
BIRS workshop on braid groups and applications
by Joan Birman, Patrick Dehornoy and Dale Rolfsen

The braid groups Bn were introduced by E. Artin in 1926 [1] (see also [2]).
They have been of importance in many fields – algebra, analysis, cryptogra-
phy, dynamics, topology, representation theory, mathematical physics – and
many of these aspects were represented in the BIRS workshop. This work-
shop involved not only leading experts in the field, but also, importantly,
a number of young researchers, postdoctoral fellows and several graduate
students. This made for an exciting and informative mix of ideas on the
subject.

The importance of the braid groups is based, in part, on the many ways
in which they can be defined. This is outlined in the following introductory
section.

1 Six definitions of the braid groups.

Definition 1: Braids as particle dances. Consider n particles located at
distinct points in a plane. To be definite, suppose they begin at the integer
points {1, . . . , n} in the complex plane C. Now let them move around in
trajectories

β(t) = (β1(t), . . . βn(t)), βi(t) ∈ C, 0 ≤ t ≤ 1.

A braid is then such a time history with the proviso that the particles are
noncolliding:

βi(t) 6= βj(t) if i 6= j

and end at the spots they began, but possibly permuted:

βi(0) = i, βi(1) ∈ {1, . . . , n}, i = 1, . . . , n.

If one braid can be deformed continuously into another (through the class
of braids), the two are considered equivalent – we will say equal.

Braids α and β can be multiplied: one dance following the other, each at
double speed. The product is associative but not in general commutative.
The identity dance is to stand still, and each dance has an inverse; doing
the dance in reverse time. These (deformation classes of) dances form the
group Bn.

A braid β defines a permutation i → βi(1) which is a well-defined element
of the permutation group Σn. This is a homomorphism with kernel, by
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definition, the subgroup Pn of pure braids. Pn is sometimes called the colored

braid group, as the particles can be regarded as having identities, or colors.
Pn is of course normal in Bn, of index n!, and there is an exact sequence

1 → Pn → Bn → Σn → 1.

Definition 2: Braids as strings in 3-D. This is the usual and visually
appealing picture. A braid can be viewed as the graph, or timeline, of a
braid as in the first definition, drawn in real x, y, t-space, monotone in the
t direction. The complex part is described as usual by x + y

√
−1. The

product is then a concatenation of braided strings.
This viewpoint provides the connection with knots. A braid β defines a

knot or link β̂, its closure, by connecting the endpoints in a standard way so
that no new crossings are introduced. J. W. Alexander showed that all knots
arise as the closure of some braid and by a theorem of Markov (see [4] for a
discussion and proof) two braids close to equivalent knots if and only if they
are related by a finite sequence of moves and their inverses: conjugation in
the braid group and a stabilization, which increases the number of strings.

Definition 3: Bn as a fundamental group. In complex n-space C
n

consider the big diagonal

∆ = {(z1, . . . , zn); zi = zj , some i < j} ⊂ C
n.

Using the basepoint (1, 2, . . . , n), we see that

Pn = π1(C
n \ ∆).

In other words, pure braid groups are fundamental groups of comple-
ments of a special sort of complex hyperplane arrangement, itself a deep and
complicated subject.

To get the full braid group we need to take the fundamental group of
the configuration space, of orbits of the obvious action of Σn upon C

n \ ∆.
Thus

Bn = π1((C
n \ ∆)/Σn).

Notice that since the singularities have been removed, the projection

C
n \ ∆ −→ (Cn \ ∆)/Σn

is actually a covering map. As is well-known, covering maps induce injec-
tive homomorphisms at the π1 level, so this is another way to think of the
inclusion Pn ⊂ Bn.
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Finally, we note that the space (Cn \ ∆)/Σn can be identified with the
space of all complex polynomials of degree n which are monic and have n
distinct roots

p(z) = (z − r1) · · · (z − rn).

This is one way in which the braid groups play a role in classical algebraic
geometry, as fundamental group of the space of such polynomials.

Definition 4: The algebraic braid group. Bn can be regarded
algebraically as the group presented with generators σ1, . . . , σn−1, where σi

is the braid with one crossing, with the string at level i crossing over the
one at level i + 1 and the other strings going straight across.

These generators are subject to the relations

σiσj = σjσi, |i − j| > 1,

σiσjσi = σjσiσj , |i − j| = 1.

We can take a whole countable set of generators σ1, σ2, . . . subject to
the above relations, to define the infinite braid group B∞. If we consider the
(non-normal) subgroup generated by σ1, . . . , σn−1, these algebraically define
Bn. Notice that this convention gives “natural” inclusions Bn ⊂ Bn+1 and
Pn ⊂ Pn+1.

Definition 5: Bn as a mapping class group. Going back to the
first definition, imagine the particles are in a sort of planar jello and pull
their surroundings with them as they dance about. Topologically speaking,
the motion of the particles extends to a continuous family of homeomor-
phisms of the plane (or of a disk, fixed on the boundary). This describes
an equivalence between Bn and the mapping class of Dn, the disk D with
n punctures (marked points). That is, Bn can be considered as the group
of homeomorphisms of Dn fixing ∂D and permuting the punctures, modulo
isotopy fixing ∂D ∪ {1, . . . , n}.

Definition 6: Bn as a group of automorphisms. A mapping class
[h], where h : Dn → Dn, gives rise to an automorphism h∗ : Fn → Fn of free
groups, because Fn is the fundamental group of the punctured disk. Using
the interpretation of braids as mapping classes, this defines a homomorphism

Bn → Aut(Fn),

which Artin showed to be faithful, i. e. injective.
The generator σi acts as
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xi → xixi+1x
−1

i ; xi+1 → xi; xj → xj, j 6= i, i + 1.

Thus Bn may be considered a group of automorphisms of Aut(Fn) sat-
isfying a condition made precise by Artin.

2 Representations of braid groups

One of the most active aspects of braid theory is the study of linear repre-
sentations. A major breakthrough has been the proof in 2000 by S. Bigelow
[3] and D. Krammer [12] of the long-standing conjecture that Artin’s braid
groups Bn are linear groups. That is, there exists a faithful representation of
Bn in a finite-dimensional linear group. The Lawrence–Krammer represen-
tation that provides a linear representation of Bn has dimension n(n−1)/2.
After the result was established, considerable efforts have been made to bet-
ter understand the algebraic underlying socle on which the representations
arise. The general question is to identify the non-trivial finite-dimensional
quotients of the group algebra CBn, on the shape of the Iwahori–Hecke alge-
bra investigated in the past decades. The general philosophy is: the bigger
the quotient algebra, the better the results. Until recently, the biggest known
algebra was the Birman–Murakami–Wenzl algebra [6].

An exciting development presented during the workshop is the descrip-
tion by Stephen Bigelow of a new family of finite-dimensional quotients of
the algebra CBn that naturally extends the Iwahori–Hecke and the Birman–
Murakami–Wenzl algebras. The latter are just the first two steps in the new
family. The new algebras, called ”Zipper algebras” and denoted Zn(q, r),
depend on two nonzero complex parameters, and they are defined using a
diagrammatic approach. The principle is to introduce an additional genera-
tor Boxk visualized by a box with k+1 input and k+1 output strands, and
to extend the usual skein relation declaring that a q-twisted combination
of opposite crossings is 0 (case of Hecke algebra), or is the 2-2-tangle (case
of BMW) into the relation declaring the q-twisted combination of opposite
crossings is the new free generator Box2. Then, inductively, one adds a sim-
ilar skein relation relating the diagrams with a k-box and the two possible
positions of an additional strand with a k + 1-box. What Bigelow proves so
far is that the algebras Zn(q, r) have finite dimension, and make a proper
extension of the BMW algebra. What remains open is the exact dimension
of the Zipper algebra, as well as the degeneracy at q = 1.

A graduate student from China, Hao Zheng, also discussed a topological
approach to representations of Bn, much in the spirit of Bigelow’s earlier
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work.
One of the best-known (but unfaithful) representations of braid groups

is the Burau representation. Jones noted that this representation can be
interpreted in terms of probabilities related to a particle jumping from one
string to another at a crossing in a braid picture. X. S. Lin expanded on
this basic idea to produce a new representation of Bn, using ideas related to
probability, which is closely related to the colored HOMFLY polynomial.

The student Holly Hauschild presented a concrete tangle-theoretic ap-
proach to the Birman–Murakami–Wenzl algebra. Morton and Wasserman
had shown that the BMW algebra is isomorphic to a Kauffman tangle alge-
bra. Haushchild described an extension of this isomorphism to give a similar
correspondence between the affine BMW algebra and a corresponding alge-
bra of tangles in the solid torus.

Taking a more abstract approach, Hans Wenzl described how represen-
tations of braid groups can be used to construct and classify certain braided
tensor categories which are useful in low dimensional topology, physics and
operator theory. In particular, he has classified all representations of B3 up
to dimension five.

The talk of Ivan Marin also considered representation theory of braid
groups and their generalizations. He discussed representations obtained in
a systematic way from the representations of “infinitesimal braids.” This
approach sheds new light on the decompositions of tensor products and the
unitarisability properties of braid representations, as well as the actions of
the universal Galois group involved in this setting.

Thus it is fair to say that great strides were made in the BIRS work-
shop toward the understanding of the representation theory of braid groups
and the many applications of these ideas. Of course, much remains to be
understood in this important subject.

3 Applications to knot theory and topology

3.1 The Jones polynomial

The most obvious applications of braid theory are to the study of knots.
About two decades ago, work of V. Jones [11] established a new powerful
knot invariant via representations of Bn. This work led to exciting and un-
suspected connections with operator theory, statistical mechanics and other
aspects of mathematical physics. It was also generalized to the so-called
HOMFLY polynomial, the Kauffman polynomial and a plethora of other
knot invariants.
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An outstanding open question is whether the Jones polynomial detects
the unknot. In other words, if the Jones polynomial VK(t) of a knot K
is trivial, does it imply that K is unknotted? The corresponding question
for links of two or more components was settled very recently by Eliahou,
Kauffman and Thistlethwaite [9], who displayed infinite families of links
with the same Jones polynomial as the unlink, but which are nontrivially
linked.

It is also well-known that there are many examples of distinct knots
with the same Jones (and HOMFLY) polynomial, using various techniques:
Conway mutation, a construction of Kanenobu (producing an infinite family
with common Jones polynomial), etc. A new technique was discussed at
the workshop by the student Liam Watson, which employs the idea of a
braid group action on Conway tangles in a knot diagram to produce distinct
knots with the same Jones polynomial, which nevertheless are not Conway
mutants. A consequence of his work is that, given any Conway tangle, there
exist distinct knots containing that tangle as part of their diagrams, and
having the same Jones polynomial. Watson’s techniques (unlike Conway
mutation) have the possibility of settling the question of whether the Jones
polynomial detects the unknot.

Hitoshi Murakami gave a fascinating lecture on the current state of the
art of the so-called volume conjecture, which relates the volume of the com-
plement of a hyperbolic knot K with limits of values of the colored Jones
polynomial. Originally posed by Kashaev, and following work of J. Mu-
rakami and H. Murakami, this conjecture can be made precise:

V ol(S3 \ K) = 2π lim
N→∞

log |JN (K; exp(
2π

√
−1

N
)|,

where JN (K; t) denotes the N th colored Jones polynomial of the knot or
link K.

This conjecture has been verified for various special cases – the knots 41

and 52, the Whitehead link and the Borromean rings – by various authors,
but remains open in general and is the focus of considerable attention by
topologists. Murakami also discussed a complexified version of the formula,
in which the absolute value signs in the above equation are removed, and one
has the imaginary part of the left-hand side expressed as the Chern-Simons
invariant of the complement.
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3.2 Three-dimensional manifolds and TQFT’s

One of the most important new tools in the study of 3-manifolds is the
Casson invariant λ(M), defined by A. Casson for any integral homology
3-sphere M . The original definition by Casson in 1984 involved counting
SU(2) representations of the fundamental group of M . Greg Kuperberg
and Dylan Thurston showed, in 1999, how to express λ(M) as a configu-
ration space integral. A very interesting new approach was explained in
the BIRS workshop by Christine Lescop. She showed that 6λ(M) is the
algebraic intersection of three codimension 2 manifolds in the 6-dimensional
space of two-point configurations of M , for any integral homology sphere M .
Lescop went on to show it extends to the Walker generalisation of the Casson
invariant to rational homology spheres, giving a topological characterisation
of the Walker invariant.

Partly inspired Jones’ lead in connecting braid theory with mathematical
physics, and subsequent work by Atiyah, Witten and many others, topolog-
ical quantum field theories have become an important new field of study.
Several of the lectures in the BIRS workshop concentrated on aspects of
TQFT’s and their application to 3-manifolds.

Gregor Masbaum discussed joint work with P. Gilmer regarding naturally
defined lattices in the vector spaces associated to surfaces, by the SO(3)
TQFT at an odd prime. These lattices, whose existence comes from the fact
that the associated quantum invariants of 3-manifolds are algebraic integers,
form an ”Integral TQFT” in an appropriate sense. Masbaum defined an
explicit basis for this lattice.

In a talk entitled “Braids and hypergeometric integrals,” Toshitake Kohno
discussed two approaches to braid group representations: the homological
approach of Laqwrence, Krammer, Bigelow, et. al. and a more physically
motivated approach involving monodromy of flat connections. The latter in-
volves, in particular, solutions to the Khizhnik-Zamolodchikov equations and
conformal blocks, as well as the Drinfel’d approach using quantum groups.
In his lecture, Kohno related the theory of conformal blocks to certain hyper-
geometric integrals. This deep subject promises to enrich both the theory
of braid representations, as well as questions of interest to mathematical
physicists.

Related to the above, the postdoctoral fellow Alissa Crans discussed new
methods for finding solutions to the Zamolodchikov tetrahedral equations.
In particular, after a discussion of 2-categories, she showed that, just as any
Lie algebra gives a solution of the Yang-Baxter equation, any Lie 2-algebra
gives a solution of the Zamolodchikov tetrahedron equation.
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3.3 Braids and homotopy theory

Fred Cohen spoke on some striking connections between braid theory and
deep questions of homotopy theory. He related questions some elementary
constructions in the pure braid groups, such as string doubling and for-
getting strands, with open questions in homotopy theory. As an example,
the homotopy groups πN (S2) have not been calculated for high values of
N , and settling questions regarding the constructions on pure braids would
determine those groups.

4 Braids, combinatorics and algorithms

A very active area which was well-represented at the conference concerns
ideas surrounding Garside’s 1969 solution to the word and conjugacy prob-
lems in the braid groups [10]. Three talks (by Gonzalez-Meneses, by Geb-
hardt and by Krammer) related directly to this circle of ideas, with Gonzalez-
Meneses and Gebhardt focussing on ways to understand and simplify the
combinatorics, while Krammer’s efforts were directed toward extending it to
surface mapping class groups. The discussions that followed these talks were
broadly based, because at least some number of the other participants (e.g.
Dehornoy, Paris, Michel, Birman and Brendle) had themselves made impor-
tant contributions to what have become known as ”Garside structures”, so
that the workshop was a major event for workers in the area.

Another very exciting development was presented by Daan Krammer.
Building on the seminal work by Garside, many authors have developed a
general theory of Garside groups, which are groups of fractions of monoids
in which divisibility has a lattice structure. The braid groups have several
Garside structures, namely (at least) the one originally defined by Garside,
and the one associated with the recent Birman–Ko–Lee monoid. Krammer
proposes new developments that seem to go far beyond the previous at-
tempts. The point is to weaken the condition that the group is the group
of fractions of a lattice into the weaker one that the group acts on a lattice,
by an action that need not be transitive.

An equivalent way of describing the framework is to introduce the no-
tion of a Garside groupoid (small catgeory where all arrows are invertible).
Technically, an extended Garside structure is specified by axiomatizing the
intervals [a, a∆] of a Garside monoid, where ∆ is a Garside element. The
main interest of this extended framework is to make it possible to define
completely new Garside structures on braid groups — and, possibly, on
more general mapping class groups, but this remains a conjecture. The con-
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struction starts with considering the braid group Bn as acting on a disk with
n punctures, as in Definition 5 above.

Now, the new ingredient is to add q marked points on the boundary
circle. By considering certain cell decompositions of such ”bi-punctured”
disks (punctures in the interior and on the boundary) up to isotopy, one
obtains a lattice and, under a convenient version of Dehn’s half-twist in
which the boundary punctures are shifted, one obtains an action of the
braid group Bn on that lattice. In the case q = 2 (only the North and the
South poles of the disk are marked), the action is simply transitive, and
one obtains the standard Garside structure of Bn. For q ≥ 3, the action is
not transitive, and one obtains a completely new structure. In particular,
for q = 3 (3 punctures on the boundary disk), the lattice can be described
explicitly, and, surprisingly enough, the famous MacLane pentagon shows
up, and, more generally, the intervals [a, a∆] are closely related with the
Stasheff associahedra. This opens a new, fascinating connection between
Artin’s braid group and Richard Thompson’s groups, and certainly much
more is still to come.

The word and conjugacy problems in the braid groups have importance
for their role in public key cryptography. It is well known that the complex-
ity of the word problem in the braid group Bn is (|W |2n), where |W | is word
length and n is braid index, whereas all solutions to the conjugacy problem
known at this time are exponential. Codes have been designed which are
based on the assumption that the conjugacy problem is fundamentally ex-
ponential, so a polynomial solution to the conjugacy problem would be of
major importance.

A new idea was to apply the partial solutions to the same problems by
Thurston, by treating braids which are“reducible, finite order and pseudo-
Anosov” separately. This proved to be very fruitful as regards the combina-
torics of Garside’s work in the braid groups. Since Thurston’s ideas apply
to all mapping class groups, not just to the braid groups, it was then very
interesting when Daan Krammer presented his fascinating talk, which aimed
to go the other way and introduce Garside-like combinatorics into the study
of surface mapping class groups.

It can be mentioned that a different connection between Artin’s braid
group and Richard Thompson’s groups was discussed in Dehornoy’s talk in
the workshop, devoted to Bar Natan’s parenthesized braids. The latter can
be made into a group which contains both the braid groups and the Thomp-
son groups, and some new results about self-distributive operations on that
new group are quite intriguing. This group also enjoys a left-invariant or-
dering extending the well-known ordering of Bn.
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Another connection with combinatorics was given by Christian Kassel.
In joint work with Christophe Reutenauer, they considered the classical
idea of Sturmian sequences of two symbols, which occur in fields such as
number theory, ergodic theory, dynamical systems, computer science and
crystallography. They show that the class of special Sturmian sequences (a
submonoid of Aut(F2)) can be realized naturally as a submonoid of the four
strand braid group B4. As an application, this leads to a new criterion for
determining when two words form a basis for the free group F2.

The Markov theorem without stabilization (MTWS) of J. Birman and W.
Menasco established a calculus of braid isotopies that can be used to move
between closed braid representatives of a given oriented link type without
having to increase the braid index by stabilization. Although the calculus is
extensive there are three key isotopies that were identified and analyzed—
destabilization, exchange moves and braid preserving flypes. One of the
critical open problems left in the wake of the MTWS is the recognition

problem— determining when a given closed n-braid admits a specified move
of the calculus. Bill Menasco described an algorithmic solution to the recog-
nition problem for three isotopies of the MTWS calculus—destabilization,
exchange moves and braid preserving flypes. The algorithm is “directed” by
a complexity measure that can be monotonic simplified by the application
of elementary moves on a modified braid presentation.

5 Generalizations of the braid groups

Because of the many definitions of the braid groups, there are various nat-
ural ways to generalize them, some of which have far-reaching applica-
tions. Several such generalizations were considered in the BIRS workshop,
namely Artin groups (an algebraic generalization), mapping class groups
(also known as modular groups), configuration spaces and their algebraic
properties

5.1 Artin groups

Deligne [7] and Brieskorn-Saito [5], introduced a family now referred to as
Artin groups, which generalizes the braid groups and is also closely related
to the so-called Coxeter groups which arise in the study of Lie groups and
symmetries of Euclidean space. For a fixed positive integer n, consider an
n by n matrix M = {mij}, where mij is a positive integer or ∞, with the
assumption that mij = mji ≥ 2 and mii = 1. The corresponding Artin
group has a presentation with generators x1, . . . , xn and, for each pair i, j
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there is a relation:
xixjxi · · · = xjxixj · · ·

where the product on each side has length mij (mij = ∞ indicates no
relation is present). If one adjoins relations x2

i = 1, the result is the so-
called Coxeter group corresponding to the given matrix.

In this context, the n+1 by n+1 matrix with entries equal to 3 just above
and below the diagonal, and 2 in entries farther from the diagonal, corre-
sponds exactly to the braid group Bn; in this case the Coxeter group is the
symmetric group Σn. The Artin groups for which the corresponding Coxeter
group is finite are an important subclass, referred to as “spherical.” As with
the braid groups, Artin groups of spherical type correspond to fundamental
groups configuration spaces associated to hyperplane arrangements.

Fundamental to the understanding of semisimple Lie groups is the well-
known classification of finite Coxeter groups into several infinite families
and certain sporadic types E6, E7, E8, F4, etc. These Coxeter groups are
well known to be distinct, but the corresponding question for the associated
Artin groups had been open until now. This question was finally settled by L.
Paris, as announced in the BIRS workshop. He used various group-theoretic
invariants to establish that the spherical Artin groups of (apparently) dif-
ferent type really are non-isomorphic.

In a different approach to the subject, Dan Margalit discussed embed-
dings of three infinite families of Artin groups (modulo their centers) as
finite index subgroups of the mapping class group of a punctured sphere.
As a corollary Margalit, in joint work with Bob Bell, was able to classify all
injections of these Artin groups into each other.

5.2 Reflection groups

The finite Coxeter groups can be considered as groups of reflections of R
n,

acting on configuration spaces, as described in Definition 3 for the case of
the braid groups. Several talks focussed on this aspect, as well as natural
generalizations to complex reflection groups

The lecture of Gus Lehrer dealt with the cohomology of these config-
uration spaces, with local coefficients. For the case of the braid groups,
this calculation was accomplished by Arnol’d in 1969, with further progress
made by Brieskorn, F. Cohen, Orlik-Solomon and others. In particular, the
rank of the cohomology in various dimensions is encoded in a Poincaré poly-
nomial, a sort of generating function. Lehrer’s lecture gave a method of
calculating these polynomials using Z-functions, defined using centralizers,
and related this work to varieties defined over number fields.
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In the lecture “Hurwicz action on euclidean reflections,” Jean Michel
discussed a theorem of Dibrovin and Mazocco that, if the Hurwicz action of
the braid group on a triple of Euclidean reflections in R3 has a finite orbit,
then the group generated by these reflections is finite. Michel extended this
result to the case of Rn, correcting an erroneous proof which had appeared
recently in the literature and simplifying the Dibrovin and Mazocco proof
as well.

5.3 Mapping class groups

The mapping class group Mod(S) of an orientable surface S is well-known to
be generated by Dehn twists about simple closed curves in S. An important
subgroup of this is the Torelli subgroup, consisting of (classes of) homeo-
morphisms which induce the identity on the homology of S. In particular,
the subgroup K of Mod(S) generated by twists along separating curves of S,
called the Johnson kernel, lies in the Torelli subgroup. Tara Brendle, in joint
work with Dan Margalit, outlined a proof that the abstract commensurator
of K satisfies Comm(K) = Aut(K) = Mod(S), thus verifying a conjecture
of Benson Farb.

In the interpretation of braid groups as mapping class groups of a punc-
tured disk, one notes that the homeomorphisms involved may be taken to
be smooth and area-preserving. Thus Bn is related to the group G of area-
preserving diffeomorphisms of the disk. The study of G is also important in
understanding flows related to magnetic fields in the solid torus. This was
the subject of a fascinating talk by Elena Kudryavtseva, which concentrated
on the so-called Calabi invariant, the averaged linking number for pairs of
orbits of the magnetic flow in the solid torus. Her main result is that any
C1-smooth function on G is, in fact, a function of the Calabi invariant. This
has the consequence that higher-order knot and braid invariants cannot be
generalized to invariants of magnetic fields in the solid torus.

Thus we have three classes of groups: the braid groups, mapping class
groups of more general surfaces and Artin groups, and while it has been
known since the early 1970’s that they are interrelated, the full richness of
the interrelationship is just now beginning to be made clear. The last word
on this fascinating subject does not appear to have been said.
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