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Our collaboration during our stay in the BIRS has resulted in very fruitful outcomes.
We have obtained results sufficient for about one and a half papers. In the following we
describe the background, what we have obtained, and what we plan to do next.

1 Background

Solutions of dispersive partial differential equations (with repulsive nonlinearities) tend
to spread out in space, although they often have conserved L2 mass. There has been
extensive study in this subject, usually referred to as scattering theory. These equations
include Schrödinger equations, wave equations and KdV equations. When the nonlinearity
is attractive, however, these equations possess solitary wave solutions (solitons) which have
localized spatial profiles that are constant in time. To understand the asymptotic dynamics
of general solutions, it is essential to study the interaction between the solitary waves and
dispersive waves. The matter becomes more involved when the linearized operator around
the solitary wave possesses multiple eigenvalues which correspond to excited states. The
interaction with eigenvectors is very delicate and very few results are known.

For nonlinear Schrödinger equations with solitons, there are two types of results:
1. Control of the solutions in a finite time interval and construction of all-time solutions

with specified asymptotic behaviors (scattering solutions). The first kind of results does
not allow sufficient time for the excited states interaction to make a difference. In contrast,
for scattering solutions the excited state interaction is effectively eliminated and scattering
solutions may indeed be very rare.

2. Asymptotic stability of solitons, assuming the spectrum of the linearized operator
enjoys certain properties (for example has only one eigenvalue or has multiple “well-placed”).
The data are often assumed to be localized so that the dispersive wave has fast local decay.
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Currently, only perturbation problems can be treated for large solitons, while more general
results can be obtained for small solitons.

2 What we have done

During our stay in BIRS, we first studied small solutions of the equation

i∂tψ = (−∆ + V )ψ + λ|ψ|2ψ, ψ(0, ·) = ψ0 ∈ H1(R3). (1)

We assume ψ0 is small in H1, but we do not assume ψ0 is in L1(R3), as is usually assumed.
The equation possesses small solitary wave solutions which do not move in space, and is
hence a good first-step model problem.

The importance of H1 results (i.e., with non-localized data) is in that it is intimately
related to the Hamiltonian or conservative structure, and more shortly, persistence global
in time, in contrast against weighted L2, whose smallness persists only for short time due
to dispersion, and L1, which may be instantaneously lost and therefore does not seem
to have physical relevance. A related motivation is, as more eigenvalues are present, the
dispersive component tends to decay very slowly. It is thus essential to be able to remove
the localization assumption on the data.

Assume that −∆ + V supports only one eigenvalue e0 < 0. There is a family of small
nonlinear bound states QE satisfying

(−∆ + V )Q+ λQ3 = EQ, E ∼ e0.

They give exact solutions QE(x)e−iEt to (1). Let LE denote the corresponding linearized
operator. For any φ sufficiently small in H1, it can be decomposed as

φ = (QE + ξ)e−iω

for a unique set of E,ω ∈ R and ξ ∈ Hc(LE). Since ψ(t) is uniformly small in H1, there is
a well-defined set of functions E(t), ω(t) ∈ R and ξ(t) ∈ Hc(LE(t)) such that

ψ(t, x) = (QE(t)(x) + ξ(t, x))e−iω(t). (2)

QE(t) and ξ(t, x) are the solitary and dispersive wave components, respectively. We want
to study the asymptotic stability of the solitary wave component and the asymptotic com-
pleteness of the dispersive wave component. We have obtained the following results, to
be collected in the paper “Asymptotic Stability and Completeness in Energy Space for
Nonlinear Schrödinger Equations with Small Solitons.”

1. Asymptotic stability and completeness. When ψ0 is sufficiently small in
H1(R3), ψ(t) can be uniquely decomposed as in (2), with differentiable E(t), ω(t) and
ξ(t) ∈ Hc(LE(t)). We have E(t) ∈ (Emin, Emax) and

‖ξ‖
L2

t W
1,6
x ∩L∞t H1

x
≤ C ‖ψ0‖H1 .
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Moreover, there exist E∞ ∼ e0 and ξ+ ∈ Hc(LE∞) ∩H1 such that E(t) → E∞ and
∥

∥

∥
ψ(t) −QE∞e

−iω(t) − e−iE∞tetL∞ξ+

∥

∥

∥

H1
→ 0, as t→ ∞. (3)

2. Wave operator. For any set of E∞ ∈ (Emin, Emax) and ξ+ ∈ Hc(LE∞) ∩H1 with
‖QE∞‖ + ‖ξ+‖H1 sufficiently small, there is a solution ψ(t) of (1) such that (3) holds for
some ω(t) ∈ R.

3. Examples of slow decay. For any non-increasing function f(t) which goes to zero
as t → ∞, there exists a solution ψ(t) of (1), decomposed as in (2), and a sequence tj ,
j = 1, 2, 3, . . . with tj → ∞ as j → ∞, such that

‖ξ(tj)‖L2

loc

≥ f(tj). (4)

Besides the above results for Eq. (1), we have also estimated explicitly all small eigen-
values of the linearized operator for

i∂tψ = −∆ψ − |ψ|p−1ψ, x ∈ Rd, ψ(0, ·) = ψ0, (5)

when p is closed to the critical exponent pc for stability and blow-up, pc = 1 + 4/d. This
confirms a picture conjectured by M.I. Weinstein (he made some unpublished computations
for the 1D case), with greater details.

3 Next project

We plan to extend the known results for (5) to the Hartree equations

i∂tψ = −∆ψ − (
1

|x|α
∗ |ψ|2)ψ, ψ(0, ·) = ψ0, 0 < α < d. (6)

The equation is similar to (5) but is subtler due to the nonlocalness of the nonlinearity. The
case α = 2 corresponds to the critical case p = pc for (5). The cases α < 2 are subcritical.
The case α = 1 corresponds to the case p = 1 + 2/d for (5) and is the borderline for long-
range potential. It is equivalent to the Schrödinger-Poisson system and is of fundamental
importance. The stability of vacuum and asymptotic completeness for small solutions in
H1(R3) are well known for both repulsive and attractive nonlinearities. We expect similar
results about solitons for (5) to hold for (6). We plan to divide the investigation into the
following steps.

Linear analysis:

1. No hidden symmetry: this corresponds to the nonexistence of nontrivial solutions for
a certain linear equation associated to the linearized operator around the soliton.

2. Wave operator estimates for α > 1: Extend the result of K. Yajima – S. Cuccagna
on the Lp−Lp estimates for the wave operator for linearized operator to Hartree equations.
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The essential difficulty lies on the nonlocalness of the convolution. We restrict α > 1 to
ensure that the potential terms are of short range as in Yajima-Cuccagna.

3. Modified wave operator estimates for α = 1: In this case the potential terms are of
long range and the wave operator needs to be modified. We hope we may still prove certain
decay and Strichartz estimates for the linear evolution.

Nonlinear analysis:

4. As a preliminary step for Step 5, (and independent of Steps 1–3), we wish to study (1)
in the case V supports one eigenvector but is of long range, i.e., V (x) ∼ |x|−1 as |x| → ∞.
We use this step to investigate the effect of the long range potential on the (small) soliton.

5. Nonlinear dynamics of Hartree equation (6) with α = 1. Since the linearized operator
is expected to possess many eigenvalues by physical arguments, one cannot hope to study
the initial value problem using the known machinery. One may, however, study the non-
linear wave operator and construct scattering solutions. For this step we will only consider
localized data in weighted space,

∫

R3 |ψ0(x)|
2(1 + x)1+εdx < ∞, as in the small solution

case.
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