge. These analyses have com-
pelled a study of how such uncertainties propagate in the
determination of DM parameters, in the case of model-
specific analysis: in Ref. [258] the authors considered the
effect of Galactic uncertainties on two minimal extensions
of the Standard Model, in the context of direct and in-
direct DM searches: the Singlet Scalar (SSDM) and the
Inert Doublet (IDM) DM models. The phenomenologies
of these two particular models have a simple dependence
on a limited set of parameters, which makes them ideal
cases for quantifying the effect of Galactic uncertainties
on the determination of their parameters.

The following constraints from DM direct and indirect
detection in the parameter space of the SSDM and IDM
were taken into account: the 2015 LUX exclusion limit
on the spin-independent elastic WIMP-nucleon cross sec-
tion [259], and the Fermi-LAT limit on the averaged
velocity annihilation cross section from the analysis of
dwarf spheroidal galaxies in the Milky Way [260]. The
authors also considered the parameter space favored by
the DM interpretation of the Galactic Centre GeV ex-
cess [261]. In particular, it was studied how the LUX
exclusion limit and the region favored by the GeV excess
vary in the available parameter space of the SSDM and
IDM, for three different cases of variation of astrophys-
ical uncertainties: a) the statistical uncertainty on one
“reference” baryonic morphology, b) the variation of the
Galactic parameters for the reference morphology, and
c) the baryonic morphologies that maximize or minimize
the local DM density.

It was found that for the SSDM case, the statisti-
cal uncertainty on the reference morphology has a very
small effect on the LUX limit, while the uncertainties
on the values of the Galactic parameters or the baryonic
morphology have large effects on the LUX constraint.
The largest variation in the exclusion limit is due to the
variation in the Galactic parameters which leads to the
largest variation in the local DM density (varying from
0.055 ± 0.004 GeV cm−3 to 1.762 ± 0.017 GeV cm−3; see
Table 1 in Ref. [258]). For the region favored by the
GeV excess, again the statistical uncertainty on the ref-
erence morphology has a minor effect. However, varying
the Galactic parameters and considering different bary-
onic morphologies have large effects on the favored region
and can relieve or worsen the tension with the constraints
from dwarf spheroidals. The largest shift in the GeV ex-
cess region is due to the variation of the baryonic mor-
phologies.

For the IDM case, it was found that the effects of
Galactic uncertainties on the LUX exclusion limit are
similar to those discussed for the SSDM. The variation
of the local DM density causes the largest uncertainty
in direct detection limits, and hence the variation in the
Galactic parameters for the reference morphology has the
largest effect in the IDM parameter space. The anal-
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ysis also showed that the regions which can simultane-
ously explain the GeV excess and reproduce the mea-
sured DM relic abundance are small and in most cases in
tension with the dwarf spheroidal constraints. Varying
the Galactic parameters or baryonic morphology shifts
the GeV excess region such that the DM relic abundance
cannot be reproduced.

In summary, the statistical uncertainties in the ob-
served Milky Way rotation curve and the normaliza-
tion of the baryonic mass component do not affect the
constraints on the parameters of new physics models,
while the uncertainties in the Galactic parameters and
the baryonic morphology can significantly impact the al-
lowed model parameter space. Quantifying astrophysi-
cal uncertainties will be especially important in case a
DM signal is discovered in future direct and indirect ex-
periments, and is required to accurately determine the
particle physics nature of DM.

2. Global fits: let’s just do everything (and worry later
about trying to afford it)

The profusion of experiments hunting for DM in the
last decade has left us with an enormous amount of com-
plementary data on its possible identity. Unfortunately,
the heterogeneity of that data makes it difficult to apply
to the DM problem in a cohesive, efficient and consis-
tent way. Different experiments are optimised to look
for different types of dark matter, involve entirely dif-
ferent (but sometimes correlated) experimental methods
and uncertainties, make different (but related) theoret-
ical assumptions in the analysis of their data, and take
different attitudes to sharing their data with the rest of
the community. Most experimental collaborations look-
ing for DM have apparatuses that in principle are sen-
sitive to many different variants, but only have the re-
sources to analyse their own data, in the context of a
small number of well-chosen theories.

Experimental constraints on theoretically well-justified
theories help theorists to efficiently construct new mod-
els, based on some real picture of physical quantities such
as masses or couplings. The converse is also true: the-
oretical predictions for observable quantities in concrete
and complete models help experimentalists to build pow-
erful cuts, choose the right energy range to search, and es-
timate the exposure required for a statistically-significant
measurement. Ideally, this process should be a circular
feedback loop. This loop has become difficult to imple-
ment in modern times, because of the growing number
and complexity of DM models, and the great number of
different experiments searching for them.

Global fits in particle and astroparticle physics are the
means by which we can use the full treasure-trove of
existing data to analyse a broad range of theories, and
thereby complete the traditional scientific feedback loop.
Working with the experimental collaborations to define
forms of their likelihood functions applicable to a broad

range of DM theories (e.g. [262–265]) and then combining
them into composite likelihood analyses, teams of the-
orists, phenomenologists and experimentalists have suc-
cessfully produced broad-ranging analyses of many popu-
lar theories for DM. These include a number of different
versions of supersymmetry [266–283], extra dimensions
[284], Higgs portal and other minimal WIMP DM mod-
els [285–289], axions [290] and DM effective field theories
[291, 292].

Care needs to be taken when combining data from
different experiments. In particular, consistent theoret-
ical calculations and assumptions must be applied to
all predictions (and even experimental likelihoods) in
a global fit, along with the same assumptions about
Standard Model parameters, nuclear physics and astro-
physical aspects like the density and velocity distribu-
tions of DM [293–295]. Similarly, different theoretical
calculations and experimental analyses must be invoked
for different theories, alternative theoretical calculations
should be considered for the same model in order to
estimate theory errors accurately, sophisticated statisti-
cal sampling schemes must be employed for analysing
high-dimensional parameter spaces [296–298] and cover-
age properties need to be checked carefully [299–301].
Ideally, the global fitting framework itself should auto-
matically ensure that all of these requirements are sat-
isfied. This is something that has only recently become
possible [302]; future work is focussed on extending this
rigorous consistency-checking and automation as far as
the Lagrangian level.

Once a new DM model is proposed, an initial choice of
priors on its parameters must be made, based on some
theoretical constraints or preferences of the researcher.
If the likelihoods are strong, the final fitted result will
not be dependent on the chosen prior. However, because
only the Planck [303] relic density measurement provides
a clear “signal” amongst the different DM experiments,
the likelihoods for DM searches are very often too weak
to dominate over the impact of the prior on the posterior.
Such prior dependence is therefore difficult to avoid until
more constraining experimental data become available.
On the other hand, it is still not clear what kind of prior
distribution – if any – is more objective and therefore
preferable. At this stage, showing results based on both
Bayesian and frequentist statistics is generally considered
best practice in global fits, as they provide complemen-
tary information about the impacts of priors, fine-tuning
and the quality of sampling and fit available in different
parts of the parameter space.

A comprehensive global fit requires a lot of CPU time
for many likelihoods, such as the simulation of signals
at the LHC. If good sampling is required of the entire
likelihood surface, it can be extremely difficult to study
collider signatures in models with more than a few de-
grees of freedom. Nevertheless, considering DM mod-
els in neighbouring parameter regions, and the similar-
ity of their respective likelihood computations, it might
not be necessary to perform full signal simulations across
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entire parameter spaces. Some simplifications can be
used in the global analysis, based on simplified mod-
elling of detector effects [304], the similarity of kinemat-
ics, some mathematical tricks, or model configurations
(e.g. [288, 291, 294, 305–308]). Of course, such simpli-
fications could introduce some systematic uncertainties
or limitations on the applicability of the resulting con-
straints, which must be carefully checked before perform-
ing the fit.

Treating different theories on the same footing, and
comparing them both rigorously and quantitatively, was
one of the major topics of discussion at this workshop.
Indeed, this is of particular difficulty and importance
for global fits, given their comprehensiveness and the
fact that they purport to provide a complete and ac-
curate summary of the current status of the search for
different theories of DM, and the identity of DM more
broadly. Possible approaches include mixture models
(Sec. IV A 1), comparison of global p-values, the use of
Bayes factors, or some extension of the Euclideanized sig-
nals approach (Sec. IV A 3). These have their own chal-
lenges: global p-values are notoriously difficult to obtain
in complicated high-dimensional parameter spaces, Bayes
factors come with attendant prior dependence – which in
general only gets worse for non-nested models – and ap-
plication of Euclideanized signals to model selection first
requires that the method be developed further.

3. Machine Learning in DM Physics

Machine Learning (ML) techniques have already been
widely adopted throughout the high energy, astro, astro-
particle, and particle physics communities. We here
briefly comment on some use cases for DM physics and
provide useful references. Details are beyond the scope
of this work, but we point the interested reader to
darkmachines.org for a community effort to increase
the use of ML in DM physics (an associated white paper
is in preparation). Also, see Refs. [309–311] for recent
publications in high energy physics.

Direct Detection — The simplicity of direct detection
experiments and their low background design has made
the procedure of data analysis relatively simple. They
have therefore been robust to the revolution of ML tech-
niques. Nevertheless some progress has been made in
improving the efficiency of posterior sampling when con-
sidering the large number nuisance parameters associated
with galactic halo uncertainties [312]. Boosted decision
trees have also be used to improve traditional cut and
count analyses by optimally and automatically selecting
the most promising signal events [313, 314].

Indirect Detection — Unlike DD, a large variety of ML
techniques have been widely adopted throughout the in-
direct detection (ID) community. For concreteness we
mention three major applications here. Firstly, Neural
Networks (NNs) have been used to assess the probabil-
ity of the galactic center gamma-ray excess [261] being

produced by a population of unresolved point sources
[315]. Unlike the characterization of the likelihood pro-
posed in Sec. IV A 2, the approach of Ref. [315] relies on
many simulated realizations of a population of Millisec-
ond Pulsars towards the galactic center. Secondly, the
Fermi-LAT has provided the first view into the varied
population of gamma ray point sources. Classification
of these point sources has proven to be a complicated
task typically involving dedicated follow-up studies from
telescopes in other wavebands [316]. There are close to
1000 objects in the 3FGL source catalog which have yet
to be associated to any source type. For DM searches
these point sources are of great interest when looking for
low mass sub-halos that would appear as point sources
for Fermi-LAT resolution (< 0.15◦ above 10 GeV) [317].
See also [318] for a data-driven approach for dwarf galaxy
characterization. Much progress has been made in classi-
fying these unassociated sources using different methods
such as random forests and logistic regression [319] with
searches for novel source classes such as sub-halos also
being performed in Ref. [320]. Finally, lensing signatures
from sub-halos on a variety of scales, as those mentioned
in Sec. III D, can be sensitive to DM physics. Progress
has been made primarily in finding strong lens candidates
from the large volume of incoming data, see Ref. [321] for
an example using Convolutional Neural Networks.
Collider Searches — There is an ongoing and ded-

icated effort to improving the use of machine learn-
ing techniques throughout the collider physics com-
munity, see https://iml.web.cern.ch and http://
diana-hep.org for details. Specifically for DM searches,
see Ref. [322] where distributed Gaussian processes and
NNs were used to increase the speed of likelihood eval-
uations to a computationally feasible rate for parameter
inference.

4. The statistical interpretation of fine-tuning

A theoretical model presents fine-tuning (or, equiv-
alently, the absence of naturalness) when the observ-
able quantities depend critically on fine adjustments of
the fundamental parameters. For example, in the mini-
mal supersymmetric standard model (MSSM) the Higgs
mass, mh, is related to the initial soft mass mHu

and the
µ−parameter by −m2

h/2 ' m2
Hu

+ µ2. Hence, if these
initial parameters are O(1) TeV, the Higgs mass is fine-
tuned by ∼ 1%.

Beyond amusing (and unlikely) coincidences, the pres-
ence of severe fine-tuning is a warning that the model is
implausible in the way it is formulated. The detection
of fine-tuning is always interesting because it is telling us
something potentially highly non-trivial about the model.
There are three possible attitudes in the presence of fine-
tuning: (i) discard the model as implausible; (ii) com-
plete the model, i.e. find a reason for the apparently im-
probable correlations; (iii) ignore the fine-tuning, i.e. as-
sume a fortunate coincidence or, alternatively, hope that

darkmachines.org
https://iml.web.cern.ch
http://diana-hep.org
http://diana-hep.org
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someone else will find a reason for the odd correlations,
as in attitude (ii).

Fine-tuning is an important but, admittedly, slippery
and debatable subject. There are two reasons for that.
First, it is not easy to quantify the fine-tuning in a univer-
sal, model-independent way (ideally with a sound statis-
tical meaning). Second, once the amount of fine-tuning
has been established, it is a subjective matter how much
fine-tuning one should accept; after all, coincidences hap-
pen. These difficulties (which may seem Bayesian, due
to their implicit subjectivity) do not contradict the fact
that fine-tuning (or naturalness) is a deep, relevant issue
for the structure of a theory.

Consequently, the first and most important matter is
how to quantify fine-tuning. Let F (θi) be the fine-tuned
(observable) quantity, where θi are the fundamental (in-
dependent) parameters of the theory. Generically, this
means that F is very sensitive to small variations of one
(or several) θi. This has inspired the most popular (and
perhaps standard) ‘measure’ of fine-tuning [323]:

∆ ≡ max |∆θi |, with ∆θi =
∂ logF

∂ log θi
. (17)

It is understood that ∆ ∼ 10, 100, · · · amounts to ∼
10%, 1%, · · · fine-tuning. While this seems reasonable,
it would be nice to find a probabilistic interpretation of
(17). Let us call θ and θ0 the parameter responsible for
the tuning and the value that reproduces the experiment,
F (θ0) = F exp. Suppose, for the sake of argument, that
F has to be fine-tuned to a small value. Then θ0 should
lie at a small distance, δθ, from the value that fully can-
cels F . Assuming that the natural range of θ is ∼ [0, θ0]
with a flat prior, and that the expansion of F (θ) at first
order captures its behavior in the neighborhood of inter-
est, then it is straightforward that ∆−1 has the statistical
meaning of a p−value [40, 324, 325]:

P (F ≤ F exp) =
δθ

θ0
' ∆−1 . (18)

The previous assumptions are reasonable, but may be
inappropriate in particular theoretical scenarios. Sup-
pose for instance that the dependence of F on θ is the
one depicted in Fig. 4. Clearly, the standard criterion
(17) underestimates the real fine-tuning, as it overesti-
mates the actual interval of θ where F ≤ F exp. This is
not just an academic example. If the dark matter relic
density is controlled by annihilation through some funnel
(like Higgs or Z funnels), the dependence of ΩDM on the
DM-mass is exactly as in Fig. 4. In the borderline case,
where the previous interval tends to zero, the actual fine-
tuning tends to infinity, whereas the standard criterion
gives ∆→ 0 ! The general lesson is that, before applying
(17) blindly, one should check that the conditions for its
validity are met. It is normally more sensible (and eas-
ier) to directly apply a p−value criterion to the parameter
considered, instead of using the approximate expression
(17). Examples of this, in the context of supersymmet-
ric mechanisms for DM, can be found in [325]. A more

✓
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FIG. 4. An example of a fine-tuned quantity where the stan-
dard criterion (17) cannot be applied.

sophisticated way of giving an statistical meaning to fine-
tuning, in a fully Bayesian spirit, would be the following.
Pretend that the fine-tuned quantity, F (θi) has not been
measured yet. Then, evaluate the Bayesian probability
that F ≤ F exp. A similar-in-spirit procedure was applied
in [326] to the electroweak fine-tuning of the MSSM.

5. Global significance for overlapping signal regions

When high local significance is observed in LHC
searches for new physics, the probability of seeing such
an excess only from statistical fluctuations of the back-
ground in any of the analysis signal regions (SRs) needs
to be quantified. This is described by the global signifi-
cance, which takes into account trial factors, often called
the “look-elsewhere effect” in physics. For a large number
of signal regions, the probability of seeing a “signal-like”
fluctuation in any one of them is higher. The probability
p0 of seeing one such high significance excess anywhere
in a number of signal regions (assuming the background-
only hypothesis H0) is given as:

p0 = P (qx ≥ qx,obs|H0) , (19)

for some test statistic qx. The global significance is ob-
tained from the probability of observing a maximum local
significance (across the NSR signal regions considered)
greater than the observed maximum local significance.
This is typically estimated using a number of pseudo-
experiments Ntoy. A number of aspects in this calcu-
lation are described in [327–329] for the case of non-
overlapping SRs. However, if SRs in the analysis have
overlap in their discriminating variable selections, the
correlations of SR selections need to be taken into ac-
count.

Analyses are often designed to use orthogonal selec-
tions in the parameter space of discriminating variables,
to avoid considering correlations in the overlapping re-
gions. However, there are cases of analyses that require
overlapping selections. An example of such an analysis
is the SUSY search for q̃ and g̃ production using a se-
lection with two leptons, jets and missing transverse en-
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FIG. 5. Overlapping signal regions SR-A, SR-B and SR-C, in
the SUSY analysis for q̃ and g̃ production using a selection
with two leptons, jets and missing transverse energy [330]. Se-
lections have overlap in the selection of missing transverse en-
ergy (�ET ), scalar sum of transverse momentum of jets (HT ),
and invariant mass of two leptons (mll). Global significance
is calculated using orthogonal sub-regions 1,2,3 and 4.

ergy [330]. The analysis is optimized for q̃ and g̃ decays
with jets and two leptons in the decay chain. The signal
would produce an excess in the two-lepton invariant mass
distribution mll. Depending on the mass differences of
the SUSY particles, the mll excess appears at different
ranges of the distribution. In addition, different mass
spectra produce jets of different transverse momentum,
and different masses of the χ̃0

1 LSP give different sizes of
missing energy in the signature, which are considered in
the selection. Therefore, to account for a large number
of SUSY models, SRs are designed with overlap in the
selection. Consequently, when the global significance is
calculated, the correlations of the overlap of SRs need to
be taken into account.

Here, we briefly describe a novel technique to take over-
lapping SRs into account. It makes the assumption that
systematic uncertainties for all background components
are fully correlated across all SRs. First, the NSR con-
sidered signal regions are split into non-overlapping sub-
regions. An example for the SUSY analysis with two
leptons, jets and missing transverse energy is shown in
Figure 5. Next, for each non-overlapping sub-region, and
for each background component, the yields of events are
scaled in the following way:

• To account for systematic uncertainty, scaling is
done by the random value obtained from a Gaus-
sian with unit mean and width equal to the sys-
tematic uncertainty,

• To account for the statistical uncertainty, scaling is
done by the random value obtained from a Gaus-
sian with unit mean and width equal to the statis-
tical uncertainty,

• To produce a pseudo-experiment, a random number
from a Poisson distribution is drawn, with mean
equal to the yield obtained in the previous steps.

Then the newly obtained yields from corresponding bins
are summed into SRs. The p-value and correspond-
ing significance is evaluated for each SR. The procedure
is repeated for a large number of pseudo-experiments.
The global p-value is then calculated as the fraction of
pseudo-experiments in which the largest local significance
is higher than the observed maximum local significance.
This p-value is then converted into a one-sided signifi-
cance.

The calculation of global significance represents a com-
putationally demanding task. As a rule of thumb, a num-
ber of pseudo experiments Ntoy is taken of the order of
the inverse of the p-value, e.g. for a p-value of 10−4, Ntoy

is of order 104. Calculations corresponding to 3-4 σ sig-
nificance are viable using hundreds of processing units on
a modern computing cluster. However, the calculation
of significance regions above 5σ becomes computation-
ally intractable. When the number of signal regions is
O(10), the effect of the correction for the global signifi-
cance becomes negligible at high significance. However,
certain aspects of using asymptotic formulae need to be
considered when the number of signal regions is large.
A viable solution for large number of overlapping signal
regions and high maximum local significance could be
obtained by developing a method using the counting of
up-crossings, as described in the global significance cal-
culation using non-overlapping regions of Ref. [329].

V. EXAMPLES AND TOY MODELS

In this section, we present a number of brief exam-
ples, based on statistical issues which arose during dis-
cussions at the workshop. While these toy examples rep-
resent simplified scenarios, it should be possible to extend
them straightforwardly to more realistic applications in
the field of DM searches.

A. Parameter limits with non-compact support

Consider the following toy problem: an experimental
search for a new signal s with an expected flux φ(E) as
a function of energy E proportional to:

dφs
dE

= α2 E2

(E2 −m2)2 + Γ2
. (20)

This could parametrize some resonant scattering or anni-
hilation process at Eres = m, with width Γ and strength
α. This search could be performed in the presence of
some background event rate:

dφbg
dE

= RBG

(
E

E0

)γ
, (21)
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FIG. 6. Marginalized 1D posterior on the parameter α from
(20), where the true value falls below the experimental sensi-
tivity. Different colors correspond to lower boundaries on the
prior from αmin = 10−6 to 10−2. Vertical dashed line show
the corresponding 95% CL limit inferred in each case.

governed by unknown nuisance parameters RBG, γ. The
total events observed in each energy bin i with width
∆Ei of such a search would be:

Ni = T∆Ei

(
dφs
dE

(Ei) +
dφbg
dE

(Ei)

)
, (22)

where T represents the exposure of the experiment. One
can then construct a likelihood logL =

∑
i logP (Ni) and

proceed with the usual Bayesian analysis.
In the absence of a signal (i.e., the “new physics” rate

is lower than the experiment’s sensitivity can reach), we
would like to place a limit on the (non-background) pa-
rameters governing the new physics we have been search-
ing for (20), via the parameters α and m. Our theory
does not specify a scale for these parameters, so the cor-
rect choice of prior that reflects our understanding of
this theory would be log-uniform. Upon inspection of
Eq. (20), it is clear that in the absence of a clear sig-
nal, α can be arbitrarily small, and m can be arbitrarily
large. There is thus no well-motivated choice of a prior
boundary.

This leads to the following conundrum: any change,
e.g., in the lower prior boundary of α will affect the loca-
tion of the 95% credibility boundary, because the latter
depends on the total posterior volume, even if the likeli-
hood is completely flat down to α→ 10−∞. The limit set
on the theory in this way is therefore entirely dependent
on the arbitrary size of the prior box. This is illustrated
in Fig. 6, where shaded regions represent the marginal-
ized posterior distribution in α, and the vertical lines
show the limit set in each case. This inherent fuzziness
sends many dark matter phenomenologists (who are cur-
rently in the business of setting limits) running towards
a more frequentist approach such as a profile likelihood

where no such ambiguity exists.

B. Combining two experiments

Combining the evidence produced from N similar ex-
periments (i.e., ones which require only a few, commonly
shared nuisance parameters η) can be a relatively pain-
free task with a simple product of likelihood functions

L(d|θ,η) =

N∏
i=1

Li(di|θ,η) . (23)

Here, θ are the parameters of interest and di are the
observed data in each experiment.

Complications can arise however when these exper-
iments have many distinct nuisance parameters which
may or may not be governed by some common parame-
ters. The overall likelihood function is then instead

L(d|θ,η) =

N∏
i=1

Li(di|θi,ηi) . (24)

In general, there can be a large number of nuisance pa-
rameters {ηi}, which may not be independent and which
therefore complicate the issue of specifying priors or joint
likelihoods on these nuisance parameters. Furthermore,
if we want to calculate (for example) posterior distribu-
tions for the parameters of interest, the required integrals
over (correlated) {ηi} are high-dimensional and typically
intractable.

We discuss here a Bayesian solution to this problem of
combining dissimilar experiments. More details can be
found in [331, 332]. For clarity we discuss a simple setup,
namely two toy single bin counting experiments (which
we will refer to as DAMU and LAX) with uncertain back-
ground components. We assume that each experiment
is contaminated with radioactive Unobtainium, governed
by a contamination factor c ∈ [0, 1]. The number of ex-
pected background events is then NBG = cRUnT , where
RUn is the background rate expected from a pure Un-
obtainium source and T is the exposure time (which we
set to 1). From calibration using a purely Unobtainium
source we can constrain the expected background rate to
be

PU (RUn) =
1√

2πσ2R2
avg

exp

(
− (RUn/Ravg − 1)2

2σ2

)
,

(25)
where Ravg = 1000 events per unit time and σ = 10%.
Unfortunately our purification procedure is not perfect
but the contamination in a given experiment can be con-
strained to be below cmax. Below this value we assume a
uniform prior on c, therefore the probability for getting
a number of background events is described by

PBG(NBG) =

∫ cmax

0

PU

(
NBG

c

)
dc

c
. (26)
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Finally, the signal is simply given by a number of events
Nsig = µ on which we want to place an informative limit
by combining evidence from DAMU and LAX.

Our two toy experiments are now governed by different

nuisance parameters N
(LAX)
BG and N

(DAMU)
BG .

We can deal with this in a Bayesian manner by first
identifying the set of parameters common to both exper-
iments - in this case µ and RUn. The different contami-
nation factors c(LAX) and c(DAMU) are now independent.
We can then calculate the adjusted likelihood functions
for each experiment j:

Lj(µ,RUn) =

∫
dN

(j)
BG L(N

(j)
obs|µ,N

(j)
BG)P (N

(j)
BG|RUn) ,

(27)

where P (N
(j)
BG|RUn) simply corresponds to the flat prior

on the contamination c(j) up to c
(j)
max. We can then calcu-

late the marginal likelihood, incorporating our prior on
RUn, P (RUn|µ) = PU (RUn),

L(µ) =

∫
dRUn

∏
j

Lj(µ,RUn)

P (RUn|µ) . (28)

This likelihood function can now be used as usual, for
exploring the parameter space, calculating posteriors and
setting limits on the signal strength for the combined
experiments. In Fig. 7, we show the marginal likelihood
ratio L̂ = L/Lmax (top panel) and cumulative posterior
distribution (bottom) for LAX and DAMU separately
and combined. We assume that both experiments see
a total of 4 events, but that the contamination in LAX
(cmax = 0.01) is more poorly constrained than in DAMU
(cmax = 0.005). The posterior is calculated assuming a
flat prior on µ.

As one can see, this parameterization of the problem
requires the segmentation of relevant nuisance param-
eters to different experiments, i.e., c(LAX) and c(DAMU)

even though they have a common baseline uncertainty
set by the probability of events from pure Unobtainium
(Eq. 25). In this way a hierarchical structure can be
created for convenient computation of the adjusted
likelihood functions per experiment. For more complex
situations, this method can make an intractable likeli-
hood calculation possible by reducing the dimensionality
of the required integrals to variables associated with
each experiment individually.

C. Presenting the p-value and the probability of
the null

As discussed in Sec. IV, it is important to emphasize
the distinction between the p-value and the probability
of the null hypothesis, given the observed data, Pr(H0|y).
These two numbers quantify different things. Taking the
concrete example of looking for a bump-like signal on top
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FIG. 7. Marginal likelihood ratio (top) and cumulative pos-
terior distribution (bottom) for the LAX and DAMU toy ex-
periments separately and combined. The combined curves
correctly account for the correlation between nuisance pa-
rameters in the two experiments and can be used to easily
set limits on the signal strength µ.

of a smooth background (as in the case of the discovery
of the Higgs Boson), the p-value gives a measure of the
false alarm rate – how often we expect the smooth back-
ground to fluctuate upwards to look like a signal. Instead,
Pr(H0|y) gives the probability that the background-only
hypothesis is correct (given the observed data), compared
with the hypothesis that there is a signal. The probabil-
ity of the null hypothesis will depend on the our choice
of priors (for both the background and the signal). How-
ever, by considering a wide range of priors, we can deter-
mine a lower bound on Pr(H0|y) and therefore the lowest
possible probability that the background-only hypothesis
is true.

We demonstrate this idea with a simple toy example
of a single bin counting experiment. We assume that
the expected number of background counts is known,
NBG = 49. Given a number of observed counts Nobs,
we would like to quantify the level of agreement with the
null hypothesis H0 (that only background events con-
tribute to the rate) and the alternative H1 (that there is
some non-zero signal).

The p-value is obtained as the probability of observing
data as extreme or more extreme than what is observed,
assuming H0. Thus, we have:

p =

{∑∞
k=Nobs

P (k|NBG) for Nobs > NBG ,
1
2 for Nobs ≤ NBG .

(29)

Here, P (k|NBG) is the Poisson probability of observing
k events when NBG events are expected. We set the p-
value to 1

2 for Nobs ≤ NBG because an under-fluctuation
does not correspond to data which is incompatible with
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H0 in favor of H1.
The probability of the null hypothesis is obtained using

Bayes’ theorem [333]:

P (H0|Nobs) =
P (Nobs|H0)P (H0)

P (Nobs|H0)P (H0) + P (Nobs|H1)P (H1)
.

(30)

Here, P (H0) and P (H1) are the prior probabilities that
H0 and H1 respectively are true. In the absence of an-
other well-motivated choice, we will assume P (H0) =
P (H1) = 1

2 . As before, P (Nobs|H0) is simply the Poisson
probability of observing Nobs events, given NBG expected
background events. Instead, P (Nobs|H1) is the probabil-
ity of observing Nobs events, integrated over all possible
numbers of signal events Nsig:

P (Nobs|H1) =

∫
P (Nobs|NBG +Nsig)Pβ(Nsig) dNsig .

(31)

Here, we write the prior on Nsig as Pβ(Nsig), which we
parametrize by β. For concreteness, we will assume an
exponential prior on the number of signal events:

Pβ(Nsig) = β exp (−βNsig) . (32)

In Fig. 8, we show the p-value as a function of the num-
ber of observed counts in this toy example. We also show
P (H0|Nobs) for one specific prior on the number of signal
counts, set by β = 0.01. Finally, we show the lower bound
on P (H0|Nobs) obtained by minimizing over a large class
of priors (i.e. by minimizing over β). This concrete ex-
ample highlights what was discussed in Sec. IV: that the
p-value is anti-conservative. In this case, when the p-
value drops to 5%, the probability of the null hypothesis
is always larger than 30%, even in the case of rather ex-
treme priors. By presenting both the p-value and the
bound on the probability of the null hypothesis, we give
a more detailed picture of the evidence at hand as well
as reminding the reader that these two things represent
different information about the data.

VI. CONCLUSIONS

The search for new physics has become a complex task,
with many moving parts. By now, it seems likely that
an eventual detection and identification of dark matter
through its particle interactions will take place through
careful statistical analysis. We have outlined a number
of experimental lines of attack in the hunt for particle
DM, along with their specific statistical challenges. Di-
rect detection experiments search for very rare events
by creating a signal region that is as background-free as
possible. Indirect detection relies on the vast scale of
the cosmos, with the drawback of a large and not-so-well
understood background from standard model astrophys-
ical processes. Finally, collider searches benefit from
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FIG. 8. Compatibility of an observed number of events Nobs

with the ‘background-only’ null hypothesis H0. The p-value
quantifies the false alarm rate while P (H0|Nobs) quantifies
the evidence in favor of H0, as compared with the ‘signal
+ background’ hypothesis H1. The red line corresponds to
the probability of the null hypothesis assuming a particular
choice of prior on the number of signal events (see Eq. 32).
The purple line shows the lower bound on the probability of
the null, over a wide range of priors.

a very well-understood background, but the tremendous
amount of data lead to a challenge of analysis and trials
factors.

We have outlined a number of statistical challenges
that arise in these areas, and some techniques to help
overcome them. The detection of new physics amounts
to a challenge of model selection, which comes with a
number of pitfalls: the construction of a good test statis-
tic, likelihood function or detection criterion; the choice
of physical model parameters and their priors; and the
efficient exploration of that parameter space. We have
discussed Bayesian methods as well as the dangers of p-
values and their misinterpretation. We have also pre-
sented a number of novel techniques for dealing with
complicated and computationally expensive parameter
spaces, such signal euclideanization and likelihood-free
approaches (i.e. ABC). Combining experiments and ap-
proaches poses additional challenges, as nuisance param-
eters may or may not overlap, and systematic uncertain-
ties may have varying effects. Approaches such as hi-
erarchical modeling and global fitting help tackle these
daunting issues with finite effort. We have also provided
a small number of examples or challenges that help il-
lustrate some of the issues of statistics that astroparticle
physicists are confronting.

A key goal of the DMStat workshop was to single out
specific problems in the search for dark matter which
present a statistical challenge. As we have seen, such
problems are not hard to find. Thankfully, a wealth of ad-
vanced statistical tools have made confronting these chal-
lenges feasible. Indeed, we have been able to report sig-
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nificant progress in addressing a number of DM-specific
problems, as well as highlighting a number of future chal-
lenges and avenues for further study. We are confident
that the ongoing cooperation between statistics and DM
physics will continue to yield progress and, perhaps some
day soon, a discovery.
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[149] T. K. Chan, D. Kereš, et. al., The impact of baryonic
physics on the structure of dark matter haloes: the
view from the FIRE cosmological simulations, MNRAS
454 (2015) 2981–3001, [arXiv:1507.02282].

[150] A. R. Wetzel, P. F. Hopkins, et. al., Reconciling Dwarf
Galaxies with ΛCDM Cosmology: Simulating a
Realistic Population of Satellites around a Milky
Way-mass Galaxy, ApJ 827 (2016) L23,
[arXiv:1602.05957].

[151] M. Vogelsberger, J. Zavala, C. Simpson, and
A. Jenkins, Dwarf galaxies in CDM and SIDM with
baryons: observational probes of the nature of dark
matter, MNRAS 444 (2014) 3684–3698,
[arXiv:1405.5216].

[152] O. D. Elbert, J. S. Bullock, et. al., Core formation in
dwarf haloes with self-interacting dark matter: no
fine-tuning necessary, Mon. Not. Roy. Astron. Soc.
453 (2015) 29–37, [arXiv:1412.1477].

[153] A. B. Fry, F. Governato, et. al., All about baryons:
revisiting SIDM predictions at small halo masses, Mon.
Not. Roy. Astron. Soc. 452 (2015) 1468–1479,
[arXiv:1501.00497].

[154] O. D. Elbert, J. S. Bullock, et. al., A Testable
Conspiracy: Simulating Baryonic Effects on
Self-Interacting Dark Matter Halos, Astrophys. J. 853
(2018) 109, [arXiv:1609.08626].

[155] D. N. Spergel and P. J. Steinhardt, Observational
Evidence for Self-Interacting Cold Dark Matter,
Physical Review Letters 84 (2000) 3760–3763,
[astro-ph/9].

[156] A. Loeb and N. Weiner, Cores in Dwarf Galaxies from
Dark Matter with a Yukawa Potential, Physical Review
Letters 106 (2011) 171302–+, [arXiv:1011.6374].

[157] F. Governato et. al., Faint dwarfs as a test of DM
models: WDM versus CDM, Mon. Not. Roy. Astron.
Soc. 448 (2015) 792–803, [arXiv:1407.0022].

[158] J. Herpich, G. S. Stinson, et. al., MaGICC-WDM: the
effects of warm dark matter in hydrodynamical
simulations of disc galaxy formation, MNRAS 437
(2014) 293–304, [arXiv:1308.1088].

[159] M. R. Lovell et. al., Properties of Local Group galaxies
in hydrodynamical simulations of sterile neutrino dark

matter cosmologies, Mon. Not. Roy. Astron. Soc. 468
(2017) 4285–4298, [arXiv:1611.00010].

[160] J. Zhang, Y.-L. S. Tsai, J.-L. Kuo, K. Cheung, and
M.-C. Chu, Ultralight Axion Dark Matter and Its
Impact on Dark Halo Structure in N-body Simulations,
Astrophys. J. 853 (2018) 51, [arXiv:1611.00892].

[161] J. Zhang, J.-L. Kuo, et. al., Is Fuzzy Dark Matter in
tension with Lyman-alpha forest?, arXiv:1708.04389.

[162] E. J. Tollerud, J. S. Bullock, L. E. Strigari, and
B. Willman, Hundreds of Milky Way Satellites?
Luminosity Bias in the Satellite Luminosity Function,
Astrophys. J. 688 (2008) 277–289, [arXiv:0806.4381].

[163] E. J. Tollerud, J. S. Bullock, G. J. Graves, and
J. Wolf, From Galaxy Clusters to Ultra-Faint Dwarf
Spheroidals: A Fundamental Curve Connecting
Dispersion-supported Galaxies to Their Dark Matter
Halos, Astrophys. J. 726 (2011) 108,
[arXiv:1007.5311].

[164] S. M. Walsh, B. Willman, and H. Jerjen, The
Invisibles: A Detection Algorithm to Trace the Faintest
Milky Way Satellites, AJ 137 (2009) 450–469,
[arXiv:0807.3345].

[165] F. Governato, A. Zolotov, et. al., Cuspy No More:
How Outflows Affect the Central Dark Matter and
Baryon Distribution in Lambda CDM Galaxies, Mon.
Not. Roy. Astron. Soc. 422 (2012) 1231–1240,
[arXiv:1202.0554].

[166] E. Tollet et. al., NIHAO – IV: core creation and
destruction in dark matter density profiles across
cosmic time, Mon. Not. Roy. Astron. Soc. 456 (2016)
3542–3552, [arXiv:1507.03590].

[167] M. G. Walker and J. Penarrubia, A Method for
Measuring (Slopes of) the Mass Profiles of Dwarf
Spheroidal Galaxies, Astrophys. J. 742 (2011) 20,
[arXiv:1108.2404].

[168] V. Bonnivard et. al., Dark matter annihilation and
decay in dwarf spheroidal galaxies: The classical and
ultrafaint dSphs, Mon. Not. Roy. Astron. Soc. 453
(2015) 849–867, [arXiv:1504.02048].

[169] G. A. Dooley, A. H. G. Peter, et. al., An observer’s
guide to the (Local Group) dwarf galaxies: predictions
for their own dwarf satellite populations, Mon. Not.
Roy. Astron. Soc. 471 (2017) 4894–4909,
[arXiv:1610.00708].

[170] R. G. Carlberg, Star Stream Folding by Dark Galactic
Sub-Halos, Astrophys. J. 705 (2009) L223–L226,
[arXiv:0908.4345].

[171] R. G. Carlberg, C. J. Grillmair, and N. Hetherington,
The Pal 5 Star Stream Gaps, Astrophys. J. 760 (2012)
75, [arXiv:1209.1741].

[172] R. G. Carlberg, Dark Matter Sub-Halo Counts via Star
Stream Crossings, Astrophys. J. 748 (2012) 20,
[arXiv:1109.6022].

[173] R. G. Carlberg, The Dynamics of Star Stream Gaps,
Astrophys. J. 775 (2013) 90, [arXiv:1307.1929].

[174] R. G. Carlberg and C. J. Grillmair, Gaps in the GD-1
Star Stream, Astrophys. J. 768 (2013) 171,
[arXiv:1303.4342].

[175] W. H. W. Ngan and R. G. Carlberg, Using Gaps in
N-body Tidal Streams to Probe Missing Satellites, ApJ
788 (2014) 181, [arXiv:1311.1710].

[176] R. G. Carlberg, Modeling GD-1 Gaps in a Milky Way
Potential, ApJ 820 (2016) 45, [arXiv:1512.01620].

http://arxiv.org/abs/1111.2048
http://arxiv.org/abs/1010.1004
http://arxiv.org/abs/1105.2562
http://arxiv.org/abs/1106.0499
http://arxiv.org/abs/1209.5394
http://arxiv.org/abs/1404.5959
http://arxiv.org/abs/1207.2468
http://arxiv.org/abs/1507.02282
http://arxiv.org/abs/1602.05957
http://arxiv.org/abs/1405.5216
http://arxiv.org/abs/1412.1477
http://arxiv.org/abs/1501.00497
http://arxiv.org/abs/1609.08626
http://arxiv.org/abs/astro-ph/9
http://arxiv.org/abs/1011.6374
http://arxiv.org/abs/1407.0022
http://arxiv.org/abs/1308.1088
http://arxiv.org/abs/1611.00010
http://arxiv.org/abs/1611.00892
http://arxiv.org/abs/1708.04389
http://arxiv.org/abs/0806.4381
http://arxiv.org/abs/1007.5311
http://arxiv.org/abs/0807.3345
http://arxiv.org/abs/1202.0554
http://arxiv.org/abs/1507.03590
http://arxiv.org/abs/1108.2404
http://arxiv.org/abs/1504.02048
http://arxiv.org/abs/1610.00708
http://arxiv.org/abs/0908.4345
http://arxiv.org/abs/1209.1741
http://arxiv.org/abs/1109.6022
http://arxiv.org/abs/1307.1929
http://arxiv.org/abs/1303.4342
http://arxiv.org/abs/1311.1710
http://arxiv.org/abs/1512.01620


28

[177] D. Erkal and V. Belokurov, Forensics of
subhalo–stream encounters: the three phases of gap
growth, Mon. Not. Roy. Astron. Soc. 450 (2015)
1136–1149, [arXiv:1412.6035].

[178] D. Erkal and V. Belokurov, Properties of Dark
Subhaloes from Gaps in Tidal Streams, Mon. Not. Roy.
Astron. Soc. 454 (2015) 3542–3558,
[arXiv:1507.05625].

[179] J. L. Sanders, J. Bovy, and D. Erkal, Dynamics of
stream-subhalo interactions, MNRAS 457 (2016)
3817–3835, [arXiv:1510.03426].

[180] D. Erkal, V. Belokurov, J. Bovy, and J. L. Sanders,
The number and size of subhalo-induced gaps in stellar
streams, MNRAS 463 (2016) 102–119,
[arXiv:1606.04946].

[181] J. Bovy, D. Erkal, and J. L. Sanders, Linear
perturbation theory for tidal streams and the
small-scale CDM power spectrum, MNRAS 466 (2017)
628–668, [arXiv:1606.03470].

[182] D. Erkal, S. E. Koposov, and V. Belokurov, A sharper
view of Pal 5’s tails: discovery of stream perturbations
with a novel non-parametric technique, MNRAS 470
(2017) 60–84, [arXiv:1609.01282].

[183] J. Bovy, Detecting the Disruption of Dark-Matter
Halos with Stellar Streams, Physical Review Letters
116 (2016) 121301, [arXiv:1512.00452].

[184] N. Banik, G. Bertone, J. Bovy, and N. Bozorgnia,
Probing the nature of dark matter particles with stellar
streams, arXiv:1804.04384.

[185] L. M. Widrow, S. Gardner, B. Yanny, S. Dodelson,
and H.-Y. Chen, Galactoseismology: Discovery of
Vertical Waves in the Galactic Disk, ApJ 750 (2012)
L41, [arXiv:1203.6861].

[186] R. Feldmann and D. Spolyar, Detecting Dark Matter
Substructures around the Milky Way with Gaia, Mon.
Not. Roy. Astron. Soc. 446 (2015) 1000–1012,
[arXiv:1310.2243].

[187] M. Buschmann, J. Kopp, B. R. Safdi, and C.-L. Wu,
Stellar Wakes from Dark Matter Subhalos, Phys. Rev.
Lett. 120 (2018) 211101, [arXiv:1711.03554].

[188] A. L. Erickcek and N. M. Law, Astrometric
Microlensing by Local Dark Matter Subhalos,
Astrophys. J. 729 (2011) 49, [arXiv:1007.4228].

[189] F. Li, A. L. Erickcek, and N. M. Law, A new probe of
the small-scale primordial power spectrum: astrometric
microlensing by ultracompact minihalos, Phys. Rev.
D86 (2012) 043519, [arXiv:1202.1284].

[190] K. Van Tilburg, A.-M. Taki, and N. Weiner,
Halometry from Astrometry, arXiv:1804.01991.

[191] S. Mao and P. Schneider, Evidence for substructure in
lens galaxies?, Mon. Not. R. Astron. Soc. 295 (1998)
587–594, [astro-ph/9707187].

[192] R. B. Metcalf and P. Madau, Compound Gravitational
Lensing as a Probe of Dark Matter Substructure within
Galaxy Halos, ApJ 563 (2001) 9–20,
[astro-ph/0108224].

[193] N. Dalal and C. Kochanek, Direct detection of cdm
substructure, Astrophys. J. 572 (2002) 25–33,
[astro-ph/0111456].

[194] L. V. E. Koopmans, Gravitational imaging of cold dark
matter substructures, MNRAS 363 (2005) 1136–1144,
[astro-ph/0501324].

[195] S. Vegetti and L. V. E. Koopmans, Bayesian strong
gravitational-lens modelling on adaptive grids:

objective detection of mass substructure in Galaxies,
MNRAS 392 (2009) 945–963, [arXiv:0805.0201].

[196] S. Vegetti and L. V. E. Koopmans, Statistics of mass
substructure from strong gravitational lensing:
quantifying the mass fraction and mass function,
MNRAS 400 (2009) 1583–1592, [arXiv:0903.4752].

[197] S. Vegetti, O. Czoske, and L. V. E. Koopmans,
Quantifying dwarf satellites through gravitational
imaging: the case of SDSSJ120602.09+514229.5,
MNRAS 407 (2010) 225–231, [arXiv:1002.4708].

[198] S. Vegetti, L. V. E. Koopmans, A. Bolton, T. Treu,
and R. Gavazzi, Detection of a dark substructure
through gravitational imaging, MNRAS 408 (2010)
1969–1981, [arXiv:0910.0760].

[199] S. Vegetti, D. J. Lagattuta, et. al., Gravitational
detection of a low-mass dark satellite galaxy at
cosmological distance, Nature 481 (2012) 341–343,
[arXiv:1201.3643].

[200] S. Vegetti, L. V. E. Koopmans, M. W. Auger, T. Treu,
and A. S. Bolton, Inference of the cold dark matter
substructure mass function at z = 0.2 using strong
gravitational lenses, MNRAS 442 (2014) 2017–2035,
[arXiv:1405.3666].

[201] Y. Hezaveh, N. Dalal, et. al., Dark Matter Substructure
Detection Using Spatially Resolved Spectroscopy of
Lensed Dusty Galaxies, Astrophys. J. 767 (2013) 9,
[arXiv:1210.4562].

[202] Y. D. Hezaveh et. al., Detection of lensing substructure
using ALMA observations of the dusty galaxy SDP.81,
Astrophys. J. 823 (2016) 37, [arXiv:1601.01388].

[203] Y. Hezaveh, N. Dalal, et. al., Measuring the power
spectrum of dark matter substructure using strong
gravitational lensing, JCAP 1611 (2016) 048,
[arXiv:1403.2720].

[204] R. Fadely and C. R. Keeton, Substructure in the lens
HE 0435-1223, MNRAS 419 (2012) 936–951,
[arXiv:1109.0548].

[205] T. Daylan, F.-Y. Cyr-Racine, A. Diaz Rivero,
C. Dvorkin, and D. P. Finkbeiner, Probing the
small-scale structure in strongly lensed systems via
transdimensional inference, Astrophys. J. 854 (2018)
141, [arXiv:1706.06111].

[206] F.-Y. Cyr-Racine, C. R. Keeton, and L. A. Moustakas,
Beyond subhalos: Probing the collective effect of the
Universe’s small-scale structure with gravitational
lensing, arXiv:1806.07897.

[207] S. Wilks, The large-sample distribution of the likelihood
ratio for testing composite hypotheses, The Annals of
Mathematical Statistics 9 (1938) 60–62.

[208] A. Lewis and S. Bridle, Cosmological parameters from
CMB and other data: A Monte Carlo approach, Phys.
Rev. D66 (2002) 103511, [astro-ph/0205436].

[209] A. Putze and L. Derome, The Grenoble Analysis
Toolkit (GreAT)—A statistical analysis framework,
Phys. Dark Univ. 5-6 (2014) 29–34.

[210] D. Foreman-Mackey, D. W. Hogg, D. Lang, and
J. Goodman, emcee: The MCMC Hammer, PASP 125
(2013) 306, [arXiv:1202.3665].

[211] F. Feroz and M. P. Hobson, Multimodal nested
sampling: an efficient and robust alternative to MCMC
methods for astronomical data analysis, Mon. Not.
Roy. Astron. Soc. 384 (2008) 449, [arXiv:0704.3704].

[212] F. Feroz, M. P. Hobson, and M. Bridges, MultiNest:
an efficient and robust Bayesian inference tool for

http://arxiv.org/abs/1412.6035
http://arxiv.org/abs/1507.05625
http://arxiv.org/abs/1510.03426
http://arxiv.org/abs/1606.04946
http://arxiv.org/abs/1606.03470
http://arxiv.org/abs/1609.01282
http://arxiv.org/abs/1512.00452
http://arxiv.org/abs/1804.04384
http://arxiv.org/abs/1203.6861
http://arxiv.org/abs/1310.2243
http://arxiv.org/abs/1711.03554
http://arxiv.org/abs/1007.4228
http://arxiv.org/abs/1202.1284
http://arxiv.org/abs/1804.01991
http://arxiv.org/abs/astro-ph/9707187
http://arxiv.org/abs/astro-ph/0108224
http://arxiv.org/abs/astro-ph/0111456
http://arxiv.org/abs/astro-ph/0501324
http://arxiv.org/abs/0805.0201
http://arxiv.org/abs/0903.4752
http://arxiv.org/abs/1002.4708
http://arxiv.org/abs/0910.0760
http://arxiv.org/abs/1201.3643
http://arxiv.org/abs/1405.3666
http://arxiv.org/abs/1210.4562
http://arxiv.org/abs/1601.01388
http://arxiv.org/abs/1403.2720
http://arxiv.org/abs/1109.0548
http://arxiv.org/abs/1706.06111
http://arxiv.org/abs/1806.07897
http://arxiv.org/abs/astro-ph/0205436
http://arxiv.org/abs/1202.3665
http://arxiv.org/abs/0704.3704


29

cosmology and particle physics, Mon. Not. Roy. Astron.
Soc. 398 (2009) 1601–1614, [arXiv:0809.3437].

[213] F. Feroz, M. P. Hobson, E. Cameron, and A. N.
Pettitt, Importance Nested Sampling and the MultiNest
Algorithm, arXiv:1306.2144.

[214] W. J. Handley, M. P. Hobson, and A. N. Lasenby,
POLYCHORD: next-generation nested sampling,
MNRAS 453 (2015) 4384–4398, [arXiv:1506.00171].

[215] GAMBIT: G. D. Martinez, J. McKay, et. al.,
Comparison of statistical sampling methods with
ScannerBit, the GAMBIT scanning module, Eur. Phys.
J. C77 (2017) 761, [arXiv:1705.07959].

[216] L. Lasdon, A. Duarte, F. Glover, M. Laguna, and
R. Mart́ı, Adaptive memory programming for
constrained global optimization, Computers &
Operations Research 37 (2010) 1500–1509.

[217] S. Algeri and D. van Dyk, Testing one hypothesis
multiple times: The multidimensional case, In
Preparation (2018).

[218] S. Algeri, J. Conrad, and D. van Dyk, A method for
comparing non-nested models with application to
astrophysical searches for new physics, Monthly Notices
of the Royal Astronomical Society: Letters 458 (2016)
L84–L88.

[219] E. Gross and O. Vitells, Trial factors for the look
elsewhere effect in high energy physics, The European
Physical Journal C 70 (2010) 525–530.

[220] O. Vitells and E. Gross, Estimating the significance of
a signal in a multi-dimensional search, Astroparticle
Physics 35 (2011) 230–234.

[221] H. Chernoff, On the distribution of the likelihood ratio,
The Annals of Mathematical Statistics (1954) 573–578.

[222] J. Taylor and R. Adler, Euler characteristics for
gaussian fields on manifolds, Annals of Probability
(2003) 533–563.

[223] D. Malyshev and D. W. Hogg, Statistics of gamma-ray
point sources below the Fermi detection limit,
Astrophys. J. 738 (2011) 181, [arXiv:1104.0010].

[224] S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and
W. Xue, Evidence for Unresolved γ-Ray Point Sources
in the Inner Galaxy, Phys. Rev. Lett. 116 (2016)
051103, [arXiv:1506.05124].

[225] S. K. Lee, M. Lisanti, and B. R. Safdi, Distinguishing
Dark Matter from Unresolved Point Sources in the
Inner Galaxy with Photon Statistics, JCAP 1505
(2015) 056, [arXiv:1412.6099].

[226] S. Mishra-Sharma, N. L. Rodd, and B. R. Safdi,
NPTFit: A code package for Non-Poissonian Template
Fitting, Astron. J. 153 (2017) 253,
[arXiv:1612.03173].

[227] G. Dobler, D. P. Finkbeiner, I. Cholis, T. Slatyer, and
N. Weiner, The Fermi Haze: A Gamma-ray
Counterpart to the Microwave Haze, ApJ 717 (2010)
825–842, [arXiv:0910.4583].

[228] M. Ackermann, M. Ajello, et. al., Constraints on the
Galactic Halo Dark Matter from Fermi-LAT Diffuse
Measurements, ApJ 761 (2012) 91, [arXiv:1205.6474].

[229] D. Hooper and T. R. Slatyer, Two Emission
Mechanisms in the Fermi Bubbles: A Possible Signal
of Annihilating Dark Matter, Phys.Dark Univ. 2
(2013) 118–138, [arXiv:1302.6589].

[230] L. J. Chang, M. Lisanti, and S. Mishra-Sharma, A
Search for Dark Matter Annihilation in the Milky Way
Halo, arXiv:1804.04132.

[231] M. Lisanti, S. Mishra-Sharma, N. L. Rodd, B. R.
Safdi, and R. H. Wechsler, Mapping Extragalactic Dark
Matter Annihilation with Galaxy Surveys: A
Systematic Study of Stacked Group Searches,
arXiv:1709.00416.

[232] M. Lisanti, S. Mishra-Sharma, N. L. Rodd, and B. R.
Safdi, A Search for Dark Matter Annihilation in
Galaxy Groups, arXiv:1708.09385.

[233] T. D. P. Edwards, B. J. Kavanagh, and C. Weniger,
Dark Matter Model or Mass, but Not Both: Assessing
Near-Future Direct Searches with Benchmark-free
Forecasting, arXiv:1805.04117.

[234] T. D. P. Edwards and C. Weniger, swordfish: Efficient
Forecasting of New Physics Searches without Monte
Carlo, arXiv:1712.05401.

[235] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers,
and Y. Xu, The Effective Field Theory of Dark Matter
Direct Detection, JCAP 1302 (2013) 004,
[arXiv:1203.3542].

[236] M. A. Beaumont, W. Zhang, and D. J. Balding,
Approximate bayesian computation in population
genetics, Genetics 162 (2002) 2025–2035.
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L. Bergström, A profile likelihood analysis of the
constrained MSSM with genetic algorithms, Journal of
High Energy Physics 4 (2010) 57, [arXiv:0910.3950].

[297] F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri,
and R. Trotta, Challenges of profile likelihood
evaluation in multi-dimensional SUSY scans, Journal
of High Energy Physics 6 (2011) 42,
[arXiv:1101.3296].

[298] GAMBIT Scanner Workgroup: G. D. Martinez,
J. McKay, et. al., Comparison of statistical sampling
methods with ScannerBit, the GAMBIT scanning
module, Eur. Phys. J. C in press 77 (2017) 761,
[arXiv:1705.07959].

[299] M. Bridges, K. Cranmer, et. al., A coverage study of
the CMSSM based on ATLAS sensitivity using fast
neural networks techniques, Journal of High Energy
Physics 3 (2011) 12, [arXiv:1011.4306].

[300] Y. Akrami, C. Savage, P. Scott, J. Conrad, and
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