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1 Overview of the Field and Recent Developments
The subject of Diophantine equations is currently experiencing a rapid succession of breakthroughs. These
include:

(i) The work of Rafael von Känel, Benjamin Matschke, Hector Pasten, and others, proving powerful
results on classical Diophantine equations by associating solutions to points on modular or Shimura
curves.

(ii) Recent successes in making the Chabauty-Kim method effective, explicit and practical, due to Balakr-
ishnan, Dogra, Müller, and others.

(iii) Progress on Manin’s conjecture and other quantitative questions by a new generation of analytic num-
ber theorists, including Browning, Loughran, Schindler, Tanimoto and many others.

(iv) The introduction of the notion of Campana points which interpolate between rational and integral
points, and which give rise to a host of new Diophantine problems.

(iv) Applications of modularity over number fields to the asymptotic Fermat conjecture and other Diophan-
tine problems due to Bennett, Dahmen, Freitas, Kraus, Sengun, Siksek and others.

Whilst these and other successes constitute dramatic progress on problems of tremendous historical impor-
tance, there has also been a divergence of methods and approaches, and the subject is undergoing a period of
fragmentation. A primary objective of the workshop was to reverse this fragmentation by bringing together
researchers belonging to disparate Diophantine traditions, and who would otherwise rarely interact.

2 Presentation Highlights

2.1 Stephanie Chan: Integral points in families of elliptic curves
Given a family of elliptic curves, it is natural to ask how often does they have integral points, and how many
integral points there are on average. In this talk Chan gave beautiful answers for two natural families, the
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congruent number curves, and the cubic twists of a Mordell curve. For example, fix a non-square k ̸= 0, and
consider

EB : Y 2 = X3 + kB2.

The family {EB : B ∈ N} consists of the cubic twists of the Mordell curve Y 2 = X3 + k. Let

EB(Z) = {(X,Y ) ∈ Z2 : Y 2 = X3 + kB2}.

Chan sketched proofs of the following results

#{1 ≤ B ≤ N : EB(Z) ̸= ∅} ≪k N ·
(
log logN

logN

)1/2

and ∑
1≤B≤N
B cubefree

#EB(Z) ≪k N.

For details see [8], [9].

2.2 Levent Alpoge: Integers which are(n’t) the sum of two cubes
Thanks to Fermat we have a complete description of which integers are sums of two rational squares. Alpöge
sketched the proofs of the following beautiful theorem.

Theorem (Alpöge, Bhargava and Schnidman). When ordered by their absolute values, a positive proportion
of integers are the sum of two rational cubes, and a positive proportion of integers are not.

The problem of representing an integer n as the sum of two rational cubes is equivalent to deciding if the
elliptic curve

Ed,n : y2 = x3 − dn2

has rational points, for d = 432. As torsion is rare in these families, the problem translates into determining
for which values of n is the rank of E432,n positive. The main ingredient is the following estimate for the
average size of 2-Selmer group of Ed,n.

Theorem (Alpöge, Bhargava and Schnidman). Fix d ̸= 0 and let n range over integers satisfying any finite
set (or even “acceptable” infinite sets) of congruence conditions. Then

avgn #Sel2(Ed,n) = 3.

For details see [2].

2.3 Hector Pasten: On Vojta’s conjecture with truncation of rational points
In [36], Vojta proposed a far-reaching generalization of the abc conjecture. Vojta’s conjecture is a Diophantine
approximation statement in varieties of any dimension and involves truncated counting functions (these are
a generalization of the logarithm of the radical of an integer). Pasten sketched the proof of the first uncondi-
tional result towards Vojta’s conjecture with truncated counting functions in varieties of arbitrary dimension.
A striking application is the following corollary, which can be thought of as a subexponential version of the
abc conjecture.

Corollary (Pasten). Let ϵ > 0. There is a number κϵ > 0 effectively depending on ϵ such that the following
holds: Let a, b, c be coprime positive integers with a+ b = c. Suppose a < c1−η for some η > 0. Then

c < exp
(
η−1 · κϵ ·R(1+ϵ)(log∗

3 R)/(log∗
2 R)

)
,

where R = rad(abc).

For details see [29].
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2.4 Abbey Bourdon: Sporadic points of odd degree on X1(N) coming from Q-curves
We say a degree d point x on a curve C is isolated if it does not belong to an infinite family of degree
d points parametrized by a geometric object-either P1 or a positive rank abelian subvariety of the curve’s
Jacobian. We say x is sporadic if there are only finitely many points on C of degree at most d. Every sporadic
point is isolated, but the converse need not hold. It was known from recent work of Bourdon, Ejder, Liu,
Odumodu, and Viray [5] that Serre’s uniformity conjecture implies that there are only finitely many elliptic
curves with j-invariant in Q which give rise to an isolated point of any degree on X1(N). On the other
hand, by recent work of Bourdon and Najman, an analogous finiteness result on non-CM Q-curves would
actually imply Serre’s Uniformity Conjecture. The talk highlighted unconditional results in that direction for
Q-curves giving rise to sporadic points of odd degree. For details see [7].

2.5 Pip Goodman: Determining cubic and quartic points on modular curves
Let C be a curve over Q, and let C(d) denote the d-th symmetric power. The Q-points of C(d) correspond
to degree d rational divisors on C. In particular, if we can determine C(d)(Q) then we know all degree d
points on C. Wetherell (unpublished) and Siksek [34] have extended Chabauty’s method to determine C(d),
under a suitable condition on the rank. One difficulty is that C(d)(Q) might be infinite. For example, if
ρ : C → D has degree d and D(Q) is infinite then ρ∗(D(Q)) is an infinite subset of C(d)(Q). Previous work
on symmetric Chabauty focuses on the case where the only infinite source of rational points on C(d) comes
from a single degree d map ρ : C → D. In practice, this has turned out to be severely limiting. For example,
if C is a modular curve then one often has many maps to modular curves of smaller level, elliptic curves
and to quotients by Atkin–Lehner involutions. In this talk Goodman, reporting on joint work with Box and
Gajović, consider the most general case where an infinite family within C(d) has the form

P + ρ∗1(C
d1
1 (Q)) + · · ·+ ρ∗r(C

dr
r (Q))

where P is a fixed rational divisor of degree d0, the maps ρi : C → Ci have degrees ei and

d = d0 + d1e1 + · · ·+ drer.

They use their new variant of Chabauty to determine the cubic points on X0(N) for N = 53, 57, 61, 65, 67,
73 and the quadratic points on X0(65), thereby answering questions posed by Zureick-Brown. For details
see [4].

2.6 Adela Gherga: Efficient resolution of Thue–Mahler equations
A Thue–Mahler equation has the form

F (X,Y ) = a · pn1
1 pn2

2 · · · pnr
r , gcd(X,Y ) = 1, ni ≥ 0

where F ∈ Z[X,Y ] is an irreducible binary form of degree ≥ 3, a is a non-zero integer, and p1, . . . , pr
are distinct primes. The talk highlighted a new algorithm for solving Thue–Mahler equations that makes
heavy use of a newly developed “Dirichlet sieve”. This allows for the resolution of Thue–Mahler equations
of large degree or with a large number of primes. For example, the algorithm determines all solutions to
P (X4 − 2Y 4) ≤ 100 with gcd(X,Y ) = 1, finding that there are precisely 49 solutions. Here P (m) denotes
the largest prime divisor of m. This work links with algorithms due to Gherga, Bennett, Rechnitzer, von
Känel, Matschke to determine all elliptic curves over Q with a given set of bad primes, by reducing the
problem to the resolution of cubic Thue–Mahler equation. For details see [3], [17].

2.7 Isabel Vogt: Geometry of curves with abundant points
Let X be a curve over a number field k, and let d ≥ 2. When does X possess infinitely many degree d
points? It is known by classification results of Harris–Silverman and Abramovich–Harris that if this happens
with d = 2, 3, then the curve X admits a non-constant map of degree at most d to either P1 or an elliptic
curve. For d ≥ 4 the analogous statement is false by work of Debarre and Fahlaoui. Vogt sketched joint work
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with Kadets that extends the classification of Harris–Silverman and Abramovich–Harris to larger values of
d. For a curve X/k we define the arithmetic degree of irrationality a.irrk X to be the smallest integer k such
that X has infinitely many closed points of degree d. We define the geometric degree of irrationality a.irrk X
to be the minimum of the values a.irrL X as L ranges over finite extensions of k.

Theorem (Kadets and Vogt). Suppose X/k is a nice curve. Then the following statements hold:

1. If a.irrk X = 2, then X is a double cover of P1 or an elliptic curve of positive rank;

2. If a.irrk X = 3, then one of the following three cases holds:

(a) X is a triple cover of P1 or an elliptic curve of positive rank;
(b) X is a smooth plane quartic with no rational points, positive rank Jacobian, and at least one

cubic point;
(c) X is a genus 4 Debarre-Fahlaoui curve;

3. If a.irrk X = d ⩽ 3, then Xk is a degree d cover of P1 or an elliptic curve;

4. If a.irrk X = d = 4, 5, then either Xk is a Debarre-Fahlaoui curve, or Xk is a degree d cover of P1

or an elliptic curve.

For details see [22].

2.8 Diana Mocanu: The modular approach to Diophantine equations over totally
real fields

Freitas, Kraus and Siksek [16], [15] have related solutions to the Fermat equation Xp + Y p + Zp = 0 over
totally real fields to solutions to a certain S-unit equations using modularity and level lowering. Mocanu
extends this to the generalized Fermat equations Xp + Y p = Z2 and Xp + Y p = Z3 where the S-unit
equations are replaced by equations of the form α+ β = γ2 and α+ β = γ3 where α, β are S-units. Under
certain class-field-theoretic assumptions Mocanu can control solutions to these equations. A sample theorem
is the following.

Theorem (Mocanu). Let d ≡ 5 (mod 8) be a rational prime, and write K = Q(
√
d). There is a constant

BK such that for all primes p > BK , the equation ap + bp = c2 has no non-trivial primitive solutions
(a, b, c) ∈ O3

K with 2 | b.
For details see [25].

3 Open Problems
The organizers thank Alex Best for transcribing the open problems.

3.1 Abbey Bourdon: Two Problems on Isolated Points
Let C be a nice curve over a number field k. For the sake of simplicity, assume there exists P0 ∈ C(k); for a
more general setup, see [5, §4]. We say a closed point x ∈ C of degree d is sporadic if there are only finitely
many points of degree at most d. More generally, we say x is isolated if it does not belong to an infinite
family of degree d points parametrized by P1 or a positive rank abelian subvariety of the curve’s Jacobian.
Precisely, to x we can associate the k-rational effective divisor

D = P1 + · · ·+ Pd

where P1, . . . , Pd are the points in the Galk-orbit corresponding to x. Thus x gives a k-rational point on the
dth symmetric power of C, denoted C(d). With this identification, we can study the image of x under the
natural map to the curve’s Jacobian

Φd : C(d) → Jac(C)

which sends the effective divisor D of degree d to the class [D − dP0]. We say x is isolated if the following
conditions are both satisfied:
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1. There is no other point y ∈ C(d)(k) such that Φd(x) = Φd(y).

2. There is no positive rank abelian subvariety A ⊂ Jac(C) such that Φd(x) +A ⊂ im(Φd).

Any sporadic point is isolated (though the converse need not hold), and any curve has only finitely many
isolated points. See [5, Theorem 4.2].

Recent investigations [5, 6, 7, 14, 33] have sought to characterize the elliptic curves producing sporadic
and isolated points on X1(N). We say j ∈ X1(1) ∼= P1 is a sporadic (resp., isolated) j-invariant if it
is the image of a sporadic (resp., isolated) point on X1(N) for some positive integer N . If one assumes
Serre’s Uniformity Conjecture, then there are only finitely many isolated j-invariants in Q [5, Corollary
1.7], and the subset of non-CM j-invariants in Q corresponding to isolated points of odd degree has been
identified explicitly [6, Theorem 2]. As a first step in the case of even degree, define Jisog(Q) to be the
set of j-invariants associated to elliptic curves over Q with a nontrivial rational cyclic isogeny. This set
contains all known examples of isolated j-invariants in Q: those corresponding to CM elliptic curves plus
j = −32 · 56/23, 33 · 13/22, and −7 · 113. See [5, 6, 27, 21]. By work of Lemos [23], Serre’s Uniformity
Conjecture holds for all non-CM elliptic curves over Q possessing a nontrivial cyclic Q-isogeny. Thus, by
[5, Corollary 1.7], there are only finitely many isolated j-invariants in Jisog(Q).

Question 1. Can the set of isolated j-invariants in Jisog(Q) be computed explicitly? Are there any isolated
j-invariants in Q which lie outside this set?

We note that there are similarities between this question and the methods used to prove Theorem 2 in
[6]. There, an essential observation was that if x ∈ X1(n) is a point of odd degree with j(x) ∈ Q and
j(x) ̸= 33 · 5 · 75/27, then there exists y ∈ X0(p)(Q) with j(x) = j(y) for some odd p | n; see [6, Thm.
3]. If one follows the approach of [6], it will be necessary to perform a more sophisticated analysis of the
possible combinations of simultaneously non-surjective Galois representations associated to elliptic curves
E/Q. Partial progress can be made using work of Morrow, Daniels, and González-Jiménez [26], [10] on
fiber products of modular curves in combination with results obtained via formal immersions as in work
of Darmon and Merel [13, Thm. 8.1] and Lemos [23, Prop. 2.1]. An analysis of certain “entanglement”
modular curves was also necessary in [6] and similar computations may be required for Question 1. For more
on entanglement modular curves, see [7, 12, 11].

Instead of studying isolated or sporadic points associated to elliptic curves with j-invariant in Q, one
could more generally hope to understand isolated points corresponding to Q-curves. Here, by Q-curve, I
mean an elliptic curve isogenous (over Q) to its Galois conjugates. This class contains all elliptic curves with
j-invariant in Q, as well as any curve in the corresponding geometric isogeny class, though there are others
not of this form (the so-called “strict” Q-curves). A key motivation for studying sporadic points associated
to Q-curves is the following: If all non-CM Q-curves giving rise to a sporadic point on X1(N) belong to
only finitely many geometric isogeny classes—even as we allow N to range over all positive integers—then
Serre’s Uniformity Conjecture holds. See [7, Theorem 1.3]. We have such a finiteness result for odd degree,
where one can show all non-CM Q-curves corresponding to a sporadic point of odd degree on X1(N) belong
to the Q-isogeny class of the elliptic curve 162.c3 with j-invariant −32 · 56/23 [7, Theorem 1.4]. However, it
is unknown whether this isogeny class contains any sporadic j-invariants besides −32 · 56/23. This inspires
the following question, which also appears as Question 2 in [7]:

Question 2. Does there exist a non-CM Q-isogeny class containing infinitely many sporadic j-invariants?

Note that the answer to Question 2 is yes if there exists an elliptic curve producing a sporadic point of
sufficiently low degree [7, Proposition 8.1], but the only known examples satisfying this condition are CM
elliptic curves.

3.2 Nathan Grieve: Approximation sets for properly intersecting divisors
Consider a polarized projective variety (X,L) defined over a number field K. Let D1, . . . , Dq be a collection
of nonzero effective and properly intersecting Cartier divisors on X . Fix a finite set of places S, of K, and
let N = q ·#S.
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Expanding on the viewpoint of Schmidt [32], inside of RN , there is an approximation set

Approx(X,L;D1, . . . , Dq;S) ⊆ RN .

In defining such approximation sets, a key point is a concept of density of rational points with respect to
the subspace topology on X(K) that is induced by the linear sections of the complete linear series |L| and
powers thereof (cf. [32, p. 706] and [18, Definition 3.1]).

Arguing as in [32, p. 708], the compactness of such approximation sets follows from the Ru-Vojta Arith-
metic General Theorem (see for instance [31, p. 961], [18, Theorem 1.1]). However, it remains an interesting
problem to determine defining inequalities of such approximations sets. Such a result would make progress
towards a general form of [32, Theorem 2] which, in particular, would treat the case of properly intersecting
divisors.

3.3 Hector Pasten: Büchi’s problem
Observe: 1, 4, 9, 16, . . . have differences 3, 5, 7, which have differences 2, 2, 2, etc.

You can also take non-consecutive squares such as 0, 49, 100, . . . which have difference 49, 51, and then
difference 2. But it seems harder to construct long sequences like this.

The problem is to find how long such a sequence can be, there are infinitely many known examples of
length four.

This is known as Büchi’s problem; show that there exists a uniform M (i.e. constant) such that every
sequence of ≥ M squares with second differences equal to 2 is trivial (i.e. the squares are consecutive). One
expects that M = 5 (via heuristic and also from known evidence), but any bound would be interesting.

What is known: A theorem of Vojta shows that the Bombieri–Lang conjecture implies a positive answer
to Büchi’s problem [35]. Pasten also shows, conditionally on the abc-conjecture, that Büchi’s problem admits
a positive answer [28]. The challenge is to find something unconditional in this direction.

Nils Bruin remarks that Vojta’s approach is via surfaces, showing eventually the surface classifying these
is of general type, and so the Bombieri–Lang conjecture is applicable. However, Pasten’s approach is less
geometric.

3.4 Stanley Xiao: One of the cuboid conjectures
An perfect Euler brick is a rectangular prism with side lengths a, b, c ∈ N such that all face diagonals (d,
e, f ) are natural numbers and also the space diagonal g is a natural number. No example of a perfect Euler
brick is known, however, it is easy to construct examples of bricks where only the edges and face diagonals
are natural numbers (e.g. (a, b, c, d, e, f) = (44, 117, 240, 125, 255, 267).

If we do not insist on the prism being rectangular, and allow non-right angles, examples are also known.
There are conjectures known as the cuboid conjectures, suggested 10 years ago, which appear on the

Wikipedia page for the Euler brick. Together the three cuboid conjectures, imply there is no perfect Euler
brick. The first conjecture is easy (for experts on invariant theory of quadratic forms), the second seems
harder and the third seems to be 99% of the work.

The second cuboid conjecture is as follows:

Conjecture 2. For any two positive coprime integer numbers p ̸= q the tenth-degree polynomial

Qpq(t) =t10 +
(
2q2 + p2

) (
3q2 − 2p2

)
t8

+
(
q8 + 10p2q6 + 4p4q4 − 14p6q2 + p8

)
t6

− p2q2
(
q8 − 14p2q6 + 4p4q4 + 10p6q2 + p8

)
t4

− p6q6
(
q2 + 2p2

) (
−2q2 + 3p2

)
t2

− q10p10

is irreducible over the ring of integers Z.

Conjecture 2 may be possible using the expertise we have, though it is not completely clear what the
motivation for this conjecture is. John Voight suggests looking at Runge’s method.
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3.5 Drew Sutherland: Modular curves arising in the classification of Galois images
Mazur’s vertical uniformity problem asks for the determination of possible ℓ-adic images of Galois represen-
tations of elliptic curves E/Q. i.e. given a prime ℓ what are the possibilities for the image of

ρE,ℓ∞ : GQ → GL(E[ℓ∞]),

as E ranges over all elliptic curves over Q. For ℓ = 2 the answer is known due to Rouse–Zurieck-Brown.
For ℓ = 11, 17 the answer is known due to Balakrishnan et. al.

Why don’t we know more? We need to determine the rational points on certain modular curves such as

X+
ns(25), X+

ns(27), X+
ns(131), X+

ns(ℓ) for ℓ ≥ 19.

There are two other curves that interesting that we would like to know the rational points on (given by their
LMFDB labels of the form L.I.g.n where L is the level, I the index, g the genus, and n the curve number).
The first is known as 49.147.9.1, and is a degree 7 cover of X+

ns(7) (which is genus 0), the CM points are
above j = 0, and the plane model has been computed, of degree 21. The gonality is at least 3, and the
Jacobian is geometrically irreducible and of rank 9. The corresponding modular form is
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2401.2.a.f/

The second is known as 49.196.9.1, it is a degree 7 cover of X+
s (7) the CM points are above j = 0, and

the plane model has been computed, of degree 14. The gonality is at least 5, and the Jacobian decomposes as
the product of a dimension 3 and dimension 6 piece corresponding modular forms are
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2401.2.a.b/
and
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2401.2.a.c/
The rank of the Jacobian is 9.

Models for these curves can be found at
https://github.com/AndrewVSutherland/ell-adic-galois-images/tree/main/models.

It is conjectured that there are no non-CM non-cuspidal points, the problem is to prove this. Once this
is done, the only remaining obstruction to determining the possible ℓ-adic Galois images will the non-split
Cartans.

Seeing as there are not many rational points, quadratic Chabauty might be tricky, but still a good option.

3.6 Hector Pasten: Zariski density of rational points on general type surfaces of
irregularity 2

Let X be a surface of general type defined over a number field k. Suppose that the irregularity of X is q = 2
and that the albanese map is surjective. Prove that X(k) is not Zariski dense in X .

Some context for the problem is given by the following cases:

• If q > 2, Faltings’s theorem on subvarieties of abelian varieties implies that X(k) is not Zariski dense
in X .

• If q = 2, but the albanese map is not surjective, then its image is a curve to which one can apply
Faltings’s theorem. We deduce that X(k) is not Zariski dense.

Thus, it seems that the proposed problem is the next natural case of the Bombieri-Lang conjecture for
surfaces.

3.7 Natalia Garcia Fritz: Finding differentials for which a divisor is integral
Given a smooth projective surface X/C, and D =

∑q
j=1 Dj a reduced divisor on X formed by different

irreducible curves Dj , we want to find a non-trivial section ω ∈ H0(X,L ⊗ SrΩ1
X/C) such that every Dj

is an ω-integral curve, with L of low degree on each Dj (or at least degree independent of q). In that way
we will be able to prove more instances of Vojta’s conjecture or Campana’s conjecture for surfaces in the
function field case. One can consider Hasse-Schmidt differentials instead of SrΩ1

X/C to cover more cases.
Here are some particular examples:
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• In P2, with Dj in the quadratic family of lines t2x+sty+s2z = 0, one can choose ω ∈ H0(P2,O(4)⊗
S2Ω1

P2/C) which locally looks like dxdx− ydxdy + xdydy.

• In P2, with Dj lines, we can choose ω ∈ H0(P2,O(3)⊗(HS2
P2/C)3) which locally looks like dyd2x−

dxd2y.

• In P2, if we consider Dj in the family cxk − (c+ 1)yk = c(c+ 1)zk with c ∈ C \ {−1, 0}, k > 2 an
integer, we can choose ω ∈ H0(P2,O(k+3)⊗S2Ω1

P2/C) which locally looks like xk−1ydxdx+(1−
xk − yk)dxdy + xyk−1dydy.

Problems:

1. Find suitable conditions on D to make this work in more generality

2. Find systematic approach to construct other explicit examples.

4 Outcome of the Meeting
We were fortunate to attract around 38 in person participants for the workshop and another 31 online partic-
ipants. For many this had been their first face-to-face event in over 2 years. Our foremost priority was to be
useful to younger participants, whose careers must have suffered the most during the past two years. We did
this in three ways:

• Prioritise talks given by younger participants to allow them to advertise their work.

• With the aim of kick-staring collaborations and new research, we encouraged speakers to suggest open
problems during their talks.

• We kept the schedule light (9.00–12.00, 13.30–3.00) to allow ample time for discussions and collabo-
ration.

It is clear from the talks and discussions that the subject remains a very active field. Whilst breakthroughs
continue to be made on older problems such as Vojta’s conjectures, there are also some newer areas have
become prominent in the last few years and provide excellent opportunities for active research and further
breakthroughs. These include the following:

• The application of methods from arithmetic statistics to study Diophantine problems in families [2],
[8], [9].

• Low degree points on curves, both from the theoretical [22] and from the computational [4], [30]
perspectives.

• The recently formulated concepts of sporadic and isolated points [4], [5], [6], [7] on modular curves.

• Quadratic Chabauty used to determine rational points on curves where the Jacobian Mordell–Weil rank
equals the genus [1].

• Applications of modularity of elliptic curves over number fields to Fermat-type equations of signatures
(p, p, p), (p, p, 2), (p, p, 3) [24], [25].

One of the surprises of the workshop was a talk (based on [20]) by Avinash Kulkarni reporting on how
machine learning was successfully used to aid in the computation of the periods of projective hypersurfaces.
The use of machine learning in computational arithmetic geometry is certainly an avenue worthy of further
exploration and experimentation.
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