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Introduction
This was a lively and productive conference, as befits a “Hot Topic”. Perhaps the highlight,

described in more detail below, was the discovery (through discussions among the participants)
that Eliashberg could prove a theorem on capping off a symplectic 4-manifold with convex

boundary, which was then used by Kronheimer and Mrowka to prove Property P for knots, and
was also used by Ozsváth and Szabó to determine the genus of a knot by its Floer homology.

Property P refers to the 40 year old conjecture that Dehn surgery on a knot in S3 never gives a
homotopy 3-sphere unless the knot is the unknot. It was already known that Dehn surgery did not
give S3 [15], so the Kronheimer-Mrowka result would also follow from Perelman’s work once it is

approved.
The genus of a knot K in S3 is the minimal genus of a spanning “Seifert” surface F ∈ S3, ∂F = K.
Arguably this has been the most impmortant invariant of a knot for 80+ year, but is has veen very

difficult to calculate. Now it is determined by the “highest” spinC structure for which the
Heegaard Floer homology is non-trivial; this is reasonably calculable.

History and Heegaard Floer Homology
This accounts begins with the historical background to the use of gauge theoretic methods in

solving topological problems about low-dimensional manifolds.
In spring 1982, Simon Donaldson announced his spectacular applications of gauge theory to the
differential topology of 4-manifolds [3]. Using work of Taubes and Uhlenbeck, Donaldson showed

that the moduli space of almost self dual connections on a certain C2 bundle over a smooth
4-manifold X4 provided invariants which ruled out the existence of 4-manifolds with definite
intersection forms. Together with Freedman’s classification of simply connected topological

4-manifolds [10], this showed the existence of exotic, smooth structures on R4.
The subject was difficult and results came only after considerable work. Donaldson discovered

what are now called Donaldson polynomials, and later basic classes were found.
In fall 1994 Nathan Seiberg and Edward Witten announced a new set of partial differential

equations for a connection on the bundle of spinors on S4. The equations were technically much
simpler than in Donaldson’s case, and applications were quick to follow, e.g. the Thom Conjecture

[17].
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Beginning in 2001, Peter Ozsváth and Zoltán Szabó introduced a new version of Floer homology –
the Heegaard Floer homology – based on Heegaard splittings of genus g of an oriented 3-manifold

Y 3. The methods are almost purely combinatorial except for the crucial use of pseudoholomorphic
discs in the g-fold symmetric product of a Heegaard surface for Y .

More precisely, Y is presented by a Heegaard diagram (Σ, α, β) where Σ is an oriented
two-manifold and α = {α1, ..., αg} and β = {β1, ..., βg} are attaching circles for two handlebodies
which bound Σ. A choice of complex structure on Σ induces one on its g-fold symmetric product.

Moreover, the products

Tα = α1 × ... × αg and Tβ = β1 × ... × βg

are tori embedded in Symg(Σ), which are totally real with respect to the induced complex structure
on Symg(Σ). One can now set up a variant of Lagrangian Floer homology [8] in this setting – that
is, the homology of a chain complex whose generators are intersection points of Tα ∩Tβ , and whose
boundary operator counts pseudo-holomorphic disks in Symg(Σ) whose boundary lies in Tα ∪ Tβ .
Indeed, in order to get non-trivial information about the three-manifold, we need another piece of
data, a choice of reference point z ∈ Σ − α1 − ... − αg − β1 − ...βg . The data (Σ, α, β, z) is called a
pointed Heegaard diagram. This point z induces a subvariety {z} × Symg−1(Σ) ⊂ Symg(Σ), and

various variants of Heegaard Floer homology are obtained by using this subvariety in various ways.
For example, the simplest non-trivial version of Heegaard Floer homology, ĤF (Y ), counts

pseudo-holomorphic disks in Symg(Σ) which are disjoint from {z} × Symg−1(Σ). In all, there are

four versions of this Floer homology ĤF (Y ), HF−(Y ), HF+(Y ), and HF∞(Y ).
Although the definition of these groups depends on a great deal of auxiliary information – a

Heegaard diagram for Y , a choice of complex structure on Σ (and indeed a small perturbation of
the induced almost-complex structure on Symg(Σ)) – it is proved in [22] that the homology of the
complex is in fact a topological invariant of Y . Indeed, in [23], it is shown that Heegaard Floer

homology is natural under cobordisms between three-manifolds; i.e. if W is a cobordism from Y1

to Y2, there is an induced map on the four variants of Floer homology, which is a diffeomorphism
invariant of W . These maps are then used in [23] to construct a four-manifold invariant whose
formal properties suggest a close connection to the Seiberg-Witten invariant for four-manifolds.
Indeed, based on this, and an overwhelming amount of calculational evidence, it is conjectured

in [22] that the two theories are isomorphic.
But each theory has its own advantages. Heegaard Floer homology is more combinatorial in flavor
than Seiberg-Witten theory. For example, the generators of the Heegaard Floer complex are purely
combinatorial. Thanks to this concrete nature, several technical devices to facilitate the calculation
of Heegaard Floer homology groups were obtained in [24]. A key device is a surgery exact triangle

which relates the Floer homology groups of three-manifolds which are related by certain Dehn
surgeries. (Surgery exact triangles first appeared in the work of Andreas Floer for his version of

instanton Floer homology [9].)
Another device is provided by a Heegaard Floer invariant for knots which is not difficult to

construct once the Heegaard Floer package is constructed, see [25] and also [30]. Specifically, there
is an invariant associated to a knot K ⊂ S3 (or more generally an oriented link) which is a

bigraded Abelian group ĤFKd(K, s), with d, s ∈ Z (we call d the Maslov grading and s the Spinc

grading; in the case where the oriented link has an even number of components, d ∈ 1
2 + Z). The

Euler characteristic in the d direction gives the Alexander polynomial of K, i.e. if T is a formal
variable, then the sum

∑

s∈Z

χ(ĤFK∗(K, s)) · T s

calculates the symmetrized Alexander polynomial of K. This invariant satisfies a skein exact
sequence, where the three terms appearing in the sequence are the invariants associated to the

three links obtained by changing any given crossing or alternatively forming the oriented resolution
of that crossing. As such, it provides a theory which is similar in spirit to work of Khovanov [19],
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who constructs a bigraded homology theory associated to links, whose Euler characteristic is the
Jones polynomial. It should be noted, though, that unlike the knot invariant from Heegaard Floer

homology, the differentials for Khovanov’s complex are purely combinatorial in their definition.
However, knot Floer homology can be calculated for a large family of knots, and it is related to the

Heegaard Floer homology of the three-manifolds obtained by surgeries on the knot. Like the
Alexander polynomial, Heegaard Floer homology gives a lower bound on the Seifert genus of a

knot,

max{s ∈ Z
∣∣ĤFK∗(K, s)} ≤ g(K). (1)

Generators for the knot Floer complex have a concise Morse-theoretic interpretation. Fix a knot
K ⊂ S3. A perfect Morse function is said to be compatible with K, if K is realized as a union of
two of the flows which connect the index three and zero critical points (for some choice of generic

Riemannian metric µ on S3). Thus, the knot K is specified by a Heegaard diagram for S3,
equipped with two distinguished points w and z where the knot K meets the Heegaard surface. In

this case, a simultaneous trajectory is a collection x of gradient flowlines for the Morse function
which connect all the remaining (index two and one) critical points of f . From the point of view of

Heegaard diagrams, a simultaneous trajectory is an intersection point in the g-fold symmetric
product of Σ Symg(Σ) (where g is the genus of Σ) of two g-dimensional tori

Tα = α1 × ... × αg and Tβ = β1 × ... × βg ,

where here {αi}
g
i=1 resp. {βi}

g
i=1 denote the attaching circles the two handlebodies. Let

X = X(f, µ) denote the set of simultaneous trajectories. Any two simultaneous trajectories differ
by a one-cycle in the knot complement M and hence, if we fix an identification H1(M ; Z) ∼= Z, we

obtain a difference map

ε : X × X −→ Z.

The Spinc grading of a simltaneous trajectory is determined as follows. There is a unique map
(defined up to an overall sign)

s : X −→ Z

with the property that s(x) − s(y) = ε(x,y), which satisfies the property that
∑

x∈X T s(x) is
symmetric, as a Laurent polynomial in Z/2Z[T, T−1].

Simultaneous trajectories can be viewed as a generalization of some very familiar objects from knot
theory. To this end, note that a knot projection, together with a distinguished edge, induces in a

natural way a compatible Heegaard diagram. The simultaneous trajectories for this Heegaard
diagram can be identified with the “Kauffman states” for the knot projection; see [18] for an

account of Kauffman states, and [26] for their relationship with simultaneous trajectories.
On the other hand, Seiberg-Witten theory has some advantages over Heegaard Floer homology.
Foremost amongst these advantages is its close connection with the geometry (as opposed to the

topology) of the underlying manifold. For example, in [32], Taubes shows that a symplectic
four-manifold has non-vanishing Seiberg-Witten invariant, by using the symplectic form as a

perturbation for the equations.
In principle, the shortcomings of the two theories can be bridged. Short of proving that the two

theories are isomorphic, one could either come up with more combinatorial methods for calculating
Seiberg-Witten invariants, or alternatively, one could try to translate geometric input on a

manifold into more combinatorial data which are reflected in Heegaard diagrams and can be
detected by Heegaard Floer homology. For example, seminal work of Donaldson [4] gives a nearly
combinatorial formulation of the symplectic condition, showing that a symplectic manifold always

admits a compatible Lefschetz fibration. The induced two-handle decomposition of the
four-manifold can then be used to prove that Heegaard Floer invariant of a symplectic

four-manifold is non-trivial [27].
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And building such bridges is clearly important for topological applications. For example, in [12],
Gordon conjectured that if a knot K ⊂ S3 has the property that r = p/q Dehn surgery on K is

orientation-preserving diffeomorphic to p/q Dehn surgery on the unknot, then K is the unknot. To
illustrate the role of orientations here, note that +5 surgery on the right-handed-trefoil is a lens

space which is orientation-preserving diffeomorphic to −5 surgery on the unknot, i.e. it is
orientation reversing diffeomorphic to +5 surgery on the unknot. The case where r = 2 provides an

example where this orientation issue becomes irrelevant. In this case, one obtains a simpler
statement of the conjecture (c.f. [13]) that no surgery on a non-trivial knot in S3 gives real

projective three-space.
Many cases of Gordon’s conjecture have been known for some time. For example, the case where

p = 0, the conjecture is known to hold by celebrated work of Gabai [11]. The case where q 6= 1, the
theorem is confirmed by the cyclic surgery theorem of Culler-Gordon-Luecke-Shalen [14]. In the

case where p/q = ±1, the theorem was established by Gordon and Luecke [15]. But the case where
r is integral (and |r| > 1) – the case with the most immediate four-dimensional interpretation

(since Y is obtained as an integral surgery on a knot in S3 if and only if it bounds a four-manifold
which admits a Morse function with exactly two critical points: one of index zero, the other of

index one) – this case remained open until this year.
It was proved in [28] using the surgery long exact sequence for Heegaard Floer homology (which

had been missing from Seiberg-Witten theory) that if a knot in S3 has the property that
S3

p(K) = S3
p(U) (where U is the unknot), then the Heegaard Floer homology of S3

0(K) is
isomorphic to that of S3

0(U). But the construction of Kronheimer and Mrowka [21] (building upon
work of Gabai [11], Eliashberg and Thurston [5]) shows that the Seiberg-Witten Floer homology

distinguishes S3
0(K) from S3

0(U) (a result which had been missing from Heegaard Floer homology).
In sum: the remaining part of Gordon’s conjecture could be proved either by establishing a surgery
exact triangle for Seiberg-Witten Floer homology, or by proving the analogues of Kronheimer and

Mrowka’s genus bounds in Heegaard Floer homology.
In the Fall of 2003 (shortly before the conference), Kronheimer, Mrowka, Ozsváth, and Szabó

verified Gordon’s conjecture, by establishing a surgery long exact sequence for the Seiberg-Witten
monopole equations.

History and Seiberg-Witten Floer Homology
Beginning with seminal works of Mikhail Gromov (see [16]) and Daniel Bennequin (see [1]), the

symplectic topology of 4-manifolds and the contact topology of 3-manifolds have firmly established
themselves as an integral part of low-dimensional topology. The theory of J-holomorphic curves

developed by Gromov in [16] was linked with Seiberg-Witten (SW) theory by Clifford Taubes (see
[32, 33]) who proved that for symplectic manifolds SW-invariants coincide with certain kinds of
Gromov enumerative invariants for holomorphic curves. Together with Taubes’ non-vanishing

theorem for SW-invariants of symplectic manifolds this for the first time showed the existence of
J-holomorphic curves in certain closed symplectic 4-manifolds.

It turns out that for the extension of these results to 3-dimensional topology it is important to
understand the interaction between contact 3-manifolds which bound symplectic 4-manifolds. Note
that although a symplectic structure on a 4-manifold does not induce any contact structure on its
boundary, it is useful to consider certain compatibility conditions between symplectic and contact

structures. Suppose we are given a symplectic manifold (W, ω) with boundary V = ∂W which
carries a contact structure ξ. First of all, both the contact structure ξ on V and the symplectic

structure ω on W define an orientation of V . These two orientations may coincide: in this case the
boundary is called convex, or be opposite in the concave case. Second, we may ask if there exists a

contact form α such that ω|V = dα, or at least ω|ξ = dα|ξ . In the first case (W, ω) is called a
strong symplectic filling, in the second case a weak symplectic filling. One can consider even a
stronger filling condition which requires that α extends to the whole W and that the Liouville

vector field X defined by the equation i(X)ω = α is gradient-like for a Morse function on W which
is constant on the boundary. In this case (W, ω) is called a Stein filling of (V, ξ).

In their paper [21] Kronheimer and Mrowka developed a relative version of SW-theory and defined
an invariant of a contact structure on a 3-manifold which takes its value in SW-Floer homology of
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the manifold. As an analogue of Taubes’ non-vanishing theorem from [34] they proved that for
weakly fillable (or even a seemingly weaker notion of weakly semi-fillable) contact structures their

invariant does not vanish.
On the other hand, Ozsváth and Szabó defined in [27] a similar contact invariant in the context of

Heegaard Floer homology theory. Their invariant was seemingly easier to compute but the
analogue of the Kronheimer-Mrowka non-vanishing result was established only for Stein-fillable

contact structures.
During the conference there was an active discussion of how the non-vanishing result in Heegaard
Floer homology can be proven in the same generality as the the corresponding result in SW Floer
homology. One of the questions asked by Olga Plamenevskaya led Eliashberg to realize that the

answer depends on a problem of finding a symplectic manifold bounding a 3-manifold fibered over
S1 with symplectic fibers (which arises as a 0-surgery on the binding of an open book

decomposition associated with the contact structure). He then realized that the answer to this
question was essentially known and filled in the details of the argument. During the continuing

discussion Ozsváth and Szabó realized that the same argument allowed several other advances in
Heegard homology theory. Furthermore Peter Kronheimer pointed out that Eliashberg’s

observation together with the recent work of Feehan and Leness (see [7]) about the relation
between Donaldson and SW-invariants, allowed him to complete his joint program with Tom

Mrowka for proving Property P.

Symplectic Fillings
Here are more mathematical details of Eliashberg’s argument.

Theorem 1 Let (V, ξ) be a contact manifold and ω a closed 2-form on V such that ω|ξ > 0. Suppose
that we are given an open book decomposition of V with a binding B. Let V ′ be obtained from V by
a Morse surgery along B with a canonical 0-framing, so that V ′ is fibered over S1. Let W be the
corresponding cobordism, ∂W = (−V )∪V ′. Then W admits a symplectic form Ω such that Ω|V = ω
and Ω is positive on fibers of the fibration V ′ → S1.

Theorem 2 Let (V, ξ) and ω be as in Theorem 1. Then there exists a symplectic manifold (W ′, Ω′)
such that ∂W ′ = −V and Ω′|V = ω. Moreover, one can arrange that (W ′, Ω′) contains the symplectic
cobordism (W, Ω) constructed in Theorem 1 as a subdomain, adjacent to the boundary. In particular,
any symplectic manifold which weakly fills the contact manifold (V, ξ), can be symplectically embedded
as a subdomain into a closed symplectic manifold.

Eliashberg’s theorem, together with previously known properties of Heegaard Floer homology (see
esp. [27]) now lead quickly to the non-vanishing theorem for the Heegaard Floer invariant of a

symplectically semi-fillable contact structure. Specifically, suppose that W1 is a symplectic filling
of a three-manifold Y , Eliashberg constructs a four-manifold W2 with the property that

V = W1 ∪Y W2 is symplectic. By [27], we know that the invariant of V is non-trivial, and hence
the Heegaard Floer homology of Y must be non-trivial, as well.

Thus, we have the missing piece required to verify Gordon’s conjecture purely within the
framework of Heegaard Floer homology. But there are applications of this non-vanishing theorem

in Heegaard Floer homology which go beyond reproofs of gauge theoretic results. It now

follows [29] that if g is a knot in S3, then ĤFK(K, g) is always non-trivial, i.e. the lower bound
from Inequality (1) is sharp. In turn, this result admits a restatement which is independent of

Heegaard Floer homology:

Corollary 3 The Seifert genus of a knot K is the minimum over all compatible Heegaard diagrams
for K of the maximum of s(x) over all the simultaneous trajectories.

Other Lectures and Results
One of the subjects which was actively discussed during the conference is the relation of Heegaard
Floer homology theory of Ozsváth-Szabó, periodic Floer homology theory of Michael Hutchings
and Michael Thaddeus, and the project of embedded contact homology theory which is under
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construction by Michael Hutchings, Yakov Eliashberg, Michael Sullivan and others. Several
students are also involved in this project. In particular, Stanford student Robert Lipshitz gave an
informal talk during one of the evening sessions where he sketched the construction of Heegard

Floer homology using holomorphic curves in 4-manifolds, rather than g-folded symmetric products
of surfaces.

David Gay spoke on his work (with Kirby) in which they show how to construct harmonic 2-forms
on 4-manifolds in terms of handlebody decompositions. The 2-forms vanish transversely along a

collection of circles and are symplectic in the complement of these circles. He discussed the extent
to which he can prescribe spinC structures and J-holomorphicity of certain surfaces and he worked

through some explicit examples.
Mikhail Khovanov talked about his construction of a bigraded homology theory of links with the

quantum sl(3) invariant as the Euler characteristic.
Ciprian Manolescu described an associated suspension spectrum SWF (Y ) whose homology is the
Seiberg-Witten Floer homology starting with a 3-manifold Y with b1(Y ) = 0 and a spinC structure

on Y . Given a cobordism between 3-manifolds, there is an associated morphism between their
spectra, and a gluing theorem holds: composition of cobordisms corresponds to composition of

morphisms. For 3-manifolds with b1 > 0, assuming the vanishing of a certain K-theoretic
obstruction, there is a pro-spectrum analogue of SWF.

Andras Nemethi spoke about calculating the Ozsváth-Szabó invariant of negative definite plumbed
3-manifolds with a given spinC-structure starting with the plumbing graph. He gave precise

combinatorial algorithms for cases including all rational and weakly elliptic singularities, which in
the case of Seifert fibered 3-manifolds is expressed in terms of the Seifert invariants.

Brendan Owens and Saso Strle discussed an application of Ozsváth and Szabó’s Froyshov-type
invariant to cobordisms of rational homology spheres. Computations in the case of Seifert fibered

spaces were used to obtain bounds on the 4-ball genus of Montesinos links.
Jake Rasmussen described a strange correlation between the Khovanov and knot Floer homologies

which works in a striking number of cases.
Andras Stipsicz uses Heegard Floer Homology theory to distinguish contact structures and gives

examples of tight non-fillable contact 3-manifolds.
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[2] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971),
217–231;

[3] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential
Geometry 18 (1983), 279–315.

[4] S. K. Donaldson. Lefschetz pencils on symplectic manifolds. J. Differential Geom., 53 (1999),
205–236.

[5] Y. M. Eliashberg and W. P. Thurston. Confoliations. Number 13 in University Lecture Series.
American Mathematical Society, 1998.

[6] Yakov Eliashberg, A few remarks about symplectic filling, arXiv:math.SG/0311459 v1
26Nov2003.

[7] P.M.N. Feehan and T.G. Leness, A general SO(3)-monopole cobordism formula relating Donald-
son and Seiberg-Witten invariants. arXiv:math.DG/0203047 5Mar2002.

[8] A. Floer. Morse theory for Lagrangian intersections. J. Differential Geometry, 28 (1988), 513–
547.



REFERENCES 7

[9] A. Floer. Instanton homology and Dehn surgery. In H. Hofer, C. H. Taubes, A. Weinstein,
and E. Zehnder, editors, The Floer Memorial Volume, number 133 in Progress in Mathematics,
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[24] P. S. Ozsváth and Z. Szabó. Holomorphic disks and three-manifold invariants: properties and
applications. math.SG/0105202, To appear in Annals of Math.
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