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1 Overview of the Field
The roots of the modern theory of diffusion processes are to be found in the early decades of the nineteenth
century. The work of Fourier in formulating his famous heat equation comes to mind. Fourier’s arguments
were from a macroscopic viewpoint but from a particle-diffusion perspective, the first systematic study was by
two Scottish scientists: the chemist Thomas Graham and the botanist Robert Brown. Einstein’s 1905 paper
on the topic provided the now generally accepted explanation for Brownian motion and had far-reaching
consequences for physics. There are two key pieces to this work: first, the assumption that a change in
the direction of motion of a particle is random and that the mean-squared displacement over many changes
is proportional to time; second, he combined this with the Boltzmann distribution for a system in thermal
equilibrium to get a value on the proportionality, the “diffusivity” D in 〈x2〉 = 2Dt, D = RT

6Nπηa where T is
the temperature, R the universal gas constant, N is Avogadro’s number and γ = 6πηa where a is the particle
radius and η the viscosity. In the same year, the first dialogues about “random walk” models based on the
ideas of Lord Rayleigh some 20 years previous began.

The heat equation can be derived from such a model based on equal step lengths in equal time intervals
with the coupling between time and space dt ∝ dx2 given by the diffusion constant. Indeed, the time and
space steps can be drawn from a probability density functions p(t) and ψ(x) – provided that the mean of p(t)
and the variance of ψ(x) are finite. Therefore, classical Brownian motion can be viewed as a random walk in
which the dynamics is governed by an uncorrelated, Markovian, Gaussian stochastic process. On the other
hand, when the random walk involves correlations, non-Gaussian statistics or a non-Markovian process (for
example, due to “memory” effects) the diffusion equation will fail to describe the macroscopic limit. These
considerations lead to so-called “anomalous diffusion” processes and the physically-motivated examples are
numerous.

Issue with the fixed paradigms of Brownian motion should not lie only with the underlying assumptions;
we should ask if the outcomes of the model are satisfactory from a physical perspective. Rayleigh’s observa-
tion that in Brownian motion the particles have a high probability of being near their starting position can be
seen in terms of the probability density function given by the Gaussian; a relatively slow diffusion initially
but a very rapid decay of the plume in space. It has certainly been observed that many processes exhibit a
very different effect.

If we break the above assumptions by either p(t) ∝ t−1−α for 0 < α < 1 or ψ(x) ∝ x−2−β for
1 < β < 2, then the model no longer generates classical differential equations but ones with fractional
derivatives. These can be described as an operator product of an integer order derivative and an Abel fractional
integral – another 1820’s idea.
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Partial differential equations remain the lingua franca of the physical sciences and we want to ensure
any model will have such a translation. In the case of a time fractional derivative, the diffusion equation
becomes ∂αt u − 4u = f and the governing function is no longer the exponential of the parabolic form,
but a Mittag-Leffler function Eα,β(z). Such sub-diffusion equations have very different properties. The
most basic of these is perhaps the nonlocality of the operator. The fractional derivative’s value at time t
depends on all previous values of the solution - a striking example of the non-Markovian behaviour of the
model. Moreover, the long term decay of their solution is only linear in time and they have very limited
smoothing behaviour in terms of the initial data and f – again in sharp contrast to the classical parabolic
case. Needless to say, their analysis is correspondingly more complex. However, this slow decay can be
a substantial advantage in inversion and many extremely (exponentially) ill-conditioned inverse problems
become less so (polynomial) under the subdiffusion paradigm. This comes at a price. Numerical methods are
needed to obtain computable approximations of the solutions which can be used, for instance, to determine if
a mathematical model is accurately describing the underlying physical phenomena. Due to the complexity of
problems involving fractional operators, new and often clever methods must be used to obtain efficient and
reliable approximations.

A similar effect occurs in wave equations under damping. Incorporating a classical first order time deriva-
tive simulating velocity, the exponential decay of the solution makes it difficult to extract information from
anything but very small times. Under fractional damping, the decay is only linear and vastly changes an
inverse problem designed to recover important coefficients in the equation from time-trace data.

In the superdiffusion case, where we incorporate a spatial fractional derivative, the situation is even more
complex and, unlike the subdiffusion case which is now becoming well-understood, remains more of an
enigma. We should remark here that there are many definitions of fractional operators in space - in particular
of elliptic operators. These include the “fractional Laplacian of order β” which in Rd can be viewed as
that pseudo differential operator whose Fourier transform has symbol ξβ or in a bounded domain Ω as that
operator with the same eigenfunctions as −4 but with eigenvalues raised to the power β. These have a rich
mathematical theory but their direct connection to a physical process is more tenuous. On the other hand,
they have useful mathematical properties that simulate many of the desired physical properties.

In both the sub and super-diffusion cases, there is the question of obtaining effective numerical methods
as the parabolic paradigm no longer holds and the spatial effects involve the entire region. Again, the situation
is that much has been done but there is even more to do especially in the super-diffusion models, and this
aspect will be a central part of our workshop.

2 Objectives of the Workshop
The primary interest of the organisers was, on the one hand, the analysis of inverse problems for partial
differential equations and on the other hand, the development and analysis of numerical methods for solving
the underlying equations.

Of particular interest are reaction diffusion equations either of subdiffusion type ∂uαt − Lu = f(x, t, u)
or containing a space fractional operator Lβ as in ∂uαt − Lβu = f(x, t, u). These can be single equations
or coupled systems and there may be unknown coefficients appearing in the elliptic operator or its fractional
substitute, as well as in the nonlinear term f(x, t, u). Such equations in classical derivative form have formed
the basis of chemical reactions, combustion, mathematical ecology and epidemiology, just to name a few ap-
plication areas. In each case, there is a considerable rationale for the inclusion of non-Markovian models and
their differential equation counterparts. Materials with memory require such a mechanism: many biologists
and epidemiologists have pointed out that species rarely diffuse with a Brownian-type motion and they have
to incorporate “long space step” jumps in the model. This is precisely what fractional operators provide. All
of the above mentioned applications have conditions under which the forced, classical exponential decay-
ing solutions no longer capture the dynamics and their replacement with nonlocal operators provide a more
realistic physical model.

Inverse problems play a major role in all of the above. Indeed, the central issue with complex epidemic
modelling is the recovery of the various rate constants under high noise measurements and it is clear that
such finite dimensional parameter identification problems are vastly more simple and model-restrictive than
the more universal approach of treating the unknowns as functions in a prescribed class.
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In recent years, the development of numerical methods for problems involving fractional operators has
made considerable strides in reducing the computational cost of previous methods. This is especially true
for the case of direct or forward problems. For instance, borrowing tools traditionally used in the context
of parametric PDEs, the reduced basis method has been recently considered to efficiently approximate the
solution of fractional diffusion problems. Computational methods for inverse problems, where recovery of
the unknowns is frequently done by iterative methods, is more challenging. The strategy of using as much of
the information as possible from previous iteration steps can make a significant difference yet is a considerable
challenge from both an algorithmic and a convergence analysis perspective. Moreover, the performance of
such methods in the context of ill-posed inverse problems is still to be explored. This aspect was seen as one
of the main goals of this workshop.

Another goal was to seek the group’s interest in tackling partial differential operators with space fractional
derivatives of Riemann-Liouville or Caputo type rather than as “fractional powers” of existing classical ellip-
tic operators – the so-called superdiffusion case. The rationale for this is a closer connection to the underlying
physics and models based on the probabilistic approach noted in the overview section. The difficulties here
are considerable from both an analysis and a numerical perspective. Many of the PDE results in standard use
either don’t hold or do so in restricted sense, or are simply unknown. The same can be said to some extent
about the functional analysis of these operators and, compared to other definitions, there are significantly
less numerical algorithms available with provable convergence properties. The blend of participants we had
invited are ideally suited to making substantial progress on this problem.

While each of the organisers have research areas grounded in partial differential equations, they do so
from slightly different perspectives that will be valuable for the proposed meeting.

Diane Guignard is a classically trained numerical analyst specialising in adaptive algorithms and both
linear and nonlinear reduced models for PDEs. Barbara Kaltenbacher and William Rundell have worked in
PDE inverse problems for their entire career: the former is an expert in regularisation techniques, the latter
has taken a mathematical physics perspective. Both Kaltenbacher and Rundell have a long individual history
of meeting organisation as well as in collaboration. They also have collaborated in many research papers
central to the workshop topic.

3 Recent Developments and Open Problems
The first discussion session in the afternoon of Monday, May 9 was very lively and ran well over the allocated
time (it was the last session of the day). There was general consensus that the traditional fractional powers of
an operator had seen an enormous success from both a numerical and inverse problems perspective. There was
also the sense that the area has become perhaps over-saturated and new directions are needed. To be avoided
are trends in “artificial” new definitions of fractional operators; research needs to be tied more strongly to
physical applications. Ricardo Nochetto and Andrea Bonito who have been at the forefront of current research
in numerical methods for some time were very much in agreement with this consensus as was Masahiro
Yamamoto representing a more theoretical viewpoint. Specific topics such as fractional partial differential
equations with space-dependent fractional power or with different type of boundary conditions (other than
homogeneous Dirichlet boundary condition), as well as fully nonlinear fractional partial differential equations
were touched on during this discussion. Again, all participants of this session agreed that physical motivations
for studying such problems, even if interesting by themselves from a mathematical point of view, are needed.

A second discussion round in the morning of Thursday, May 12 (chaired by Masahiro Yamamoto and
Bangti Jin) dealt with similar questions as the first one, but putting more emphasis on time fractional mod-
els. Concerning the analysis, it was once more emphasized that fully nonlinear fractional partial differential
equations are a still largely unexplored field with many crucial mathematical challenges and interesting appli-
cations. Also the importance of physically sound modeling was addressed - in particular in view of a certain
trend to just ”fractionalizing” classical models without caring about a justification that threatens the image
of fractional calculus in the scientific community. In the numerics of fractional PDEs, many new approaches
have been developed recently, including time adaptivity or structure and asymptotic preserving methods.
However, the tools for analyzing these methods are to some extent still missing. The development of these
tools is one of the key open tasks in this area and will certainly benefit from the interaction between numerics
oriented researchers and people with expertise on the analytical side of fractional calculus. Finally, joining
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the space and the time fractional world - which was one of the main motivations of this workshop - remains
an important and worthwhile aim.

4 Presentation Highlights
Juan Pablo Borthagaray: Linear and quasi-linear fractional operators in Lipschitz domains: regularity and
approximation

In this talk, we discuss the formulation, regularity, and finite element approximation of linear and quasi-
linear fractional-order operators in bounded, Lipschitz domains. We emphasize recent results about Besov
regularity, a priori error estimates in quasi-uniform and graded meshes, and local error estimates for linear
problems.

Abner Salgado: Time fractional gradient flows, theory and numerics
We consider a so-called time fractional gradient flow: an evolution equation aimed at the minimization of

a convex and l.s.c. energy, but where the evolution has memory effects. This memory is characterized by the
fact that the negative of the (sub)gradient of the energy equals the so-called Caputo derivative of the state. We
introduce a notion of “energy solutions” for which we refine the proofs of existence, uniqueness, and certain
regularizing effects provided in [Li and Liu,SINUM 2019]. This is done by generalizing, to non-uniform
time steps the “deconvolution” schemes of [Li and Liu, SINUM 2019], and developing a sort of “fractional
minimizing movements” scheme. We provide an a priori error estimate that seems optimal in light of the
regularizing effects proved above. We also develop an a posteriori error estimate, in the spirit of [Nochetto,
Savare, Verdi, CPAM 2000] and show its reliability.
This is joint work with Wenbo Li (UTK).

Andrea Bonito: (tutorial talk) The Dunford-Taylor Method and Fractional Diffusion
In the first part of the talk, we review numerical algorithms for the approximation of fractional elliptic

operators with a particular attention on their analysis and implementations. Our main emphasis is on methods
using the Dunford-Taylor representations of fractional diffusion problems, but other methods are discussed
as well. The Dunford-Taylor representation consists of an improper integral, which is approximated an expo-
nentially convergent sinc quadrature method. In turn, the integrand at each quadrature point is approximated
using a standard finite element method. The method is easily parallelizable and consists of a straightforward
modification of standard finite element methods for reaction-diffusion problems.

In the second part of the talk, we propose numerical methods for the discretization of the surface-quasi
geostrophic (SQG) system. The latter is a nonlinear partial differential system of equations coupling transport
and fractional diffusion phenomena. The time discretization consists of an explicit strong-stability-preserving
three-stage Runge-Kutta method while a flux-corrected-transport method while the space discretization is
based on the Dunford-Taylor representations discussed earlier. In the so-called inviscid case, we show that
the resulting scheme satisfies a discrete maximum principle property under a standard CFL condition and
observe, in practice, its second-order accuracy in space. The algorithm successfully approximates several
benchmarks with sharp transitions (frontogenesis) and fine structures typical of SQG flows. In addition, theo-
retical Kolmogorov energy decay rates are observed on a freely decaying atmospheric turbulence simulation.

Bangti Jin: (tutorial talk) Tutorial on Recent Advances on Inverse Problems for Time-Fractional Diffusion
Diffusion type models involving a fractional-order derivative in time have received a lot of attention in

the physical and engineering communities during the last few decades, due to their extraordinary capabilities
for accurately describing anomalous transport processes. There have also been intensive research activities
on inverse problems for such models, starting from the pioneering works of Cheng, Nakagawa, Yamamoto
and Yamazaki (Inverse Problems, 2009). In this tutorial talk, I will describe basic facts about the direct
problem of the canonical mathematical model and discuss some recent advances on related inverse problems.
I will mainly discuss three classes of model inverse problems, i.e., backward problem, order determination
and inverse coefficient problems, and describe representative recent results, the idea of proofs and some
outstanding issues.

Eric Soccorsi: Inverse coefficient problem for time fractional diffusion equations
Let Ω be a bounded domain of Rd, d ≥ 2, with C1,1, boundary ∂Ω. We consider an initial boundary value
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problem for a fractional diffusion equation on Ω × (0, T ) , T > 0, with time-fractional Caputo derivative
of order α ∈ (0, 1) ∪ (1, 2). We prove that two out the three time-independent coefficients ρ (density), a
(conductivity) and q (potential) appearing in the equation ρ(x)∂αt u(x, t)+∇·(a(x)∇u(x, t))+q(x)u(x, t) =
0 are recovered simultaneously from measurements of the solutions on a subset of ∂Ω at fixed time T0 ∈
(0, T ).

Vanja Nikolic: Time-fractional Moore–Gibson–Thompson equations
In this talk, we will present several time-fractional generalizations of the JordanMooreGibsonThompson

(JMGT) equations in nonlinear acoustics. Following the procedure described in Jordan (2014), these time-
fractional acoustic equations are derived from four fractional versions of the MaxwellCattaneo law in Compte
and Metzler (1997). Additionally to presenting the local well-posedness results, we will also discuss their
limiting behavior as the fractional order tends to one, leading to the classical third order in time (J)MGT
equation. The talk is based on joint work with Barbara Kaltenbacher (University of Klagenfurt).

Yikan Liu: Unique determination of orders and parameters in multi-term time-fractional diffusion equations
by inexact data

As the most significant difference from parabolic equations, the asymptotic behavior of solutions to time-
fractional evolution equations is dominated by the fractional orders, whose unique determination has been
frequently investigated in literature. Unlike all existing results, in this talk we explain the uniqueness of
orders and parameters (up to a multiplier for the latter) only by the inexact data near t = 0 at a single point.
Moreover, we discover special conditions on unknown initial values for the coincidence of observation data.
As a byproduct, we can even conclude the uniqueness for initial values or source terms by the same data.
The proof relies on the asymptotic expansion after taking the Laplace transform and the completeness of
generalized eigenfunctions.

Guanglian Li: Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusionequations with heteroge-
neous coefficients in a large time domain

I will present in this talk the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm recently pro-
posed in [Li and Hu, J. Comput. Phys., 2021] to efficiently solve subdiffusion equations with hetero-geneous
coefficients in long time. This algorithm combines the advantages of multiscale methods thatcan effectively
deal with heterogeneity in the spatial domain, and the strength of parareal algorithms forspeeding up time
evolution problems when sufficient processors are available. Compared with the previ-ous work for parabolic
problem, the main challenge in both the analysis and simulation arises from thenonlocality of the fractional
derivative. To conquer this obstacle, an auxiliary problem is constructed oneach coarse temporal subdomain
to uncouple the temporal variable completely. In this manner, the ap-proximation properties of the correction
operator is proved. In addition, a new summation of exponentialsums is derived to generate single-step time
stepping scheme, with the number of terms of O(| log τf |) independent of final time. Here, τf is the fine-
scale time step size. We derive the convergence rateof this algorithm in terms of the mesh size in the spatial
domain, the level parameter used in the multi-scale method, the coarse-scale time step size and the fine-scale
time step size. Several numerical tests arepresented to demonstrate the performance of our algorithm, which
verify our theoretical results perfectly.

Matti Lassas: Geometric inverse problems for the fractional diffusion equation
Given a connected compact Riemannian manifold (M, g) without boundary, dimM ≥ 2, we consider

a spacetime fractional diffusion equation with an interior source that is supported on an open subset V of
the manifold. The time-fractional part of the equation is given by the Caputo derivative of order α ∈ (0, 1],
and the space fractional part by (−∆g)

β , where β ∈ (0, 1] and ∆g is the Laplace–Beltrami operator on the
manifold. The case α = β = 1, which corresponds to the standard heat equation on the manifold, is an
important special case. We construct a specific source such that measuring the evolution of the corresponding
solution on V determines the manifold up to a Riemannian isometry.

Olena Burkovska: Identifying the fractional power and extent of interactions in nonlocal models
Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to

classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model
parameters. In this talk we propose an optimization-based approach to parameter identification for fractional
models with an optional truncation radius. We formulate the inference problem as an optimal control problem
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where the objective is to minimize the discrepancy between observed data and an approximate solution of
the model, and the control variables are the fractional order and the truncation length. For the numerical
solution of the minimization problem we propose a gradient-based approach, where we enhance the numerical
performance by an approximation of the bilinear form of the state equation and its derivative with respect
to the fractional order. We present several numerical tests in one and two dimensions that illustrate the
theoretical results and show the robustness and applicability of our method. This work is in collaboration
with M. D’Elia and C. Glusa.

Tram Thi Ngoc Nguyen: From neural-network-based learning to discretization of inverse problems
We investigate the problem of learning an unknown nonlinearity in parameter-dependent PDEs. The non-

linearity is represented via a neural network of an unknown state. The learning-informed PDE model has
three unknowns: physical parameter, state and nonlinearity. We propose an all-at-once approach to the mini-
mization problem. (Joint work: Martin Holler, Christian Aarset)
More generally, the representation via neural networks can be realized as a discretization scheme. We study
convergence of Tikhonov and Landweber methods for the discretized inverse problems, and prove conver-
gence when the discretization error approaches zero. (Joint work: Barbara Kaltenbacher)

Ekaterina Sherina: Quantitative optical coherence elastography
Elastography is an imaging modality which can map the biomechanical properties of a given sample, and

is interested in identifying the spatial distribution and values of its biomechanical parameters. It is typically
implemented as an add-on, e.g. to ultrasound, magnetic resonance imaging, optical coherence tomography
(OCT) etc. In this work, we consider optical coherence elastography (OCE), which is a promising emerg-
ing research field but still lacking high precision and reproducibility. We aim at a quantitative multi-faceted
analysis of key factors such as data quality and properties of reconstruction methods required for the success-
ful application of quantitative elastography. Mathematically, we deal with two inverse problems in OCE - a
reconstruction of the mechanical displacement and a reconstruction of the Young’s modulus (stiffness) from
OCT data of a sample which undergoes a static compression. In this work, we propose, analyse and compare
three reconstruction methods for the Young’s modulus: uniaxial analysis, strain map based reconstruction
facilitating a particle tracking improved optical flow (EOFM), and a novel image-based inverse reconstruc-
tion method (IIM). The quality of the proposed reconstruction methods with respect to samples of different
mechanical properties is investigated by comparing their performance on twelve silicone elastomer phantoms
with inclusions of varying size and stiffness.

Andrea Aspri: Phase-field approaches for reconstruction of elastic cavities
In this talk I will present some recent results on geometrical inverse problems related to the shape re-

construction of cavities and inclusions in a bounded linear isotropic medium by means of boundary mea-
surements. We adopt the point of view of the optimal control, that is we rephrase the inverse problems as
a minimization procedure where the goal is to minimize, in the class of Lipschitz domains, a mis-fit bound-
ary functional or an energy-type functional with the addition of a regularization term which penalizes the
perimeter of the cavity/inclusion to be reconstructed. The optimization problem is addressed by a phase-field
approach, approximating the perimeter functional with a Modica-Mortola relaxation.
This is a joint work with E. Beretta, C. Cavaterra, E. Rocca and M. Verani.


